1
|
Trimmel H, Tauber W, Zikeli M. Life-Threatening Anaphylaxis due to Cerebrolysin®. Case Rep Neurol Med 2024; 2024:2332908. [PMID: 39055722 PMCID: PMC11272398 DOI: 10.1155/2024/2332908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/31/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
In this case report, we describe a well-documented, severe anaphylactic reaction after intravenous administration of cerebrolysin, a neurotrophic agent derived from highly purified porcine brain tissue, consisting of peptides and free amino acids. Cerebrolysin has been in use for decades, in various neurological diseases, but especially stroke and traumatic brain injury, with the aim of enhancing cognitive performance. After administration of cerebrolysin to an 85-year-old male patient suffering from subacute stroke, he developed a fulminant anaphylactic reaction. Following institutional standards, vital functions were quickly restored. The anaphylactic reaction was clearly confirmed by laboratory tests. To date, only rare cases of anaphylaxis due to cerebrolysin have been published in the literature. The current report is intended to raise awareness for the possibility of such a reaction, given the widespread use of cerebrolysin in several indications in mostly critical patients. The case shows how a completely unexpected life-threatening situation can be successfully treated by targeted measures, if the situation is recognized quickly. In light of this event, we consider pathophysiology of allergic reactions and treatment guidelines.
Collapse
Affiliation(s)
- Helmut Trimmel
- Department for AnesthesiaEmergency and Intensive MedicineState Hospital of Wiener Neustadt, Corvinusring 3-5, Wiener Neustadt 2700, Austria
- Karl Landsteiner Institute for Emergency MedicineMedical Simulation and Patient SafetyState Hospital of Wiener Neustadt, Corvinusring 3-5, Wiener Neustadt 2700, Austria
- Danube Private UniversityDepartment of Medicine, Steiner Landstraße 124, Krems an der Donau 3500, Austria
| | - Wolfgang Tauber
- Central LaboratoryState Hospital of Wiener Neustadt, Corvinusring 3-5, Wiener Neustadt 2700, Austria
| | - Martin Zikeli
- Department for Dermatology and VenereologyState Hospital of Wiener Neustadt, Corvinusring 3-5, Wiener Neustadt 2700, Austria
| |
Collapse
|
2
|
Jeon H, Kim DY. Cerebrolysin Concentrate: Therapeutic Potential for Severe Oral Apraxia After Stroke: A Case Report. BRAIN & NEUROREHABILITATION 2024; 17:e11. [PMID: 39113920 PMCID: PMC11300962 DOI: 10.12786/bn.2024.17.e11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/09/2024] [Accepted: 06/09/2024] [Indexed: 08/10/2024] Open
Abstract
Cerebrolysin concentrate is a medication whose main active ingredient is brain-derived neurotrophic factor. It has been reported to help in the restoration of cognitive function and overall physical function after brain injuries. We present the case of a 72-year-old man with severe oral apraxia due to a left middle cerebral artery ischemic stroke involving the left insular cortex. He was being tube fed due to severe oral apraxia with cognitive decline that made it difficult for him to even imitate simple oral movements. The patient initially had impaired consciousness and cognitive function. He also had limited physical activity due to acute stroke complications, such as hemorrhagic transformation of cerebral infarction, and required bed rest until 23 days after onset. The patient received intravenous cerebrolysin concentrate in addition to intensive rehabilitation therapy from 23 days after onset. After rehabilitation and administration of cerebrolysin concentrate, there was a marked recovery within a short period of time to the point where oral intake of a regular diet was possible, indicating a significant improvement in oral apraxia. It is a notable example of the potential therapeutic effect of cerebrolysin concentrate for post-stroke oral apraxia.
Collapse
Affiliation(s)
- Hyeonwoo Jeon
- Department of Rehabilitation Medicine, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon, Korea
| | - Doo Young Kim
- Department of Rehabilitation Medicine, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon, Korea
- The Convergence Institute of Healthcare and Medical Science, Catholic Kwandong University College of Medicine, Incheon, Korea
| |
Collapse
|
3
|
Yanık T, Yanık B. Current neuroprotective agents in stroke. Turk J Phys Med Rehabil 2024; 70:157-163. [PMID: 38948647 PMCID: PMC11209336 DOI: 10.5606/tftrd.2024.15287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 07/02/2024] Open
Abstract
What is expected from neuroprotection is to inhibit neuronal death and halt or decelerate the neuronal loss to lower the mortality rates, decrease disability, and improve the quality of life following an acute ischemic stroke. Several agents were described as neuroprotective up to date; however, there is still debate which to use in the neurorehabilitation of stroke patients, in terms of both efficacy and also safety. In this review, we discuss the agents, citicoline, cerebrolysin and MLC901 (NeuroAiD II), the three agents which have started to be used frequently in neurorehabilitation clinics recently in the light of the current literature.
Collapse
Affiliation(s)
- Tuğra Yanık
- Department of Neurology, Güven Hospital, Ankara, Türkiye
| | - Burcu Yanık
- Department of Physical Medicine and Rehabilitation, Bilkent City Hospital, Ankara, Türkiye
| |
Collapse
|
4
|
Wan M, Yang K, Zhang G, Yang C, Wei Y, He Y, Jiang X. Efficacy, safety, and cost-effectiveness analysis of Cerebrolysin in acute ischemic stroke: A rapid health technology assessment. Medicine (Baltimore) 2024; 103:e37593. [PMID: 38552072 PMCID: PMC10977584 DOI: 10.1097/md.0000000000037593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/22/2024] [Indexed: 04/02/2024] Open
Abstract
This study conducts a rapid health technology assessment to systematically evaluate the effectiveness, safety, and cost-effectiveness of Cerebrolysin as an adjunctive therapy for acute ischemic stroke to provide evidence-based medicine for clinical decisions of Cerebrolysin. All systematic reviews/meta-analyses, pharmacoeconomic studies, and health technology assessment reports of Cerebrolysin for the treatment of acute ischemic stroke before August 17, 2023, were retrieved from PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, Wanfang, Weipu, Sinomed database and the official website of health technology assessment. According to the inclusion and exclusion criteria, 2 researchers independently carried out screening, data extraction, and quality evaluation and descriptively analyzed the results of the included studies. A total of 14 pieces of literature were incorporated, comprising 8 systematic reviews/meta-analyses and 6 pharmacoeconomic studies. In terms of effectiveness, compared to control groups, the use of Cerebrolysin as a treatment for acute ischemic stroke demonstrates certain advantages, including enhancement in total efficacy rate, neurological function, upper limb motor dysfunction, and facilitation of the recovery of activities of daily living. Especially in patients with moderate to severe acute ischemic stroke, Cerebrolysin has demonstrated the ability to enhance neurological function recovery and ameliorate disabilities. Regarding safety, adverse reactions were mild or comparable to those in the control group. The primary findings of economic studies reveal that advocating for the use of Cerebrolysin offers certain cost-effectiveness advantages. Cerebrolysin contributes to improved clinical efficacy and evaluation indexes while demonstrating favorable safety and economic benefits.
Collapse
Affiliation(s)
- Miaomiao Wan
- Department of Clinical Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ke Yang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gonghao Zhang
- College of First Clinical Medical, Guangxi Medical University, Nanning, China
| | - Chunxia Yang
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Yuqing Wei
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Yeqian He
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Xia Jiang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
5
|
Kastberger B, Winter S, Brandstätter H, Biller J, Wagner W, Plesnila N. Treatment with Cerebrolysin Prolongs Lifespan in a Mouse Model of Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy. Adv Biol (Weinh) 2024; 8:e2300439. [PMID: 38062874 DOI: 10.1002/adbi.202300439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Indexed: 02/15/2024]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare familial neurological disorder caused by mutations in the NOTCH3 gene and characterized by migraine attacks, depressive episodes, lacunar strokes, dementia, and premature death. Since there is no therapy for CADASIL the authors investigate whether the multi-modal neuropeptide drug Cerebrolysin may improve outcome in a murine CADASIL model. Twelve-month-old NOTCH3R169C mutant mice (n=176) are treated for nine weeks with Cerebrolysin or Vehicle and histopathological and functional outcomes are evaluated within the subsequent ten months. Cerebrolysin treatment improves spatial memory and overall health, reduces epigenetic aging, and prolongs lifespan, however, CADASIL-specific white matter vacuolization is not affected. On the molecular level Cerebrolysin treatment increases expression of Calcitonin Gene-Related Peptide (CGRP) and Silent Information Regulator Two (Sir2)-like protein 6 (SIRT6), decreases expression of Insulin-like Growth Factor 1 (IGF-1), and normalizes the expression of neurovascular laminin. In summary, Cerebrolysin fosters longevity and healthy aging without specifically affecting CADASIL pathology. Hence, Cerebrolysin may serve a therapeutic option for CADASIL and other disorders characterized by accelerated aging.
Collapse
Affiliation(s)
| | - Stefan Winter
- Ever Pharma, Oberburgau 3, Unterach am Attersee, 4866, Austria
| | | | - Janina Biller
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Wolfgang Wagner
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, 52074, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany
- Cygenia GmbH, 52078, Aachen, Germany
| | - Nikolaus Plesnila
- Cluster of Systems Neurology (Synergy), 81377, Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377, Munich, Germany
| |
Collapse
|
6
|
Litvinenko IV, Naumov KM, Lobzin VY, Emelin AY, Dynin PS, Kolmakova KA, Nikishin VO. [Traumatic brain injury as risk factor of Alzheimer's disease and possibilities of pathogenetic therapy]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:45-54. [PMID: 38261283 DOI: 10.17116/jnevro202412401145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The article examines the potential role of brain mechanical damage as a trigger for the development of neurodegenerative changes. Attention is paid to dysfunction of the neurovascular unit, and disruption of the functional and compensatory capabilities of blood flow. The importance of microhemorrhages that occur in the acute period of injury and the formation of first focal and then diffuse neuroinflammation is emphasized. The importance of mitochondrial dysfunction was separately determined as a significant factor in increasing the risk of developing Alzheimer's disease (AD) in patients after traumatic brain injury (TBI). In TBI, there is a decrease in the expression of tight junction (TC) proteins of endothelial cells, such as occludin, claudin, JP, which leads to increased permeability of the blood-brain barrier. TBI, provoking endothelial dysfunction, contributes to the development of metabolic disorders of β-amyloid and tau protein, which in turn leads to worsening vascular damage, resulting in a vicious circle that can ultimately lead to the development of AD and dementia. Age-related changes in cerebral arteries, which impair perivascular transport of interstitial fluid, are currently considered as an important part of the «amyloid cascade», especially against the background of genetically mediated disorders of glial membranes associated with defective aquaporin-4 (encoded by the APOE4). Studies in animal models of TBI have revealed an increase in tau protein immunoreactivity and its phosphorylation, which correlates with the severity of injury. A comprehensive analysis of research results shows that the cascade of reactions triggered by TBI includes all the main elements of the pathogenesis of AD: disorders of energy metabolism, microcirculation and clearance of cerebral metabolic products. This leads to a disruption in the metabolism of amyloid protein and its accumulation in brain tissue with the subsequent development of tauopathy. Cerebrolysin, by modulating the permeability of the blood-brain barrier, blocks the development of neuroinflammation, reduces the accumulation of pathological forms of proteins and may be slow down the progression of neurodegeneration.
Collapse
Affiliation(s)
| | - K M Naumov
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - V Yu Lobzin
- Kirov Military Medical Academy, St. Petersburg, Russia
- Mechnikov North-Western State Medical University, St. Petersburg, Russia
| | - A Yu Emelin
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - P S Dynin
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - K A Kolmakova
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - V O Nikishin
- Kirov Military Medical Academy, St. Petersburg, Russia
| |
Collapse
|
7
|
Seidl LF, Aigner L. Comparing the biological activity and composition of Cerebrolysin with other peptide preparations. J Med Life 2024; 17:24-27. [PMID: 38737662 PMCID: PMC11080511 DOI: 10.25122/jml-2024-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 05/14/2024] Open
Abstract
Neurological disorders, ranging from acute forms such as stroke and traumatic brain injury to neurodegenerative diseases like dementia, are the leading cause of disability-adjusted life years (DALYs) worldwide. A promising approach to address these conditions and promote nervous system regeneration is the use of the neuropeptide preparation Cerebrolysin, which has been shown to be effective in both clinical and preclinical studies. Despite claims of similar clinical efficacy and safety by several peptide preparations, concerns regarding their generic composition and efficacy have been previously raised. Based on these reports, we analyzed the peptide composition and neurotrophic activity of several peptide preparations allegedly similar to Cerebrolysin and approved in some countries for treating neurological diseases. Our results demonstrate that these preparations lack relevant biological activity and that the peptide composition is significantly different from Cerebrolysin. peptide.
Collapse
Affiliation(s)
- Lisa-Franziska Seidl
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
8
|
Firstenfeld AJ, Listorti J, Jalaff N, Loaiza Orozco CP, Navarrete Gosdenovich F, Schurr T. Add-on treatment with Cerebrolysin improves clinical symptoms in patients with ALS: results from a prospective, single-center, placebo-controlled, randomized, double-blind, phase II study. J Med Life 2023; 16:1750-1755. [PMID: 38585517 PMCID: PMC10994623 DOI: 10.25122/jml-2023-0459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 04/09/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating and progressive neurodegenerative disease with limited treatment options available. Cerebrolysin is a drug candidate for the treatment of ALS because of its neuroprotective and neuroregenerative effects. We initiated a pilot clinical study of a combination of Cerebrolysin and riluzole to assess the therapeutic benefit of Cerebrolysin as an add-on treatment on clinical signs and symptoms in outpatients with ALS. Twenty patients with a clinically definitive diagnosis of ALS were enrolled and randomly assigned in a 1:1 ratio to receive Cerebrolysin or placebo. All patients received 50 mg of riluzole PO twice daily as a standard treatment. Patients in the Cerebrolysin group received intravenous injections of 10 mL of Cerebrolysin once daily, five days a week for the first month and three days a week for the next two months. Analysis of the ALS Functional Rating Scale - revised at Month 1 (primary outcome measure), showed a significant treatment effect in favor of Cerebrolysin with a 2.3-point improvement from baseline to Month 1 compared to a 0.9-point decrease in patients on placebo (P=0.005). The effect was maintained over the three-month study period, and the beneficial effect of Cerebrolysin over placebo was also evident in the secondary outcome measures. The safety analysis showed that the combination of riluzole and Cerebrolyisn was well tolerated. Our results demonstrate for the first time a significant clinical effect of Cerebrolysin in improving functional outcomes in patients with ALS and suggest that Cerebrolysin has potential as a novel therapeutic option for ALS.
Collapse
Affiliation(s)
- Alfredo José Firstenfeld
- Servicio de Neurociencias, Universidad de Buenos Aires, Instituto Cardiológico Banfield, Buenos Aires, Argentina
| | - Jorge Listorti
- Servicio de Neurociencias, Universidad de Buenos Aires, Instituto Cardiológico Banfield, Buenos Aires, Argentina
| | - Nasser Jalaff
- Servicio de Neurociencias, Universidad de Buenos Aires, Instituto Cardiológico Banfield, Buenos Aires, Argentina
| | | | | | - Timo Schurr
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Division of Psychiatry I, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Rejdak K, Sienkiewicz-Jarosz H, Bienkowski P, Alvarez A. Modulation of neurotrophic factors in the treatment of dementia, stroke and TBI: Effects of Cerebrolysin. Med Res Rev 2023; 43:1668-1700. [PMID: 37052231 DOI: 10.1002/med.21960] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023]
Abstract
Neurotrophic factors (NTFs) are involved in the pathophysiology of neurological disorders such as dementia, stroke and traumatic brain injury (TBI), and constitute molecular targets of high interest for the therapy of these pathologies. In this review we provide an overview of current knowledge of the definition, discovery and mode of action of five NTFs, nerve growth factor, insulin-like growth factor 1, brain derived NTF, vascular endothelial growth factor and tumor necrosis factor alpha; as well as on their contribution to brain pathology and potential therapeutic use in dementia, stroke and TBI. Within the concept of NTFs in the treatment of these pathologies, we also review the neuropeptide preparation Cerebrolysin, which has been shown to resemble the activities of NTFs and to modulate the expression level of endogenous NTFs. Cerebrolysin has demonstrated beneficial treatment capabilities in vitro and in clinical studies, which are discussed within the context of the biochemistry of NTFs. The review focuses on the interactions of different NTFs, rather than addressing a single NTF, by outlining their signaling network and by reviewing their effect on clinical outcome in prevalent brain pathologies. The effects of the interactions of these NTFs and Cerebrolysin on neuroplasticity, neurogenesis, angiogenesis and inflammation, and their relevance for the treatment of dementia, stroke and TBI are summarized.
Collapse
Affiliation(s)
- Konrad Rejdak
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | | | | | - Anton Alvarez
- Medinova Institute of Neurosciences, Clinica RehaSalud, Coruña, Spain
| |
Collapse
|
10
|
Verisezan Rosu O, Jemna N, Hapca E, Benedek I, Vadan I, Muresanu I, Chira D, Radu C, Cherecheş R, Strilciuc S, Muresanu D. Cerebrolysin and repetitive transcranial magnetic stimulation (rTMS) in patients with traumatic brain injury: a three-arm randomized trial. Front Neurosci 2023; 17:1186751. [PMID: 37360156 PMCID: PMC10285097 DOI: 10.3389/fnins.2023.1186751] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Traumatic brain injury (TBI) is a major public health problem affecting millions worldwide. Despite significant advances in medical care, there are limited effective interventions for improving cognitive and functional outcomes in TBI patients. Methods This randomized controlled trial investigated the safety and efficacy of combining repetitive transcranial magnetic stimulation (rTMS) and Cerebrolysin in improving cognitive and functional outcomes in TBI patients. Ninety-three patients with TBI were randomized to receive either Cerebrolysin and rTMS (CRB + rTMS), Cerebrolysin and sham stimulation (CRB + SHM), or placebo and sham stimulation (PLC + SHM). The primary outcome measures were the composite cognitive outcome scores at 3 and 6 months after TBI. Safety and tolerability were also assessed. Results The study results demonstrated that the combined intervention of rTMS and Cerebrolysin was safe and well-tolerated by patients with TBI. Although no statistically significant differences were observed in the primary outcome measures, the descriptive trends in the study support existing literature on the efficacy and safety of rTMS and Cerebrolysin. Discussion The findings of this study suggest that rTMS and Cerebrolysin may be effective interventions for improving cognitive and functional outcomes in TBI patients. However, limitations of the study, such as the small sample size and exclusion of specific patient populations, should be considered when interpreting the results. This study provides preliminary evidence for the safety and potential efficacy of combining rTMS and Cerebrolysin in improving cognitive and functional outcomes in TBI patients. The study highlights the importance of multidisciplinary approaches in TBI rehabilitation and the potential for combining neuropsychological measurements and interventions to optimize patient outcomes. Conclusion Further research is needed to establish these findings' generalizability and identify the optimal dosages and treatment protocols for rTMS and Cerebrolysin.
Collapse
Affiliation(s)
- Olivia Verisezan Rosu
- Department of Neurosciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Nicoleta Jemna
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Elian Hapca
- Department of Neurosciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Irina Benedek
- Department of Neurosciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Iulia Vadan
- Department of Neurosciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ioana Muresanu
- Department of Neurosciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Diana Chira
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Constantin Radu
- Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Răzvan Cherecheş
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
- Department of Public Health, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Stefan Strilciuc
- Department of Neurosciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Dafin Muresanu
- Department of Neurosciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| |
Collapse
|
11
|
Staszewski J, Stȩpień A, Piusińska-Macoch R, Dȩbiec A, Gniadek-Olejniczak K, Frankowska E, Maliborski A, Chadaide Z, Balo D, Król B, Namias R, Harston G, Mróz J, Piasecki P. Efficacy of Cerebrolysin Treatment as an Add-On Therapy to Mechanical Thrombectomy in Patients With Acute Ischemic Stroke Due to Large Vessel Occlusion: Study Protocol for a Prospective, Open Label, Single-Center Study With 12 Months of Follow-Up. Front Neurol 2022; 13:910697. [PMID: 35860483 PMCID: PMC9289167 DOI: 10.3389/fneur.2022.910697] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/30/2022] [Indexed: 12/18/2022] Open
Abstract
This study is designed to determine the efficacy of Cerebrolysin treatment as an add-on therapy to mechanical thrombectomy (MT) in reducing global disability in subjects with acute ischemic stroke (AIS). We have planned a single center, prospective, open-label, single-arm study with a 12-month follow-up of 50 patients with moderate to severe AIS, with a small established infarct core and with good collateral circulation who achieve significant reperfusion following MT and who receive additional Cerebrolysin within 8 h of stroke onset compared to 50 historical controls treated with MT alone, matched for age, clinical severity, occlusion location, baseline perfusion lesion volume, onset to reperfusion time, and use of iv thrombolytic therapy. The primary outcome measure will be the overall proportion of subjects receiving Cerebrolysin compared to the control group experiencing a favorable functional outcome (by modified Rankin Scale 0-2) at 90 days, following stroke onset. The secondary objectives are to determine the efficacy of Cerebrolysin as compared to the control group in reducing the risk of symptomatic secondary hemorrhagic transformation, improving neurological outcomes (NIHSS 0-2 at day 7, day 30, and 90), reducing mortality rates (over the 90-day and 12 months study period), and improving: activities of daily living (by Barthel Index), health-related quality of life (EQ-5D-5L) assessed at day 30, 90, and at 12 months. The other measures of efficacy in the Cerebrolysin group will include: assessment of final stroke volume and penumbral salvage (measured by CT/CTP at 30 days) and its change compared to baseline volume, changes over time in language function (by the 15-item Boston Naming Test), hemispatial neglect (by line bisection test), global cognitive function (by The Montreal Cognitive Assessment), and depression (by Hamilton Depression Rating Scale) between day 30 and day 90 assessments). The patients will receive 30 ml of Cerebrolysin within 8 h of AIS stroke onset and continue treatment once daily until day 21 (first cycle) and they will receive a second cycle of treatment (30 ml/d for 21 days given in the Outpatient Department or Neurorehabilitation Clinic) from day 69 to 90.
Collapse
Affiliation(s)
- Jacek Staszewski
- Clinic of Neurology, Military Institute of Medicine, Warsaw, Poland
| | - Adam Stȩpień
- Clinic of Neurology, Military Institute of Medicine, Warsaw, Poland
| | | | | | | | - Emilia Frankowska
- Department of Radiology, Military Institute of Medicine, Warsaw, Poland
| | - Artur Maliborski
- Department of Radiology, Military Institute of Medicine, Warsaw, Poland
| | - Zoltan Chadaide
- Brainomix Ltd., and Oxford University Hospitals NHSFT, Oxford, United Kingdom
| | - David Balo
- Brainomix Ltd., and Oxford University Hospitals NHSFT, Oxford, United Kingdom
| | - Beata Król
- Brainomix Ltd., and Oxford University Hospitals NHSFT, Oxford, United Kingdom
| | - Rafael Namias
- Brainomix Ltd., and Oxford University Hospitals NHSFT, Oxford, United Kingdom
| | - George Harston
- Brainomix Ltd., and Oxford University Hospitals NHSFT, Oxford, United Kingdom
| | - Józef Mróz
- Neurorehabilitation Clinic, Military Institute of Medicine, Warsaw, Poland
| | - Piotr Piasecki
- Department of Radiology, Military Institute of Medicine, Warsaw, Poland
| |
Collapse
|
12
|
Role and Impact of Cerebrolysin for Ischemic Stroke Care. J Clin Med 2022; 11:jcm11051273. [PMID: 35268364 PMCID: PMC8911124 DOI: 10.3390/jcm11051273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 01/01/2023] Open
Abstract
Stroke is still a significant health problem that affects millions of people worldwide, as it is the second-leading cause of death and the third-leading cause of disability. Many changes have occurred in the treatment of acute ischemic stroke. Although the innovative concepts of neuroprotection and neurorecovery have been vigorously investigated in a substantial number of clinical studies in the past, only a few trials managed to increase the number of promising outcomes with regard to the multidimensional construct of brain protection and rehabilitation. In terms of pharmacological therapies with proven benefits in the post-ischemic process, drugs with neurorestorative properties are thought to be effective in both the acute and chronic phases of stroke. One significant example is Cerebrolysin, a combination of amino acids and peptides that mimic the biological functions of neurotrophic factors, which has been shown to improve outcomes after ischemic stroke, while preserving a promising safety profile. The purpose of this paper is to offer an overview on the role and impact of Cerebrolysin for ischemic stroke care, by touching on various aspects, from its complex, multimodal and pleiotropic mechanism of action, to its efficacy and safety, as well as cost effectiveness.
Collapse
|