1
|
Olmos I, Ricciardi C, Mato M, Guevara N, Acuña S, Maldonado C, Vázquez M, Toledo M, Menéndez C, Blanco V, Badano JL, Cayota A, Spangenberg L, Cardenas-Rodriguez M. Optimization of Clozapine Treatment: Study of Variables Affecting Response in Uruguayan Patients With Schizophrenia. J Clin Psychopharmacol 2025; 45:20-27. [PMID: 39714785 DOI: 10.1097/jcp.0000000000001933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
PURPOSE/BACKGROUND Clozapine is the recommended drug for treatment-resistant schizophrenia. Drug response could be affected by numerous factors such as age, sex, body mass index, co-medication, consumption of xanthine-containing beverages, smoking, and genetic variants of the enzymes involved in clozapine metabolism (CYP1A2, CYP3A4, and, to a lesser extent, CYP2C19 and CYP2D6). This study evaluated genetic and nongenetic variables that may affect clozapine plasma concentrations in Uruguayan patients with schizophrenia. METHODS/PROCEDURES Demographic data including sex, age, ethnicity, body weight, smoking habit, concomitant medication, and xanthine consumption were collected through a data collection form. Clozapine and norclozapine concentrations were determined using an HPLC system equipped with a UV detector. Genetic variants were determined through next-generation sequencing using Illumina sequencing technology and a panel of DNA probes. FINDINGS/RESULTS Fifty patients were included in the study. After evaluation, only tobacco use and obesity had a significant impact on clozapine exposure (P < 0.05). The high prevalence of the genetic variant CYP1A2*1F may account for the significant impact that tobacco smoking has on clozapine concentrations. Some common adverse effects observed in this study depend on clozapine plasma concentrations, such as constipation and sialorrhea. IMPLICATIONS/CONCLUSIONS These types of studies provide the clinician with tools to optimize clozapine therapy, attempting to use the minimum effective dose and attenuating the burden of concentration-dependent adverse reactions.
Collapse
Affiliation(s)
- Ismael Olmos
- From the Pharmacology Clinic Unit, Department of Pharmacy, Hospital Vilardebó
| | - Carina Ricciardi
- Clinic of Hospital Vilardebó, Administración de Servicios de Salud del Estado
| | - Mauricio Mato
- From the Pharmacology Clinic Unit, Department of Pharmacy, Hospital Vilardebó
| | - Natalia Guevara
- Pharmaceutical Sciences Department, Faculty of Chemistry, Universidad de la República; Therapeutic Drug Monitoring Unit, Hospital de Clínicas Dr Manuel Quintela, Universidad de la República
| | - Sabrina Acuña
- Pharmaceutical Sciences Department, Faculty of Chemistry, Universidad de la República; Therapeutic Drug Monitoring Unit, Hospital de Clínicas Dr Manuel Quintela, Universidad de la República
| | - Cecilia Maldonado
- Pharmaceutical Sciences Department, Faculty of Chemistry, Universidad de la República; Therapeutic Drug Monitoring Unit, Hospital de Clínicas Dr Manuel Quintela, Universidad de la República
| | - Marta Vázquez
- Pharmaceutical Sciences Department, Faculty of Chemistry, Universidad de la República; Therapeutic Drug Monitoring Unit, Hospital de Clínicas Dr Manuel Quintela, Universidad de la República
| | | | - Clara Menéndez
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo
| | | | - José L Badano
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo
| | | | | | | |
Collapse
|
2
|
Tavakoli-Ardakani M, Gholamzadeh Sani Z, Beyraghi N, Najarimoghadam S, Kheradmand A. Comparison between cytisine and Nicotine Replacement Therapy in smoking cessation among inpatient psychiatric patients. J Addict Dis 2024; 42:352-359. [PMID: 37565489 DOI: 10.1080/10550887.2023.2237395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
INTRODUCTION Smoking is more common among people with mental disorders and is associated with adverse effects. Some compounds, including nicotine and cytisine, have been used in many individuals to increase success in smoking cessation. In this study, the effect of cytisine on the smoking status of patients hospitalized in the psychiatry department was investigated. METHOD Forty-seven patients, hospitalized in the psychiatry ward, motivated to quit smoking, participated in this open-label randomized trial. Thirty patients used nicotine gums 2 mg (Nicolife®) for eight weeks, and the remaining took cytisine pills (Tabex®) according to the manufacturer's instructions for 25 days. All patients were followed up for six months. The primary outcome was smoking cessation, measured by the mood and physical symptoms scale (MPSS), the AUDIT alcohol consumption questions (AUDIT-C), confirmatory factor analyses, and reliability of the modified cigarette evaluation questionnaire at the end of the 1st week and at 1st, 2nd and 6th months after quit day. FINDINGS Only two out of 30 patients (6.66%) in the group taking Nicotine Replacement Therapy (NRT) could quit smoking entirely (no cigarettes after six months). In contrast, three out of 17 patients (17.64%) managed to do so in the cytisine group. The number of cigarettes smoked by the patients in both groups decreased, but the reduction was significant in the cytisine group. CONCLUSION Cytisine is an effective and suitable agent for smoking cessation in patients with psychological problems, with fewer adverse effects and more success rate compared to NRT.
Collapse
Affiliation(s)
- Maria Tavakoli-Ardakani
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Gholamzadeh Sani
- Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Beyraghi
- Center for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Shadi Najarimoghadam
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Kheradmand
- Department of Psychiatry, Taleghani Hospital Research Development Committee, Behavioral Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Bleich L, Grohmann R, Greil W, Dabbert D, Erfurth A, Toto S, Seifert J. Clozapine-associated adverse drug reactions in 38,349 psychiatric inpatients: drug surveillance data from the AMSP project between 1993 and 2016. J Neural Transm (Vienna) 2024; 131:1117-1134. [PMID: 39136776 PMCID: PMC11365862 DOI: 10.1007/s00702-024-02818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024]
Abstract
Clozapine is a second-generation antipsychotic drug that offers superior treatment results in patients with schizophrenia but is also associated with significant risks. This study analyzes data on pharmacotherapy with clozapine and the associated adverse drug reactions (ADRs) in an inpatient setting including 38,349 patients. Data about the use of clozapine and reports of severe ADRs within the period 1993-2016 were obtained from the multicentered observational pharmacovigilance program "Arzneimittelsicherheit in der Psychiatrie" (AMSP). In total, 586 severe clozapine-associated ADRs were documented (1.53% of all patients exposed). Patients aged ≥65 years had a higher risk of ADRs than patients aged <65 years (1.96 vs. 1.48%; p = 0.021). Significantly more ADRs were attributed to clozapine alone (396; 67.6% of all 586 ADRs) than to a combination with other drugs. The most frequent ADRs were grand mal seizures (0.183% of all 38,349 patients exposed), delirium (0.180%), increased liver enzymes (0.120%), and agranulocytosis (0.107%). We detected 24 cases (0.063%) of clozapine-induced extrapyramidal symptoms, of which 8 (0.021%) were attributed to clozapine alone. Five ADRs resulted in death (0.013%): 2 due to agranulocytosis (41 cases total) (mortality = 4.88%) and 3 due to paralytic (sub)ileus (16 cases) (mortality = 18.75%). The median dose of clozapine in all patients treated was 300 mg/day, in patients who developed ADRs 250 mg/day. The main risk factor for an ADR was pre-existing damage of the affected organ system. Overall, the results of this study highlight the importance of alertness-especially of frequently overlooked symptoms-and appropriate monitoring during treatment with clozapine, even at low doses.
Collapse
Affiliation(s)
- Lene Bleich
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, 30625, Hannover, Germany.
- University Medical Center Göttingen, 37075, Göttingen, Germany.
| | - Renate Grohmann
- Department of Psychiatry and Psychotherapy, LMU University Hospital, 80336, Munich, Germany
| | - Waldemar Greil
- Department of Psychiatry and Psychotherapy, LMU University Hospital, 80336, Munich, Germany
- Psychiatric Private Hospital, Sanatorium Kilchberg, 8802, Kilchberg, Switzerland
| | - Dominik Dabbert
- Department of Forensic Psychiatry and Psychotherapy, Klinik Bremen-Ost, 28325, Bremen, Germany
| | - Andreas Erfurth
- 1st Department of Psychiatry and Psychotherapeutic Medicine, Klinik Hietzing, 1130, Vienna, Austria
| | - Sermin Toto
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, 30625, Hannover, Germany
| | - Johanna Seifert
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, 30625, Hannover, Germany
| |
Collapse
|
4
|
Yang R, Wan JL, Pi CQ, Wang TH, Zhu XQ, Zhou SJ. Increased antipsychotic drug concentration in hospitalized patients with mental disorders following COVID-19 infection: a call for attention. Front Psychiatry 2024; 15:1421370. [PMID: 39077630 PMCID: PMC11284031 DOI: 10.3389/fpsyt.2024.1421370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Purpose Examine the alterations in antipsychotic concentrations following coronavirus disease-2019 (COVID-19) infection among hospitalized patients with mental disorders and conduct an analysis of the factors influencing these changes. Methods Data were collected from inpatients at Beijing Huilongguan Hospital between December 12, 2022, and January 11, 2023, pre- and post-COVID-19. Based on the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, 329 inpatients with mental disorders were included (3 with incomplete data excluded). Primary outcomes assessed changes in antipsychotic concentrations pre- and post-COVID-19, while secondary outcomes examined factors linked to concentration increases and antipsychotic dose adjustments. Results Clozapine (P < 0.001), aripiprazole (P < 0.001), quetiapine (P = 0.005), olanzapine (P < 0.001), risperidone (P < 0.001), and paliperidone (P < 0.001) concentrations increased post-COVID-19 in patients with mental disorders. Notably, clozapine concentration surpassing pre-infection levels was highest. Clozapine users were more likely to adjust their dose (50.4%) compared to olanzapine (17.5%) and other antipsychotics. Moreover, traditional Chinese patent medicines and antibiotics during COVID-19 infection were associated with antipsychotic reduction or withdrawal (OR = 2.06, P = 0.0247; OR = 7.53, P = 0.0024, respectively). Conclusion Antipsychotic concentrations in hospitalized patients with mental disorders increased after COVID-19 infection, that may be related not only to COVID-19, but also to the use of Chinese patent medicines during infection. The pre-infection concentration and types of antipsychotics, patient's gender, and combination of traditional Chinese medicine or antibiotics, were factors found to correlate with increased drug concentrations and necessitate dose adjustments.
Collapse
Affiliation(s)
- Rui Yang
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jin-Ling Wan
- Zhangjiakou Shalingzi Hospital, Zhangjiakou Mental Health Center, Zhangjiakou, Hebei, China
| | - Chen-Qi Pi
- Psychiatry Department, Shunyi Women’s & Children’s Hospital of Beijing Children’s Hospital, Beijing, China
| | - Tian-Hui Wang
- Psychiatry Department, Shunyi Women’s & Children’s Hospital of Beijing Children’s Hospital, Beijing, China
| | - Xue-Quan Zhu
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Shuang-Jiang Zhou
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| |
Collapse
|
5
|
Ansermot N, Vathanarasa H, Ranjbar S, Gholam M, Crettol S, Vandenberghe F, Gamma F, Plessen KJ, von Gunten A, Conus P, Eap CB. Therapeutic Drug Monitoring of Olanzapine: Effects of Clinical Factors on Plasma Concentrations in Psychiatric Patients. Ther Drug Monit 2024; 46:00007691-990000000-00234. [PMID: 38833576 PMCID: PMC11554250 DOI: 10.1097/ftd.0000000000001227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/31/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Therapeutic drug monitoring (TDM) is strongly recommended for olanzapine due to its high pharmacokinetic variability. This study aimed to investigate the impact of various clinical factors on olanzapine plasma concentrations in patients with psychiatric disorders. METHODS The study used TDM data from the PsyMetab cohort, including 547 daily dose-normalized, steady-state, olanzapine plasma concentrations (C:D ratios) from 248 patients. Both intrinsic factors (eg, sex, age, body weight) and extrinsic factors (eg, smoking status, comedications, hospitalization) were examined. Univariate and multivariable, linear, mixed-effects models were employed, with a stepwise selection procedure based on Akaike information criterion to identify the relevant covariates. RESULTS In the multivariable model (based on 440 observations with a complete data set), several significant findings emerged. Olanzapine C:D ratios were significantly lower in smokers (β = -0.65, P < 0.001), valproate users (β = -0.53, P = 0.002), and inpatients (β = -0.20, P = 0.025). Furthermore, the C:D ratios decreased significantly as the time since the last dose increased (β = -0.040, P < 0.001). The male sex had a significant main effect on olanzapine C:D ratios (β = -2.80, P < 0.001), with significant interactions with age (β = 0.025, P < 0.001) and body weight (β = 0.017, P = 0.011). The selected covariates explained 30.3% of the variation in C:D ratios, with smoking status accounting for 7.7% and sex contributing 6.9%. The overall variation explained by both the fixed and random parts of the model was 67.4%. The model facilitated the prediction of olanzapine C:D ratios based on sex, age, and body weight. CONCLUSIONS The clinical factors examined in this study, including sex, age, body weight, smoking status, and valproate comedication, remarkably influence olanzapine C:D ratios. Considering these factors, in addition to TDM and the clinical situation, could be important for dose adjustment.
Collapse
Affiliation(s)
- Nicolas Ansermot
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Harish Vathanarasa
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Setareh Ranjbar
- Psychiatric Epidemiology and Psychopathology Research Centre, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Mehdi Gholam
- Psychiatric Epidemiology and Psychopathology Research Centre, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Séverine Crettol
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Frederik Vandenberghe
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Franziska Gamma
- Les Toises Psychiatry and Psychotherapy Centre, Lausanne, Switzerland
| | - Kerstin Jessica Plessen
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Armin von Gunten
- Service of Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Chin B. Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Centre for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Lausanne, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland; and
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Geneva and Lausanne, Switzerland
| |
Collapse
|
6
|
Koster M, Mannsdörfer L, van der Pluijm M, de Haan L, Ziermans T, van Wingen G, Vermeulen J. The Association Between Chronic Tobacco Smoking and Brain Alterations in Schizophrenia: A Systematic Review of Magnetic Resonance Imaging Studies. Schizophr Bull 2024:sbae088. [PMID: 38824451 DOI: 10.1093/schbul/sbae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
BACKGROUND AND HYPOTHESIS The high co-occurrence of tobacco smoking in patients with schizophrenia spectrum disorders (SSD) poses a serious health concern, linked to increased mortality and worse clinical outcomes. The mechanisms underlying this co-occurrence are not fully understood. STUDY DESIGN Addressing the need for a comprehensive overview of the impact of tobacco use on SSD neurobiology, we conducted a systematic review of neuroimaging studies (including structural, functional, and neurochemical magnetic resonance imaging studies) that investigate the association between chronic tobacco smoking and brain alterations in patients with SSD. STUDY RESULTS Eight structural and fourteen functional studies were included. Structural studies show widespread independent and additive reductions in gray matter in relation to smoking and SSD. The majority of functional studies suggest that smoking might be associated with improvements in connectivity deficits linked to SSD. However, the limited number of and high amount of cross-sectional studies, and high between-studies sample overlap prevent a conclusive determination of the nature and extent of the impact of smoking on brain functioning in patients with SSD. Overall, functional results imply a distinct neurobiological mechanism for tobacco addiction in patients with SSD, possibly attributed to differences at the nicotinic acetylcholine receptor level. CONCLUSIONS Our findings highlight the need for more longitudinal and exposure-dependent studies to differentiate between inherent neurobiological differences and the (long-term) effects of smoking in SSD, and to unravel the complex interaction between smoking and schizophrenia at various disease stages. This could inform more effective strategies addressing smoking susceptibility in SSD, potentially improving clinical outcomes.
Collapse
Affiliation(s)
- Merel Koster
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lilli Mannsdörfer
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marieke van der Pluijm
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Tim Ziermans
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Guido van Wingen
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jentien Vermeulen
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Scherf-Clavel M, Baumann P, Hart XM, Schneider H, Schoretsanitis G, Steimer W, Zernig G, Zurek G. Behind the Curtain: Therapeutic Drug Monitoring of Psychotropic Drugs from a Laboratory Analytical Perspective. Ther Drug Monit 2024; 46:143-154. [PMID: 36941240 DOI: 10.1097/ftd.0000000000001092] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
PURPOSE Therapeutic drug monitoring (TDM) is a well-established tool for guiding psychopharmacotherapy and improving patient care. Despite their established roles in the prescription of psychotropic drugs, the "behind the curtain" processes of TDM requests are invariably obscure to clinicians, and literature addressing this topic is scarce. METHODS In the present narrative review, we provide a comprehensive overview of the various steps, starting from requesting TDM to interpreting TDM findings, in routine clinical practice. Our goal was to improve clinicians' insights into the numerous factors that may explain the variations in TDM findings due to methodological issues. RESULTS We discussed challenges throughout the TDM process, starting from the analyte and its major variation forms, through sampling procedures and pre-analytical conditions, time of blood sampling, sample matrices, and collection tubes, to analytical methods, their advantages and shortcomings, and the applied quality procedures. Additionally, we critically reviewed the current and future advances in the TDM of psychotropic drugs. CONCLUSIONS The "behind the curtain" processes enabling TDM involve a multidisciplinary team, which faces numerous challenges in clinical routine. A better understanding of these processes will allow clinicians to join the efforts for achieving higher-quality TDM findings, which will in turn improve treatment effectiveness and safety outcomes of psychotropic agents.
Collapse
Affiliation(s)
- Maike Scherf-Clavel
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) Work Group on "Therapeutic Drug Monitoring" (Chair: Prof. Dr Med. Dipl.-Psych. Stefan Unterecker, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany)
| | - Pierre Baumann
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) Work Group on "Therapeutic Drug Monitoring" (Chair: Prof. Dr Med. Dipl.-Psych. Stefan Unterecker, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany)
- German Society for Clinical Chemistry and Laboratory Medicine e. V. (DGKL), Section Therapeutic Drug Monitoring and Clinical Toxicology, Berlin/Bonn, Germany
| | - Xenia M Hart
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) Work Group on "Therapeutic Drug Monitoring" (Chair: Prof. Dr Med. Dipl.-Psych. Stefan Unterecker, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany)
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Heike Schneider
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) Work Group on "Therapeutic Drug Monitoring" (Chair: Prof. Dr Med. Dipl.-Psych. Stefan Unterecker, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany)
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University Munich, Munich, Germany
- German Society for Clinical Chemistry and Laboratory Medicine e. V. (DGKL), Section Therapeutic Drug Monitoring and Clinical Toxicology, Berlin/Bonn
- INSTAND e.V. Society for Promoting Quality Assurance in Medical Laboratories, Duesseldorf, Germany
- German Society for Clinical Chemistry and Laboratory Medicine e. V. (DGKL), Section Therapeutic Drug Monitoring and Clinical Toxicology, Berlin/Bonn, Germany
| | - Georgios Schoretsanitis
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) Work Group on "Therapeutic Drug Monitoring" (Chair: Prof. Dr Med. Dipl.-Psych. Stefan Unterecker, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany)
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York
- Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, New York
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Werner Steimer
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) Work Group on "Therapeutic Drug Monitoring" (Chair: Prof. Dr Med. Dipl.-Psych. Stefan Unterecker, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany)
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University Munich, Munich, Germany
- German Society for Clinical Chemistry and Laboratory Medicine e. V. (DGKL), Section Therapeutic Drug Monitoring and Clinical Toxicology, Berlin/Bonn
| | - Gerald Zernig
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) Work Group on "Therapeutic Drug Monitoring" (Chair: Prof. Dr Med. Dipl.-Psych. Stefan Unterecker, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany)
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
- Private Practice for Psychotherapy and Court-certified Expert Witness, Hall in Tirol, Austria; and
| | - Gabriela Zurek
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) Work Group on "Therapeutic Drug Monitoring" (Chair: Prof. Dr Med. Dipl.-Psych. Stefan Unterecker, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany)
- Medical Laboratory Bremen, Bremen, Germany
| |
Collapse
|
8
|
Smessaert S, Detraux J, Desplenter F, De Hert M. Evaluating Monitoring Guidelines of Clozapine-Induced Adverse Effects: a Systematic Review. CNS Drugs 2024; 38:105-123. [PMID: 38236524 DOI: 10.1007/s40263-023-01054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND AND OBJECTIVES Despite the evidence that no other antipsychotic is effective as clozapine for the treatment of resistant schizophrenia, it is associated with various metabolic, neuroendocrine, cardiovascular, and gastrointestinal adverse effects. Guidelines aiming to address the monitoring of clozapine's (serious) adverse effects can be helpful to prevent and treat these effects. However, many of these guidelines seem to lack one or more important monitoring recommendations. We aimed to systematically review the content and quality of existing monitoring guidelines/recommendations for clozapine-induced adverse effects. METHODS A comprehensive and systematic literature search, using the MEDLINE, Embase, Web of Science, and Cochrane databases, was conducted for guidelines/recommendations on the monitoring of clozapine-induced adverse events, published between January 2004 and April 2023 (last search 16 April 2023). Only peer-reviewed published guidelines reporting on the comprehensive monitoring of all major clozapine-induced adverse effects and including evidence-based recommendations, developed after the year 2004, were included. Studies reporting on the monitoring of adverse effects of clozapine without being a formal guideline, guidelines reporting on the monitoring of one or a limited number of adverse effects of clozapine, guidelines that were not peer reviewed or published, expert opinion papers without formal consensus guideline development, or guidelines developed before the year 2004, were excluded. The Appraisal of Guidelines for Research and Evaluation II (AGREE-II) tool was used to evaluate the guidelines/recommendations' quality. RESULTS Only one guideline met the inclusion criteria. This consensus statement made recommendations for hematological monitoring, and the monitoring of metabolic, cardiac, and three other adverse effects. Highest scores for the qualitative assessment were found for the domains "scope and purpose" (66.7%), "clarity of presentation" (44.4%), and "editorial independence" (66.7%). Lowest scores were found for "rigor of development" (14.6%) and "applicability" (0%). CONCLUSIONS Future guidelines should develop more comprehensive recommendations about specific clozapine-induced adverse effects, including constipation, myocarditis, tachycardia, and seizures, as well as include a rechallenge policy. There is an urgent need for well-developed, methodologically stringent, guidelines. REGISTRATION PROSPERO registration number, CRD42023402480.
Collapse
Affiliation(s)
- Sarah Smessaert
- University Psychiatric Center Katholieke Universiteit Leuven, Leuvensesteenweg 517, 3070, Kortenberg, Belgium.
| | - Johan Detraux
- Department of Biomedical Sciences, Research Group Psychiatry, University Psychiatric Center KU Leuven, Leuvensesteenweg 517, 3070, Kortenberg, Belgium
| | - Franciska Desplenter
- University Psychiatric Center Katholieke Universiteit Leuven, Leuvensesteenweg 517, 3070, Kortenberg, Belgium
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Marc De Hert
- University Psychiatric Center Katholieke Universiteit Leuven, Leuvensesteenweg 517, 3070, Kortenberg, Belgium
- Department of Neurosciences, Centre for Clinical Psychiatry, Katholieke Universiteit Leuven, Leuven, Belgium
- Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven, Belgium
- Antwerp Health Law and Ethics Chair, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
9
|
Wang G, Liu X, Huo Q, Lin S, Qiu Y, Wang F, Wang W. Inflammation affects the pharmacokinetics of risperidone: Does the dose need to be adjusted during the acute-phase reaction? Schizophr Res 2024; 264:122-129. [PMID: 38128343 DOI: 10.1016/j.schres.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/28/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Several studies have indicated that the plasma concentration of risperidone increases 3-5-fold during the acute-phase reaction (APR) of inflammation or infection. Psychiatric symptoms are present or deteriorate when the dose is lowered; thus, the complex effects of inflammation on the pharmacokinetics of risperidone need to be examined. METHODS We established a APR model in rabbits induced by lipopolysaccharide (LPS) and studied the effect of APR on pharmacokinetics, distribution and disposition of risperidone in vivo and in vitro. RESULTS Following intramuscular administration, the plasma exposures for risperidone and its active metabolite (9-hydroxyrisperidone) were increased approximately 6-fold on day 2 of inflammation. The exposure values did not change between day 2 and 5 of inflammation, nor did the metabolite-to-parent ratio before and during inflammation. Following oral administration, the increase of risperidone exposure was twice as high as that following intramuscular administration during APR. However, the concentration of risperidone and 9-hydroxyrisperidone in brain tissue was similar between the inflammatory and control groups. Moreover, the plasma protein binding (PPB) of risperidone and 9-hydroxyrisperidone associated with inflammation were all increased to >99 %. In addition, risperidone and 9-hydroxyrisperidone were not substrates of the key transporters, OATP1B3, OCT2, OAT3, MATE-1, or MATE-2 K. The expression of progesterone X receptor and P-glycoprotein was inhibited by LPS. CONCLUSION During APR, reduced expression of P-glycoprotein and increased PPB were responsible for increased exposure in plasma, while maintaining stable concentrations in the brain, and risperidone does not need to be dose-adjusted so as to achieve psychopharmacological outcomes.
Collapse
Affiliation(s)
- Gaoyu Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Xinghua Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Qiurui Huo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Shilan Lin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yifan Qiu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing 100096, China.
| | - Wenyan Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
10
|
Krejčí V, Murínová I, Slanař O, Šíma M. Evidence for Therapeutic Drug Monitoring of Atypical Antipsychotics. Prague Med Rep 2024; 125:101-129. [PMID: 38761044 DOI: 10.14712/23362936.2024.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024] Open
Abstract
Second-generation antipsychotics (SGAs), also known as atypical antipsychotics, are a newer class of antipsychotic drugs used to treat schizophrenia, bipolar disorder, and related psychiatric conditions. The plasma concentration of antipsychotic drugs is a valid measure of the drug at its primary target structure in the brain, and therefore determines the efficacy and safety of these drugs. However, despite the well-known high variability in pharmacokinetics of these substances, psychiatric medication is usually administered in uniform dosage schedules. Therapeutic drug monitoring (TDM), as the specific method that can help personalised medicine in dose adjustment according to the characteristics of the individual patient, minimizing the risk of toxicity, monitoring adherence, and increasing cost-effectiveness in the treatment, thus seems to be an elegant tool to solve this problem. Non-response to therapeutic doses, uncertain adherence to medication, suboptimal tolerability, or pharmacokinetic drug-drug interactions are typical indications for TDM of SGAs. This review aims to summarize an overview of the current knowledge and evidence of the possibilities to tailor the dosage of selected SGAs using TDM, including the necessary pharmacokinetic parameters for personalised pharmacotherapy.
Collapse
Affiliation(s)
- Veronika Krejčí
- Department of Clinical Pharmacy, Military University Hospital Prague, Prague, Czech Republic.
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Irena Murínová
- Department of Applied Pharmacy, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
- Department of Clinical Pharmacy, Military University Hospital Prague, Prague, Czech Republic
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martin Šíma
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
11
|
Alavi M, Ridout SJ, Lee C, Harris B, Ridout KK. Predictors of Long-Acting Injectable Antipsychotic Medication Use in Patients with Schizophrenia Spectrum, Bipolar, and Other Psychotic Disorders in a US Community-based, Integrated Health System. SCHIZOPHRENIA BULLETIN OPEN 2024; 5:sgae011. [PMID: 39144114 PMCID: PMC11207847 DOI: 10.1093/schizbullopen/sgae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Background and Hypothesis Long-acting injectable (LAI) antipsychotics improve patient outcomes and are recommended by treatment guidelines for patients with limited medication adherence in schizophrenia spectrum, bipolar, and other psychotic disorders. Reports of LAI antipsychotic use in these disorders and if use aligns with treatment guidelines are lacking. This study aimed to report patient characteristics associated with LAI antipsychotic use in these disorders. Study Design Retrospective observational study of patients ≥18-years-old with bipolar or psychotic disorders at a large, integrated, community-based health system. Patient demographic and clinical characteristics served as exposures for the main outcome of adjusted odds ratio (aOR) for LAI versus oral antipsychotic medication use from January 1, 2017 to December 31, 2023. Study Results There were N = 2685 LAI and N = 31 531 oral antipsychotic users. Being non-white (aOR = 1.3-2.0; P < .0001), non-female (aOR = 1.5; P < .0001), from a high deprivation neighborhood (NDI, aOR = 1.3; P < .0007), having a higher body mass index (BMI, aOR = 1.3-1.7; P < .0009), having a schizophrenia/schizoaffective (aOR = 5.8-6.8; P < .0001), psychotic (aOR = 1.6, P < .0001), or substance use disorder (aOR = 1.4; P < .0001), and outpatient psychiatry (aOR = 2.3-7.5; P < .0001) or inpatient hospitalization (aOR = 2.4; P < .0001) utilization in the prior year with higher odds and age ≥40 (aOR = 0.4-0.7; P < .0001) or bipolar disorder (aOR = 0.9; P < .05) were associated with lower odds of LAI use. Non-white, non-female, age 18-39, and high NDI patients had higher LAI use regardless of treatment adherence markers. Smoking and cardiometabolic markers were also associated with LAI use. Conclusions Demographic and clinical factors are associated with increased LAI use irrespective of treatment adherence. Research on utilization variation informing equitable formulation use aligned with treatment guideline recommendations is warranted.
Collapse
Affiliation(s)
- Mubarika Alavi
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | - Samuel J Ridout
- The Permanente Medical Group, Kaiser Permanente Northern California, Oakland, CA
| | - Catherine Lee
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | - Brooke Harris
- Kaiser Foundation Hospitals, Kaiser Permanente Northern California, Oakland, CA
| | - Kathryn K Ridout
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
- The Permanente Medical Group, Kaiser Permanente Northern California, Oakland, CA
| |
Collapse
|
12
|
Horvat M, Kadija M, Ščavničar A, Živković M, Šagud M, Lovrić M. Association of smoking cigarettes, age, and sex with serum concentrations of olanzapine in patients with schizophrenia. Biochem Med (Zagreb) 2023; 33:030702. [PMID: 37841771 PMCID: PMC10564155 DOI: 10.11613/bm.2023.030702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/11/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Olanzapine is an atypical antipsychotic drug which is effective in the treatment of schizophrenia. Cigarette smoking, age, and sex could be related to the pharmacokinetics and serum concentrations of olanzapine in patients with schizophrenia. The aim of the study was to examine whether there was a significant difference in the serum olanzapine concentrations with regard to the mentioned factors. Materials and methods A total of 58 outpatients with schizophrenia (37 smokers, 42 men, 35 older than 40 years) participated in the study. Blood was sampled in serum tubes just before taking the next dose of olanzapine. Olanzapine was extracted by liquid-liquid extraction and was measured by an in-house high-performance liquid chromatography method on Shimadzu Prominence HPLC System with diode array detector SPD-M20A (Shimadzu, Kyoto, Japan). The results were expressed as the ratio of concentration to the daily dose of olanzapine (C/D). Non-parametric statistical tests were used to analyse differences between variables. Results The median C/D of olanzapine (interquartile range) in smokers was 6.0 (3.4-10.2) nmol/L/mg and in non-smokers 10.1 (5.9-17.6) nmol/L/mg; P = 0.007. The median C/D of olanzapine in patients younger than 40 years was 5.6 (4.5-10.2) nmol/L/mg and in patients older than 40 years 8.4 (5.6-13.0) nmol/L/mg; P = 0.105. The median C/D of olanzapine in male patients was 6.6 (4.6-10.4) nmol/L/mg and in female patients 9.0 (5.9-15.3) nmol/L/mg; P = 0.064. Conclusions The serum olanzapine concentration was significantly lower in smoking than in non-smoking patients with schizophrenia. No significant difference was demonstrated with regard to age and sex.
Collapse
Affiliation(s)
- Mihovil Horvat
- Faculty of pharmacy and biochemistry, University of Zagreb, Zagreb, Croatia
| | - Mate Kadija
- Faculty of pharmacy and biochemistry, University of Zagreb, Zagreb, Croatia
| | - Andrijana Ščavničar
- Department of laboratory diagnostics, University hospital centre Zagreb, Zagreb, Croatia
| | - Maja Živković
- Clinic for psychiatry, Clinical hospital Vrapče, Zagreb, Croatia
| | - Marina Šagud
- Department of psychiatry and psychological medicine, University hospital centre Zagreb, Zagreb, Croatia
- School of medicine, University of Zagreb, Zagreb, Croatia
| | - Mila Lovrić
- Faculty of pharmacy and biochemistry, University of Zagreb, Zagreb, Croatia
- Department of laboratory diagnostics, University hospital centre Zagreb, Zagreb, Croatia
- School of medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
13
|
Orbe EB, Benros ME. Immunological Biomarkers as Predictors of Treatment Response in Psychotic Disorders. J Pers Med 2023; 13:1382. [PMID: 37763150 PMCID: PMC10532612 DOI: 10.3390/jpm13091382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Psychotic disorders, notably schizophrenia, impose a detrimental burden on both an individual and a societal level. The mechanisms leading to psychotic disorders are multifaceted, with genetics and environmental factors playing major roles. Increasing evidence additionally implicates neuro-inflammatory processes within at least a subgroup of patients with psychosis. While numerous studies have investigated anti-inflammatory add-on treatments to current antipsychotics, the exploration of immunological biomarkers as a predictor of treatment response remains limited. This review outlines the current evidence from trials exploring the potential of baseline inflammatory biomarkers as predictors of the treatment effect of anti-inflammatory drugs as add-ons to antipsychotics and of antipsychotics alone. Several of the studies have found correlations between baseline immunological biomarkers and treatment response; however, only a few studies incorporated baseline biomarkers as a primary endpoint, and the findings thus need to be interpreted with caution. Our review emphasizes the need for additional research on the potential of repurposing anti-inflammatory drugs while utilizing baseline inflammatory biomarkers as a predictor of treatment response and to identify subgroups of individuals with psychotic disorders where add-on treatment with immunomodulating agents would be warranted. Future studies investigating the correlation between baseline inflammatory markers and treatment responses can pave the way for personalized medicine approaches in psychiatry centred around biomarkers such as specific baseline inflammatory biomarkers in psychotic disorders.
Collapse
Affiliation(s)
- Elif Bayram Orbe
- Copenhagen Research Centre for Biological and Precision Psychiatry, Mental Health Centre Copenhagen, Copenhagen University Hospital, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Michael Eriksen Benros
- Copenhagen Research Centre for Biological and Precision Psychiatry, Mental Health Centre Copenhagen, Copenhagen University Hospital, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 1172 Copenhagen, Denmark
| |
Collapse
|
14
|
de Leon J, Schoretsanitis G, Smith RL, Molden E, Solismaa A, Seppälä N, Kopeček M, Švancer P, Olmos I, Ricciardi C, Iglesias-Garcia C, Iglesias-Alonso A, Spina E, Ruan CJ, Wang CY, Wang G, Tang YL, Lin SK, Lane HY, Kim YS, Kim SH, Rajkumar AP, González-Esquivel DF, Jung-Cook H, Baptista T, Rohde C, Nielsen J, Verdoux H, Quiles C, Sanz EJ, De las Cuevas C, Cohen D, Schulte PF, Ertuğrul A, Anıl Yağcıoğlu AE, Chopra N, McCollum B, Shelton C, Cotes RO, Kaithi AR, Kane JM, Farooq S, Ng CH, Bilbily J, Hiemke C, López-Jaramillo C, McGrane I, Lana F, Eap CB, Arrojo-Romero M, Rădulescu FŞ, Seifritz E, Every-Palmer S, Bousman CA, Bebawi E, Bhattacharya R, Kelly DL, Otsuka Y, Lazary J, Torres R, Yecora A, Motuca M, Chan SKW, Zolezzi M, Ouanes S, De Berardis D, Grover S, Procyshyn RM, Adebayo RA, Kirilochev OO, Soloviev A, Fountoulakis KN, Wilkowska A, Cubała WJ, Ayub M, Silva A, Bonelli RM, Villagrán-Moreno JM, Crespo-Facorro B, Temmingh H, Decloedt E, Pedro MR, Takeuchi H, Tsukahara M, Gründer G, Sagud M, Celofiga A, Ignjatovic Ristic D, Ortiz BB, Elkis H, Pacheco Palha AJ, Llerena A, Fernandez-Egea E, Siskind D, Weizman A, Masmoudi R, Mohd Saffian S, Leung JG, Buckley PF, Marder SR, Citrome L, Freudenreich O, Correll CU, Müller DJ. Guía internacional para una dosificación más segura de la clozapina en adultos mediante el uso de 6 titulaciones personalizadas de dosis basados en la etnicidad, la proteína C reactiva y los niveles de clozapina. PSIQUIATRÍA BIOLÓGICA 2023; 30:100415. [DOI: 10.1016/j.psiq.2023.100415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
|
15
|
Fischer B, Hall W, Fidalgo TM, Hoch E, Foll BL, Medina-Mora ME, Reimer J, Tibbo PG, Jutras-Aswad D. Recommendations for Reducing the Risk of Cannabis Use-Related Adverse Psychosis Outcomes: A Public Mental Health-Oriented Evidence Review. J Dual Diagn 2023; 19:71-96. [PMID: 37450645 DOI: 10.1080/15504263.2023.2226588] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Objective: Cannabis use is increasingly normalized; psychosis is a major adverse health outcome. We reviewed evidence on cannabis use-related risk factors for psychosis outcomes at different stages toward recommendations for risk reduction by individuals involved in cannabis use. Methods: We searched primary databases for pertinent literature/data 2016 onward, principally relying on reviews and high-quality studies which were narratively summarized and quality-graded; recommendations were developed by international expert consensus. Results: Genetic risks, and mental health/substance use problem histories elevate the risks for cannabis-related psychosis. Early age-of-use-onset, frequency-of-use, product composition (i.e., THC potency), use mode and other substance co-use all influence psychosis risks; the protective effects of CBD are uncertain. Continuous cannabis use may adversely affect psychosis-related treatment and medication effects. Risk factor combinations further amplify the odds of adverse psychosis outcomes. Conclusions: Reductions in the identified cannabis-related risks factors-short of abstinence-may decrease risks of related adverse psychosis outcomes, and thereby protect cannabis users' health.
Collapse
Affiliation(s)
- Benedikt Fischer
- Centre for Applied Research in Mental Health and Addiction, Faculty of Health Sciences, Simon Fraser University, Vancouver, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Research and Graduate Studies Division, University of the Fraser Valley, Abbotsford, Canada
- School of Population Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Psychiatry, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Wayne Hall
- National Centre for Youth Substance Use Research, Faculty of Health and Behavioural Sciences, University of Queensland, St Lucia, Australia
| | - Thiago M Fidalgo
- Department of Psychiatry, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Eva Hoch
- Department of Psychiatry, Ludwig-Maximilian-University, Munich, Germany
- Institut für Therapieforschung (IFT), Munich, Germany
| | - Bernard Le Foll
- Translational Addiction Research Laboratory and Campbell Family Mental Health Research Institute and Acute Care Program, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Pharmacology and Toxicology and Dalla Lana School of Public Health and Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, Canada
- Waypoint Research Institute, Waypoint Centre for Mental Health Care, Penetanguishene, Canada
| | - Maria-Elena Medina-Mora
- Center for Global Mental Health Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
- Department of Psychiatry and Mental Health, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Jens Reimer
- Departments of Psychiatry and Psychotherapy, Center for Interdisciplinary Addiction Research, University of Hamburg, Hamburg, Germany
- Center for Psychosocial Medicine, Academic Teaching Hospital Itzehoe, Itzehoe, Germany
| | - Philip G Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, Canada
- Nova Scotia Health, Halifax, Canada
| | - Didier Jutras-Aswad
- Research Centre, Centre Hospitalier de l'Université de Montréal, Montreal, Canada
- Department of Psychiatry and Addictology, Faculty of Medicine, Université de Montréal, Édouard Montpetit Boulevard, Montreal, Canada
| |
Collapse
|
16
|
Miroshnichenko II, Baymeeva NV, Platova AI, Kaleda VG. [Therapeutic drug monitoring of antipsychotic drugs in routine psychiatric practice]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:145-152. [PMID: 37315254 DOI: 10.17116/jnevro2023123051145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To evaluate the relationship between daily doses of antipsychotic drugs, their serum concentrations, and characteristics of patients treated for schizophrenia or schizophreniform disorder in day-to-day clinical practice. MATERIAL AND METHODS A total of 187 patients were included in the study, 77 (41.1%) patients were on monotherapy, and 110 (58.9%) patients received two or more antipsychotics. Patients age was 27.8±8.1 years, and their body weight was 79.8±15.6 kg. The sample was represented mainly by young men (93.0%). The proportion of smokers was 37.4%. The appropriate HPLC-MS/MS method was used for the simultaneous analysis of 8 antipsychotics and its active metabolites. Serum concentrations of the drugs aripiprazole (ARI), chlorpromazine (CPZ), haloperidol (HAL), zuclopenthixol (ZUC), clozapine (CLO), risperidone (RIS), quetiapine (QUE), olanzapine (OLA), norclozapine (N-desmethylclozapine, NOR), 9-hydroxyrisperidone (9-OH-RIS), dehydroaripiprazole (DGA) were measured. The serum concentration/dose ratio (C/D) was employed as the primary outcome measure, as doses were not kept constant during the study. The active antipsychotic fraction (drug+active metabolite, active moiety - AM) was also evaluated for RIS and ARI. In addition, the metabolite/parent ratio (MPR) was evaluated for RIS and ARI. RESULTS A total of 265 biological samples were obtained, 421 and 203 measurements of the concentration of drugs and their metabolites were carried out, respectively. Overall, 48% of antipsychotics levels were in the expected therapeutic ranges, 30% were below therapeutic ranges, and 22% were above them. A total of 55 patients underwent dose adjustments or drug changes due to ineffectiveness or side-effects. It has been found that smoking reduces the level of C/D for CLO (p<0.01, Mann-Whitney test). We have established that comedication with CLO significantly increases the C/D ratio of QUE (p<0.05, Mann-Whitney test). We have not revealed any influence of weight and age of the subjects on the C/D. The dose-concentration regression relationships are formalized for all AP. CONCLUSION Therapeutical drug monitoring (TDM) is an essential tool to personalize antipsychotic therapy. Careful analysis of TDM data can contribute significantly to the study of the impact of individual patient characteristics on systemic exposure to these drugs.
Collapse
Affiliation(s)
| | | | - A I Platova
- Mental Health Research Center, Moscow, Russia
| | - V G Kaleda
- Mental Health Research Center, Moscow, Russia
| |
Collapse
|
17
|
Pennazio F, Brasso C, Villari V, Rocca P. Current Status of Therapeutic Drug Monitoring in Mental Health Treatment: A Review. Pharmaceutics 2022; 14:pharmaceutics14122674. [PMID: 36559168 PMCID: PMC9783500 DOI: 10.3390/pharmaceutics14122674] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Therapeutic drug monitoring (TDM) receives growing interest in different psychiatric clinical settings (emergency, inpatient, and outpatient services). Despite its usefulness, TDM remains underemployed in mental health. This is partly due to the need for evidence about the relationship between drug serum concentration and efficacy and tolerability, both in the general population and even more in subpopulations with atypical pharmacokinetics. This work aims at reviewing the scientific literature published after 2017, when the most recent guidelines about the use of TDM in mental health were written. We found 164 pertinent records that we included in the review. Some promising studies highlighted the possibility of correlating early drug serum concentration and clinical efficacy and safety, especially for antipsychotics, potentially enabling clinicians to make decisions on early laboratory findings and not proceeding by trial and error. About populations with pharmacokinetic peculiarities, the latest studies confirmed very common alterations in drug blood levels in pregnant women, generally with a progressive decrease over pregnancy and a very relevant dose-adjusted concentration increase in the elderly. For adolescents also, several drugs result in having different dose-related concentration values compared to adults. These findings stress the recommendation to use TDM in these populations to ensure a safe and effective treatment. Moreover, the integration of TDM with pharmacogenetic analyses may allow clinicians to adopt precise treatments, addressing therapy on an individual pharmacometabolic basis. Mini-invasive TDM procedures that may be easily performed at home or in a point-of-care are very promising and may represent a turning point toward an extensive real-world TDM application. Although the highlighted recent evidence, research efforts have to be carried on: further studies, especially prospective and fixed-dose, are needed to replicate present findings and provide clearer knowledge on relationships between dose, serum concentration, and efficacy/safety.
Collapse
Affiliation(s)
- Filippo Pennazio
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy
| | - Claudio Brasso
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy
- Correspondence:
| | - Vincenzo Villari
- Psychiatric Emergency Service, Department of Neuroscience and Mental Health, A.O.U. “Città della Salute e della Scienza di Torino”, 10126 Turin, Italy
| | - Paola Rocca
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy
| |
Collapse
|
18
|
González-Rodríguez A, Monreal JA, Mv MVS. Factors Influencing Adherence to Antipsychotic Medications in Women with Delusional Disorder: A Narrative Review. Curr Pharm Des 2022; 28:1282-1293. [PMID: 35272589 DOI: 10.2174/1381612828666220310151625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/29/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Adherence to medication regimens is of great importance in psychiatry because drugs sometimes need to be taken for long durations in order to maintain health and function. OBJECTIVE To review influences on adherence to antipsychotic medications, the treatment of choice for delusional disorder (DD), and to focus on adherence in women with DD. METHOD A non-systematic narrative review of papers published since 2000 using PubMed and Google Scholar and focusing on women with DD and medication adherence. RESULTS Several factors have been identified as exerting influence on adherence in women with persistent delusional symptoms who are treated with antipsychotics. Personality features, intensity of delusion, perception of adverse effects, and cognitive impairment are patient factors. Clinical time spent with the patient, clarity of communication and regular drug monitoring are responsibilities of the health provider. Factors that neither patient nor clinician can control are the social determinants of health such as poverty, easy access to healthcare, and cultural variables. CONCLUSIONS There has been little investigation into factors that influence adherence in the target population discussed here -e.g. women with DD. Preliminary results of this literature search indicate that solutions from outside the field of DD may apply to this population. Overall, a solid therapeutic alliance appears to be the best hedge against non-adherence.
Collapse
Affiliation(s)
- Alexandre González-Rodríguez
- Department of Mental Health. Mutua Terrassa University Hospital. University of Barcelona. Terrassa, Barcelona, Spain
| | - José Antonio Monreal
- Department of Mental Health. Mutua Terrassa University Hospital. University of Barcelona. Institut de Neurociències. UAB. CIBERSAM, Terrassa, Barcelona, Spain
| | | |
Collapse
|
19
|
Mercolini L. Editorial: Advances in therapeutic drug monitoring of psychiatric subjects: Analytical strategies and clinical approaches. Front Psychiatry 2022; 13:1056380. [PMID: 36329918 PMCID: PMC9623277 DOI: 10.3389/fpsyt.2022.1056380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
20
|
de Leon J, Schoretsanitis G, Smith RL, Molden E, Solismaa A, Seppälä N, Kopeček M, Švancer P, Olmos I, Ricciardi C, Iglesias-Garcia C, Iglesias-Alonso A, Spina E, Ruan CJ, Wang CY, Wang G, Tang YL, Lin SK, Lane HY, Kim YS, Kim SH, Rajkumar AP, González-Esquivel DF, Jung-Cook H, Baptista T, Rohde C, Nielsen J, Verdoux H, Quiles C, Sanz EJ, Las Cuevas CD, Cohen D, Schulte PFJ, Ertuğrul A, Yağcıoğlu AEA, Chopra N, McCollum B, Shelton C, Cotes RO, Kaithi AR, Kane JM, Farooq S, Ng CH, Bilbily J, Hiemke C, López-Jaramillo C, McGrane I, Lana F, Eap CB, Arrojo-Romero M, Rădulescu FŞ, Seifritz E, Every-Palmer S, Bousman CA, Bebawi E, Bhattacharya R, Kelly DL, Otsuka Y, Lazary J, Torres R, Yecora A, Motuca M, Chan SKW, Zolezzi M, Ouanes S, Berardis DD, Grover S, Procyshyn RM, Adebayo RA, Kirilochev OO, Soloviev A, Fountoulakis KN, Wilkowska A, Cubała WJ, Ayub M, Silva A, Bonelli RM, Villagrán-Moreno JM, Crespo-Facorro B, Temmingh H, Decloedt E, Pedro MR, Takeuchi H, Tsukahara M, Gründer G, Sagud M, Celofiga A, Ristic DI, Ortiz BB, Elkis H, Pacheco Palha AJ, LLerena A, Fernandez-Egea E, Siskind D, Weizman A, Masmoudi R, Saffian SM, Leung JG, Buckley PF, Marder SR, Citrome L, Freudenreich O, Correll CU, Müller DJ. An International Adult Guideline for Making Clozapine Titration Safer by Using Six Ancestry-Based Personalized Dosing Titrations, CRP, and Clozapine Levels. PHARMACOPSYCHIATRY 2021; 55:73-86. [PMID: 35052001 DOI: 10.1055/a-1625-6388] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This international guideline proposes improving clozapine package inserts worldwide by using ancestry-based dosing and titration. Adverse drug reaction (ADR) databases suggest that clozapine is the third most toxic drug in the United States (US), and it produces four times higher worldwide pneumonia mortality than that by agranulocytosis or myocarditis. For trough steady-state clozapine serum concentrations, the therapeutic reference range is narrow, from 350 to 600 ng/mL with the potential for toxicity and ADRs as concentrations increase. Clozapine is mainly metabolized by CYP1A2 (female non-smokers, the lowest dose; male smokers, the highest dose). Poor metabolizer status through phenotypic conversion is associated with co-prescription of inhibitors (including oral contraceptives and valproate), obesity, or inflammation with C-reactive protein (CRP) elevations. The Asian population (Pakistan to Japan) or the Americas' original inhabitants have lower CYP1A2 activity and require lower clozapine doses to reach concentrations of 350 ng/mL. In the US, daily doses of 300-600 mg/day are recommended. Slow personalized titration may prevent early ADRs (including syncope, myocarditis, and pneumonia). This guideline defines six personalized titration schedules for inpatients: 1) ancestry from Asia or the original people from the Americas with lower metabolism (obesity or valproate) needing minimum therapeutic dosages of 75-150 mg/day, 2) ancestry from Asia or the original people from the Americas with average metabolism needing 175-300 mg/day, 3) European/Western Asian ancestry with lower metabolism (obesity or valproate) needing 100-200 mg/day, 4) European/Western Asian ancestry with average metabolism needing 250-400 mg/day, 5) in the US with ancestries other than from Asia or the original people from the Americas with lower clozapine metabolism (obesity or valproate) needing 150-300 mg/day, and 6) in the US with ancestries other than from Asia or the original people from the Americas with average clozapine metabolism needing 300-600 mg/day. Baseline and weekly CRP monitoring for at least four weeks is required to identify any inflammation, including inflammation secondary to clozapine rapid titration.
Collapse
Affiliation(s)
- Jose de Leon
- Mental Health Research Center, Eastern State Hospital, Lexington, KY, USA.,Department of Psychiatry, University of Kentucky, Lexington, KY, USA.,Psychiatry and Neurosciences Research Group (CTS-549), Institute of Neurosciences, University of Granada, Granada, Spain.,Biomedical Research Centre in Mental Health Net (CIBERSAM), Santiago Apostol Hospital, University of the Basque Country, Vitoria, Spain
| | - Georgios Schoretsanitis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland.,The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, New York, USA
| | - Robert L Smith
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.,Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Anssi Solismaa
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Psychiatry, Tampere University Hospital, Tampere, Finland
| | | | - Miloslav Kopeček
- National Institute of Mental Health, Klecany, Czech Republic.,Department of Psychiatry, Charles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Patrik Švancer
- National Institute of Mental Health, Klecany, Czech Republic.,Department of Psychiatry, Charles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Ismael Olmos
- Clinical Pharmacology Unit and Pharmacy Department, Vilardebó Hospital, Administración de Servicios de Salud, Montevideo, Uruguay
| | - Carina Ricciardi
- Clinical Pharmacology Unit and Outpatient Clinic, Vilardebó Hospital, Administración de Servicios de Salud, Montevideo, Uruguay
| | - Celso Iglesias-Garcia
- Universidad de Oviedo. CIBERSAM. INEUROPA. ISPA-FIMBA, Oviedo, Spain.,Hospital Valle del Nalón, Langreo, Spain
| | | | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Can-Jun Ruan
- Laboratory of Clinical Psychopharmacology, Beijing Anding Hospital, Capital Medical University, Beijing, China.,The National Clinical Research Centre for Mental Disorders & Beijing Key Lab of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Chuan-Yue Wang
- The National Clinical Research Centre for Mental Disorders & Beijing Key Lab of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Department of Psychiatry, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Gang Wang
- The National Clinical Research Centre for Mental Disorders & Beijing Key Lab of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yi-Lang Tang
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, USA.,Substance Abuse Treatment Program, Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Shih-Ku Lin
- Department of Psychiatry, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Psychiatry, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| | - Yong Sik Kim
- Department of Neuropsychiatry, Nowon Eulji Medical Center, Eulji University, School of Medicine, Seoul, Korea
| | - Se Hyun Kim
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Anto P Rajkumar
- Department of Psychiatry, Christian Medical College, Vellore, India.,Institute of Mental Health, Jubilee Campus, University of Nottingham, Triumph Road, Nottingham, United Kingdom
| | | | - Helgi Jung-Cook
- Instituto Nacional de Neurología y Neurocirugía, México City, México.,Facultad de Química, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Trino Baptista
- Department of Physiology, Los Andes University Medical School, Mérida, Venezuela
| | - Christopher Rohde
- Department of Affective Disorders, Aarhus University Hospital - Psychiatry, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jimmi Nielsen
- Mental Health Centre Glostrup, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hélène Verdoux
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team Pharmacoepidemiology, UMR 1219, F-33000 Bordeaux, France
| | - Clelia Quiles
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team Pharmacoepidemiology, UMR 1219, F-33000 Bordeaux, France
| | - Emilio J Sanz
- Department of Physical Medicine and Pharmacology, School of Medicine, Universidad de La Laguna, Canary Islands, Spain.,Hospital Universitario de Canarias, Tenerife, Spain
| | - Carlos De Las Cuevas
- Department of Internal Medicine, Dermatology and Psychiatry, School of Medicine, and Instituto Universitario de Neurociencia (IUNE), University of La Laguna, Canary Islands, Spain
| | - Dan Cohen
- Dutch Clozapine Collaboration Group, Castricum, The Netherlands.,FACT-team in Heerhugowaard, Department of Severe Mental Illness, Mental Health Services North-Holland North, The Netherlands
| | - Peter F J Schulte
- Dutch Clozapine Collaboration Group, Castricum, The Netherlands.,Mental Health Team Alkmaar, Mental Health Services Noord-Holland-Noord, Alkmaar, The Netherlands
| | - Aygün Ertuğrul
- Department of Psychiatry, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | - Nitin Chopra
- Addictions Division, Centre for Addiction and Mental Health, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | | | - Charles Shelton
- Department of Psychiatry, University of Kentucky, Lexington, KY, USA.,Eastern State Hospital, Lexington, Kentucky, USA
| | - Robert O Cotes
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - John M Kane
- The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, New York, USA.,Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Hempstead, New York, USA
| | - Saeed Farooq
- School of Medicine, Keele University, Staffordshire, and Midlands Partnership NHS Foundation Trust, Staffordshire, United Kingdom
| | - Chee H Ng
- Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia
| | - John Bilbily
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy, University Medical Center of Mainz, Germany
| | - Carlos López-Jaramillo
- Grupo de Investigación en Psiquiatría GIPSI, Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia.,Programa Trastornos del Ánimo, Hospital Universitario San Vicente Fundación, Medellín, Colombia
| | - Ian McGrane
- Department of Pharmacy Practice, University of Montana, Missoula, USA
| | - Fernando Lana
- Institute of Neuropsychiatry and Addictions (INAD), Parc de Salut Mar, Barcelona, Spain.,Department of Psychiatry, Autonomous University of Barcelona, Spain
| | - Chin B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Switzerland.,Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Switzerland
| | - Manuel Arrojo-Romero
- Department of Psychiatry, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| | - Flavian Ş Rădulescu
- Center for Drug Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
| | - Susanna Every-Palmer
- Te Korowai Whāriki Central Regional Forensic Service, Capital and Coast District Health Board, Wellington, New Zealand.,Department of Psychological Medicine, University of Otago, Wellington, New Zealand
| | - Chad A Bousman
- Departments of Medical Genetics, Psychiatry, Physiology & Pharmacology, and Community Health Sciences University of Calgary, Alberta, Canada
| | - Emmanuel Bebawi
- Faculty of Medicine, University of Montreal, Montreal, Canada.,Department of Pharmacy, Hôpital du Sacré-Cœur de Montréal, Montreal, Canada
| | - Rahul Bhattacharya
- East London NHS Foundation Trust, London, United Kingdom.,Honorary Clinical Senior Lecturer, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
| | - Deanna L Kelly
- Department of Psychiatry, School of Medicine, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yuji Otsuka
- Department of Psychiatry, Asahi General Hospital, Chiba, Japan
| | - Judit Lazary
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - Rafael Torres
- Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Agustin Yecora
- Secretaría de Salud Mental y Adicciones, Ministerio de Salud de la Provincia de Jujuy, San Salvador de Jujuy, Argentina
| | - Mariano Motuca
- Instituto Vilapriño, Center for Studies, Assistance and Research in Neurosciences, Mendoza, Argentina
| | - Sherry K W Chan
- Department of Psychiatry, LSK Faculty of Medicine, The University of Hong Kong, Hong Kong SAR.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR
| | - Monica Zolezzi
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Sami Ouanes
- Department of Psychiatry, Hamad Medical Corporation, Doha, Qatar
| | | | - Sandeep Grover
- Department of Psychiatry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ric M Procyshyn
- British Columbia Mental Health and Substance Use Research Institute, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | | | - Oleg O Kirilochev
- Department of Clinical Pharmacology, Astrakhan State Medical University, Astrakhan, Russian Federation
| | - Andrey Soloviev
- Department of Psychiatry and Clinical Psychology, Northern State Medical University, Arkhangelsk, Russia
| | - Konstantinos N Fountoulakis
- 3rd Department of Psychiatry, Division of Neurosciences, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Alina Wilkowska
- Department of Psychiatry, Medical University of Gdańsk, Gdańsk, Poland
| | - Wiesław J Cubała
- Department of Psychiatry, Medical University of Gdańsk, Gdańsk, Poland
| | - Muhammad Ayub
- Department of Psychiatry, Queens University, Kingston, Canada
| | - Alzira Silva
- Psychiatry Department, Centro Hospitalar Universitário de S. João, Porto, Portugal., Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | | | - José M Villagrán-Moreno
- Department of Neurosciences, Jerez University Hospital, Andalusian Health Service, University of Cadiz, Jerez, Spain
| | - Benedicto Crespo-Facorro
- Department of Psychiatry, School of Medicine, University Hospital Virgen del Rocio-IBIS, Sevilla, Spain., Spanish Network for Research in Mental Health (CIBERSAM), Sevilla, Spain
| | - Henk Temmingh
- Department of Psychiatry and Mental Health, University of Cape Town, Valkenberg Hospital, Western Cape, Cape Town, South Africa
| | - Eric Decloedt
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - Hiroyoshi Takeuchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Tsukahara
- Department of Psychiatry, Okayama Psychiatric Medical Center, Okayama, Japan
| | - Gerhard Gründer
- Central Institute of Mental Health, Department of Molecular Neuroimaging, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marina Sagud
- Department of Psychiatry, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department for Psychiatry and Psychological Medicine, University Hospital Center Zagreb, Croatia
| | - Andreja Celofiga
- Department of Psychiatry, University Medical Centre Maribor, Maribor, Slovenia
| | | | - Bruno B Ortiz
- Group of Resistant Schizophrenia (GER), Schizophrenia Program (Proesq), Federal University of Sao Paulo, SP, Brazil
| | - Helio Elkis
- Department and Institute of Psychiatry, University of São Paulo Medical School (FMUSP), Sao Paulo, Brazil
| | - António J Pacheco Palha
- Department and Institute of Psychiatry and Mental Health, Oporto Faculty of Medicine, Oporto, Portugal.,Casa de Salidedo Som Jesus (Psychiatric Hospital), Oporto, Portugal
| | - Adrián LLerena
- INUBE Biosanitary Research Institute of Extremadura. Extremadura University Hospital and Medical School, Badajoz, Spain.,Spanish Network for Research in Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Emilio Fernandez-Egea
- Cambridge Psychosis Centre, Cambrigeshire and Peterborough NHS Foundation Trust & Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Dan Siskind
- Metro South Addiction and Mental Health Service, Brisbane, Australia.,Queensland Centre for Mental Health Research and School of Clinical Medicine, University of Queensland, Brisbane, Australia
| | - Abraham Weizman
- Research Unit, Geha Mental Health Center and Molecular Psychiatry Laboratory, Felsenstein Medical Research Center, Tel Aviv, Israel.,Department of Psychiatry Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Rim Masmoudi
- Psychiatry "A" Department, Hedi Chaker University Hospital, Sfax, Tunisia.,Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Shamin Mohd Saffian
- Centre for Quality Management of Medicines, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Peter F Buckley
- School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Stephen R Marder
- Semel Institute for Neuroscience at UCLA, Los Angeles, CA, USA.,VA Desert Pacific Mental Illness Research, Education, and Clinical Center, Los Angeles, CA, USA
| | - Leslie Citrome
- New York Medical College, Department of Psychiatry and Behavioral Sciences, Valhalla, NY, USA
| | - Oliver Freudenreich
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christoph U Correll
- The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, New York, USA.,Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Hempstead, New York, USA.,Charité Universitätsmedizin Berlin, Department of Child and Adolescent Psychiatry, Berlin, Germany
| | - Daniel J Müller
- Addictions Division, Centre for Addiction and Mental Health, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Seifert J, Heck J, Eckermann G, Singer M, Bleich S, Grohmann R, Toto S. [Vaccination Against COVID-19 in Patients Treated with Psychotropic Drugs]. PSYCHIATRISCHE PRAXIS 2021; 48:399-403. [PMID: 34344044 PMCID: PMC8570910 DOI: 10.1055/a-1531-4460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Vaccines against SARS-CoV-2 have been available in the European Union since December 2020. Persons suffering from mental illness have an increased risk of a severe or fatal course following an infection with SARS-CoV-2. Thus, the question arises to what extent interactions between the newly approved vaccines and psychotropic drugs may be expected. Data on the tolerability and efficacy of vaccines against SARS-CoV-2 under treatment with psychotropic drugs are not available to date - however, potential interactions can be derived from previous investigations on vaccines against other pathogens, such as a reduced immune response with lower clinical efficacy and an increase in drug plasma levels due to the indirect vaccine-mediated inhibition of metabolizing enzymes. On the other hand, depressed patients treated with antidepressant medication show a better immune response.
Collapse
Affiliation(s)
- Johanna Seifert
- Klinik für Psychiatrie, Sozialpsychiatrie und Psychotherapie, Medizinische Hochschule Hannover, Hannover
| | - Johannes Heck
- Institut für Klinische Pharmakologie, Medizinische Hochschule Hannover, Hannover
| | - Gabriel Eckermann
- Klinik für Forensische Psychiatrie und Psychotherapie, Bezirkskrankenhaus Kaufbeuren, Kaufbeuren
| | - Monika Singer
- kbo-Lech-Mangfall-Klinik Agatharied, Fachklinik für Psychiatrie, Psychotherapie und Psychosomatik, Hausham
| | - Stefan Bleich
- Klinik für Psychiatrie, Sozialpsychiatrie und Psychotherapie, Medizinische Hochschule Hannover, Hannover
| | - Renate Grohmann
- Klinik für Psychiatrie und Psychotherapie, Ludwig-Maximilians-Universität München, München
| | - Sermin Toto
- Klinik für Psychiatrie, Sozialpsychiatrie und Psychotherapie, Medizinische Hochschule Hannover, Hannover
| |
Collapse
|