1
|
TANG W, LIU K, FAN X, ZHU L, ZENG Z, SUN J, SHI J, ZHANG Z, GUI T, WAN G. Bushen Huoxue decoction improves the reproduction of endometriosis-associated infertility by regulating Homeobox A10 and αlpha(v)beta(3) integrin expression. J TRADIT CHIN MED 2024; 44:1137-1145. [PMID: 39617699 PMCID: PMC11589544 DOI: 10.19852/j.cnki.jtcm.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/27/2024] [Indexed: 12/17/2024]
Abstract
OBJECTIVE To investigate the mechanism of Bushen Huoxue decoction (, BSHXD) to treat endometriosis-induced infertility. MEDHODS The main compounds of BSHXD were determined by high performance liquid chromatography-mass spectrometry (HPLC-MS/MS). The effect of BSHXD on Homeobox A10 (HOXA10) and alpha(v)beta(3) (αvβ3) integrin expression of Ishikawa cells, mouse model, and endometriosis-associated infertility women was evaluated by using Western blot analysis, immunohistochemistry and Real-Time quantitative polymerase chain reaction (RT-qPCR). The efficacy of BSHXD on embryo attachment were examined by using the BeWo spheroid and mouse embryo attachment assay. HOXA10 concentration in uterine flushing fluid of endometriosis-associated infertility women treated with BSHXD was measured by Enzyme-Linked immunosorbent assay (ELISA). RESULTS BSHXD improved BeWo spheroid and mice blastocysts attachment to Ishikawa cells and increased embryo implantation rates in mice and pregnancy rates in women with endometriosis-associated infertility. BSHXD enhanced HOXA10 and αvβ3 integrin expression in Ishikawa cell, endometriosis mouse model, and endometriosis-associated infertility women, which potentially improved endometrial receptivity. CONCLUSIONS BSHXD could improve endometrial receptivity of endometriosis-associated infertility in a dose-dependent manner by regulating HOXA10 and αvβ3 integrin expression.
Collapse
Affiliation(s)
- Weiwei TANG
- 1 Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Kaili LIU
- 1 Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Xumei FAN
- 1 Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Li ZHU
- 1 Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Zheng ZENG
- 2 Department of Pathology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jiali SUN
- 1 Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jie SHI
- 1 Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Zhenzhen ZHANG
- 1 Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Tao GUI
- 1 Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Guiping WAN
- 1 Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| |
Collapse
|
2
|
Gong X, Tan Z, Xu H, Jiang X, Chen L. Paeoniflorin Attenuates Oxidative Stress and Inflammation in Parkinson's Disease by Activating the HSF1-NRF1 Axis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2131-2159. [PMID: 39663263 DOI: 10.1142/s0192415x24500824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
This study is to explore the effects of paeoniflorin (PF) on oxidative stress (OS) and inflammation in Parkinson's disease (PD) via the HSF1-NRF1 axis. SH-SY5Y cells were pretreated with PF and induced with α-synuclein preformed fibrils (PFF), followed by gain- and loss-of-function assays. Afterward, detection was conducted on cell viability, mitochondrial membrane potential ([Formula: see text]m), and reactive oxygen species (ROS), cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) levels. The binding of HSF1 to NRF1 promoter was evaluated. HSF1 and NRF1 expression was examined. Lastly, PD mouse models were established, followed by observation of the behavioral features of mice. Apoptosis; cleaved-Caspase 3, cleaved-Caspase 8, repulsive guidance molecule A (RGMa), GAP-43, and brain-derived neurotrophic factor (BDNF) expression; and superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), catalase (CAT), tumor necrosis factor (TNF)-α, interleukin (IL)-2, IL-6, and IL-10 levels were determined in mice and cells. HSF1 and NRF1 were downregulated, and HSF1 promoted NRF1 transcription and PF dose-dependently augmented HSF1 and NRF1 expression. PF dose-dependently reduced RGMa expression, ROS, MDA, TNF-α, IL-2, and IL-6 levels; mitigated apoptosis; and lowered cleaved-Caspase 3, cleaved-Caspase 8, COX-2, and iNOS expression while improving cell viability; increasing [Formula: see text]m, GAP-43, and BDNF expression; and raising SOD, GSH-Px, CAT, and IL-10 levels in PFF-induced SH-SY5Y cells. These effects were neutralized by HSF1 knockdown. In conclusion, PF dose-dependently activated the HSF1-NRF1 axis and alleviated OS and inflammation in PFF-treated mice, thereby impeding PD progression in mice.
Collapse
Affiliation(s)
- Xin Gong
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P. R. China
| | - Zhijian Tan
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P. R. China
| | - Henghui Xu
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P. R. China
| | - Xu Jiang
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P. R. China
| | - Lei Chen
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P. R. China
| |
Collapse
|
3
|
Kim BJ, Kim Y, Kim JA, Han JH, Kim MY, Yang HK, Rhee CS, Kang YC, Kim CH, Choi BY. Novel Variant of FDXR as a Molecular Etiology of Postlingual Post-synaptic Auditory Neuropathy Spectrum Disorder via Mitochondrial Dysfunction: Reiteration of the Correlation between Genotype and Cochlear Implantation Outcomes. Clin Exp Otorhinolaryngol 2024; 17:206-216. [PMID: 39104018 PMCID: PMC11375174 DOI: 10.21053/ceo.2024.00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 08/07/2024] Open
Abstract
OBJECTIVES FDXR encodes mitochondrial ferredoxin reductase, which is associated with auditory neuropathy spectrum disorder (ANSD) and optic atrophy. To date, only two studies have described FDXR-related hearing loss. The auditory rehabilitation outcomes of this disease entity have not been investigated, and the pathophysiological mechanisms remain incompletely understood. Here we report a hearing-impaired individual with co-segregation of the FDXR variant and post-synaptic type ANSD, who underwent cochlear implantation (CI) with favorable outcomes. We suggest a possible pathophysiological mechanism of adult-onset ANSD involving mitochondrial dysfunction. METHODS A 35-year-old woman was ascertained to have ANSD. Exome sequencing identified the genetic cause of hearing loss, and a functional study measuring mitochondrial activity was performed to provide molecular evidence of pathophysiology. Expression of FDXR in the mouse cochlea was evaluated by immunohistochemistry. Intraoperatively, electrically evoked compound action potential (ECAP) responses were measured, and the mapping parameters were adjusted accordingly. Audiological outcomes were monitored for over 1 year. RESULTS In lymphoblastoid cell lines (LCLs) carrying a novel FDXR variant, decreased ATP levels, reduced mitochondrial membrane potential, and increased reactive oxygen species levels were observed compared to control LCLs. These dysfunctions were restored by administering mitochondria isolated from umbilical cord mesenchymal stem cells, confirming the pathogenic potential of this variant via mitochondrial dysfunction. Partial ECAP responses during CI and FDXR expression in the mouse cochlea indicate that FDXR-related ANSD is post-synaptic. As a result of increasing the pulse width during mapping, the patient's CI outcomes showed significant improvement over 1-year post-CI. CONCLUSION A novel FDXR variant associated with mitochondrial dysfunction and post-synaptic ANSD was first identified in a Korean individual. Additionally, 1-year post-CI outcomes were reported for the first time in the literature. Excellent audiologic. RESULTS were obtained, and our. RESULTS reiterate the correlation between genotype and CI outcomes in ANSD.
Collapse
Affiliation(s)
- Bong Jik Kim
- Department of Otorhinolaryngology, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, Sejong, Korea
- Brain Research Institute, Chungnam National University College of Medicine, Daejeon, Korea
| | - Yujin Kim
- Paean Biotechnology Inc., Seoul, Korea
| | - Ju Ang Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jin Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Min Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hee Kyung Yang
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Chae-Seo Rhee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | | | | | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
4
|
Lee SB, Woo TW, Baek DC, Son CG. A standardized herbal combination of Astragalus membranaceus and Paeonia japonica promotes skeletal muscle hypertrophy in a treadmill exercise mouse model. Front Nutr 2024; 11:1362550. [PMID: 38966418 PMCID: PMC11223055 DOI: 10.3389/fnut.2024.1362550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/29/2024] [Indexed: 07/06/2024] Open
Abstract
Background Maintaining a normal range of muscle mass and function is crucial not only for sustaining a healthy life but also for preventing various disorders. Numerous nutritional or natural resources are being explored for their potential muscle hypertrophic properties. Aim We aimed to evaluate the muscle hypertrophic effects of APX, a 1:1 mixture of Astragalus membranaceus and Paeonia japonica. In addition to the myotube differentiation cell assay, we utilized a weighted exercise-based animal model and evaluated changes in muscle hypertrophy using dual-energy X-ray absorptiometry (DXA) and histological analysis. Results The 8-week treadmill exercise led to notable decreases in body weight and fat mass but an increase in muscle mass compared to the control group. Administration of APX significantly accelerated muscle mass gain (p < 0.05) without altering body weight or fat mass compared to the exercise-only group. This muscle hypertrophic effect of APX was consistent with the histologic size of muscle fibers in the gastrocnemius (p > 0.05) and rectus femoris (p < 0.05), as well as the regulation of myogenic transcription factors (MyoD and myogenin), respectively. Furthermore, APX demonstrated a similar action to insulin-like growth factor 1, influencing the proliferation of C2C12 myoblast cells (p < 0.01) and their differentiation into myotubes (p < 0.05) compared to the control group. Conclusion The present study provides experimental evidence that APX has muscle hypertrophic effects, and its underlying mechanisms would involve the modulation of MyoD and myogenin.
Collapse
Affiliation(s)
| | | | | | - Chang-Gue Son
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
5
|
Zhu Z, Li C, Gu X, Wang X, Zhang G, Fan M, Zhao Y, Liu X, Zhang X. Paeoniflorin alleviated muscle atrophy in cancer cachexia through inhibiting TLR4/NF-κB signaling and activating AKT/mTOR signaling. Toxicol Appl Pharmacol 2024; 484:116846. [PMID: 38331105 DOI: 10.1016/j.taap.2024.116846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Cancer cachexia is a progressive wasting syndrome, which is mainly characterized by systemic inflammatory response, weight loss, muscle atrophy, and fat loss. Paeoniflorin (Pae) is a natural compound extracted from the dried root of Paeonia lactiflora Pallas, which is featured in anti-inflammatory, antioxidant, and immunoregulatory pharmacological activities. While, the effects of Pae on cancer cachexia had not been reported before. In the present study, the effects of Pae on muscle atrophy in cancer cachexia were observed both in vitro and in vivo using C2C12 myotube atrophy cell model and C26 tumor-bearing cancer cachexia mice model. In the in vitro study, Pae could alleviate myotubes atrophy induced by conditioned medium of C26 colon cancer cells or LLC Lewis lung cancer cells by decreasing the expression of Atrogin-1 and inhibited the decrease of MHC and MyoD. In the in vivo study, Pae ameliorated weight loss and improved the decrease in cross-sectional area of muscle fibers and the impairment of muscle function in C26 tumor-bearing mice. The inhibition of TLR4/NF-κB pathway and the activation of AKT/mTOR pathway was observed both in C2C12 myotubes and C26 tumor-bearing mice treated by Pae, which might be the main basis of its ameliorating effects on muscle atrophy. In addition, Pae could inhibit the release of IL-6 from C26 tumor cells, which might also contribute to its ameliorating effects on muscle atrophy. Overall, Pae might be a promising candidate for the therapy of cancer cachexia.
Collapse
Affiliation(s)
- Zixia Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Cong Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Xiaofan Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Xiaoting Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Gang Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Meng Fan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Yun Zhao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Xuan Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201003, China.
| | - Xiongwen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China.
| |
Collapse
|
6
|
Kim A, Kim YR, Park SM, Lee H, Park M, Yi JM, Cha S, Kim NS. Jakyak-gamcho-tang, a decoction of Paeoniae Radix and Glycyrrhizae Radix et Rhizoma, ameliorates dexamethasone-induced muscle atrophy and muscle dysfunction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155057. [PMID: 37984121 DOI: 10.1016/j.phymed.2023.155057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Although chronic treatment with glucocorticoids, such as dexamethasone, is frequently associated with muscle atrophy, effective and safe therapeutics for treating muscle atrophy remain elusive. Jakyak-gamcho-tang (JGT), a decoction of Paeoniae Radix and Glycyrrhizae Radix et Rhizoma, has long been used to relieve muscle tension and control muscle cramp-related pain. However, the effects of JGT on glucocorticoid-induced muscle atrophy are yet to be comprehensively clarified. PURPOSE The objective of the current study was to validate the protective effect of JGT in dexamethasone-induced muscle atrophy models and elucidate its underlying mechanism through integrated in silico - in vitro - in vivo studies. STUDY DESIGN AND METHODS Differential gene expression was preliminarily analyzed using the RNA-seq data to determine the effects of JGT on C2C12 myotubes. The protective effects of JGT were further validated in dexamethasone-treated C2C12 myotubes by assessing cell viability, myotube integrity, and mitochondrial function or in C57BL/6 N male mice with dexamethasone-induced muscle atrophy by evaluating muscle mass and physical performance. Transcriptomic pathway analysis was also performed to elucidate the underlying mechanism. RESULTS Based on preliminary gene set enrichment analysis using the RNA-seq data, JGT regulated various pathways related to muscle differentiation and regeneration. Dexamethasone-treated C2C12 myotubes and muscle tissues of atrophic mice displayed substantial muscle protein degradation and muscle loss, respectively, which was efficiently alleviated by JGT treatment. Importantly, JGT-mediated protective effects were associated with observations such as preservation of mitochondrial function, upregulation of myogenic signaling pathways, including protein kinase B/mammalian target of rapamycin/forkhead box O3, inhibition of ubiquitin-mediated muscle protein breakdown, and downregulation of inflammatory and apoptotic pathways induced by dexamethasone. CONCLUSION To the best of our knowledge, this is the first report to demonstrate that JGT could be a potential pharmaceutical candidate to prevent muscle atrophy induced by chronic glucocorticoid treatment, highlighting its known effects for relieving muscle spasms and pain. Moreover, transcriptomic pathway analysis can be employed as an efficient in silico tool to predict novel pharmacological candidates and elucidate molecular mechanisms underlying the effects of herbal medications comprising diverse biologically active ingredients.
Collapse
Affiliation(s)
- Aeyung Kim
- KM Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Yu Ri Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Sang-Min Park
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Haeseung Lee
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Musun Park
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Jin-Mu Yi
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Seongwon Cha
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - No Soo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| |
Collapse
|
7
|
Lai Y, Loy F, Isola M, Noli R, Rinaldi A, Lobina C, Vargiu R, Cesare Marincola F, Isola R. Male and Female Mitochondria Respond Differently after Exercising in Acute Hypoxia. Biomedicines 2023; 11:3149. [PMID: 38137370 PMCID: PMC10740434 DOI: 10.3390/biomedicines11123149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
The use of hypoxic devices among athletes who train in normobaric hypoxia has become increasingly popular; however, the acute effects on heart and brain metabolism are not yet fully understood. This study aimed to investigate the mitochondrial bioenergetics in trained male and female Wistar rats after acute hypoxia training. The experimental plan included exercising for 30 min on a treadmill in a Plexiglas cage connected to a hypoxic generator set at 12.5% O2 or in normoxia. After the exercise, the rats were sacrificed, and their mitochondria were isolated from their brains and hearts. The bioenergetics for each complex of the electron transport chain was tested using a Clark-type electrode. The results showed that following hypoxia training, females experienced impaired oxidative phosphorylation through complex II in heart subsarcolemmal mitochondria, while males had an altered ADP/O in heart interfibrillar mitochondria, without any change in oxidative capacity. No differences from controls were evident in the brain, but an increased electron transport system efficiency was observed with complex I and IV substrates in males. Therefore, the study's findings suggest that hypoxia training affects the heart mitochondria of females more than males. This raises a cautionary flag for female athletes who use hypoxic devices.
Collapse
Affiliation(s)
- Ylenia Lai
- Department of Biological Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | - Francesco Loy
- Department of Biological Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | - Michela Isola
- Department of Biological Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | - Roberta Noli
- Department of Biological Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | - Andrea Rinaldi
- Department of Biological Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | - Carla Lobina
- Neuroscience Institute, Division of Cagliari, National Research Council of Italy, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | - Romina Vargiu
- Department of Biological Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | - Flaminia Cesare Marincola
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | - Raffaella Isola
- Department of Biological Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| |
Collapse
|
8
|
Córdoba-Jover B, Ribera J, Portolés I, Lecue E, Rodriguez-Vita J, Pérez-Sisqués L, Mannara F, Solsona-Vilarrasa E, García-Ruiz C, Fernández-Checa JC, Casals G, Rodríguez-Revenga L, Álvarez-Mora MI, Arteche-López A, Díaz de Bustamante A, Calvo R, Pujol A, Azkargorta M, Elortza F, Malagelada C, Pinyol R, Huguet-Pradell J, Melgar-Lesmes P, Jiménez W, Morales-Ruiz M. Tcf20 deficiency is associated with increased liver fibrogenesis and alterations in mitochondrial metabolism in mice and humans. Liver Int 2023; 43:1822-1836. [PMID: 37312667 DOI: 10.1111/liv.15640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND & AIMS Transcription co-activator factor 20 (TCF20) is a regulator of transcription factors involved in extracellular matrix remodelling. In addition, TCF20 genomic variants in humans have been associated with impaired intellectual disability. Therefore, we hypothesized that TCF20 has several functions beyond those described in neurogenesis, including the regulation of fibrogenesis. METHODS Tcf20 knock-out (Tcf20-/- ) and Tcf20 heterozygous mice were generated by homologous recombination. TCF20 gene genotyping and expression was assessed in patients with pathogenic variants in the TCF20 gene. Neural development was investigated by immufluorescense. Mitochondrial metabolic activity was evaluated with the Seahorse analyser. The proteome analysis was carried out by gas chromatography mass-spectrometry. RESULTS Characterization of Tcf20-/- newborn mice showed impaired neural development and death after birth. In contrast, heterozygous mice were viable but showed higher CCl4 -induced liver fibrosis and a differential expression of genes involved in extracellular matrix homeostasis compared to wild-type mice, along with abnormal behavioural patterns compatible with autism-like phenotypes. Tcf20-/- embryonic livers and mouse embryonic fibroblast (MEF) cells revealed differential expression of structural proteins involved in the mitochondrial oxidative phosphorylation chain, increased rates of mitochondrial metabolic activity and alterations in metabolites of the citric acid cycle. These results parallel to those found in patients with TCF20 pathogenic variants, including alterations of the fibrosis scores (ELF and APRI) and the elevation of succinate concentration in plasma. CONCLUSIONS We demonstrated a new role of Tcf20 in fibrogenesis and mitochondria metabolism in mice and showed the association of TCF20 deficiency with fibrosis and metabolic biomarkers in humans.
Collapse
Affiliation(s)
- Bernat Córdoba-Jover
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordi Ribera
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Portolés
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elena Lecue
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan Rodriguez-Vita
- Tumour-Stroma Communication Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Leticia Pérez-Sisqués
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Francesco Mannara
- Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain
| | - Estel Solsona-Vilarrasa
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Liver Unit, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Carmen García-Ruiz
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Liver Unit, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- USC Research Center for ALPD, Keck School of Medicine, Los Angeles, California, USA
| | - José C Fernández-Checa
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Liver Unit, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- USC Research Center for ALPD, Keck School of Medicine, Los Angeles, California, USA
| | - Gregori Casals
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Laia Rodríguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - María Isabel Álvarez-Mora
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain
| | - Ana Arteche-López
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain
- UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | | | - Rosa Calvo
- Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain
- Department of Child and Adolescent Psychiatry and Psychology, Hospital Clinic of Barcelona. School of Medicine, University of Barcelona, Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM), Madrid, Spain
| | - Anna Pujol
- Unidad de Animales Transgénicos UAT-CBATEG, Universitat Autònoma de Barcelona, Cerdanyola del Valles, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Derio, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Derio, Spain
| | - Cristina Malagelada
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Roser Pinyol
- Translational Research in Hepatic Oncology Group, Liver Unit, IDIBAPS, Barcelona Clínic Hospital, University of Barcelona, Barcelona, Spain
| | - Júlia Huguet-Pradell
- Translational Research in Hepatic Oncology Group, Liver Unit, IDIBAPS, Barcelona Clínic Hospital, University of Barcelona, Barcelona, Spain
| | - Pedro Melgar-Lesmes
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Wladimiro Jiménez
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Manuel Morales-Ruiz
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Xiu Z, Tang S, Kong P, Yan M, Tong X, Liu X, Liang X, Li R, Duan Y. The effect and mechanism of Zigui-Yichong-Fang on improving ovarian reserve in premature ovarian insufficiency by activating SIRT1/Foxo3a pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116608. [PMID: 37150421 DOI: 10.1016/j.jep.2023.116608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zigui-Yichong-Fang (ZGYCF) is a traditional Chinese medicine prescription for the treatment of infertility. It is clinically used to regulate the hormone level of patients, improve ovarian reserve function and increase pregnancy rate. However, the exact mechanism of action is not yet clear. AIMS OF THE STUDY This study aims to explore the potential impact of ZGYCF on POI and its mechanism. MATERIALS AND METHODS Ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was used to identify the main compounds of ZGYCF. After confirming the therapeutic effect of ZGYCF on cyclophosphamide-induced POI mice, RNA sequencing (RNA-seq) analysis was carried out to explore the mechanism. Then, the effects of ZGYCF on SIRT1 deacetylated Foxo3a and apoptosis were verified from multiple perspectives by serum hormone level, mRNA validation, histomorphology and protein expression, acetylation modification and other experiments. RESULTS ZGYCF can improve the morphological changes of ovarian tissue in POI model mice, reduce the damage of primordial follicles and other follicles at all stages, and protect ovarian reserve. The results of transcriptome sequencing showed that the genes expression of PI3K signal and apoptosis signal pathway were increased in POI model mice; ZGYCF can up-regulate the expression of SIRT1 gene and the expression of estradiol, apoptosis inhibition and other signal pathway genes. In addition, ZGYCF can reduce follicular damage and ovarian cell apoptosis in POI model mice through activating the deacetylation of Foxo3a by SIRT1, and improve ovarian reserve function. CONCLUSIONS ZGYCF may improve ovarian reserve function of CTX-induced POI mice by activating SIRT1-mediated deacetylation of Foxo3a, and play a role in the treatment of POI.
Collapse
Affiliation(s)
- Zi Xiu
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Siling Tang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Peng Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Mengxuan Yan
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Xue Tong
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Xueping Liu
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Xiao Liang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Rongxia Li
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Yancang Duan
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China.
| |
Collapse
|
10
|
Mechanisms of Estrogen Influence on Skeletal Muscle: Mass, Regeneration, and Mitochondrial Function. Sports Med 2022; 52:2853-2869. [PMID: 35907119 DOI: 10.1007/s40279-022-01733-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 10/16/2022]
Abstract
Human menopause is widely associated with impaired skeletal muscle quality and significant metabolic dysfunction. These observations pose significant challenges to the quality of life and mobility of the aging population, and are of relevance when considering the significantly greater losses in muscle mass and force-generating capacity of muscle from post-menopausal females relative to age-matched males. In this regard, the influence of estrogen on skeletal muscle has become evident across human, animal, and cell-based studies. Beneficial effects of estrogen have become apparent in mitigation of muscle injury and enhanced post-damage repair via various mechanisms, including prophylactic effects on muscle satellite cell number and function, as well as membrane stability and potential antioxidant influences following injury, exercise, and/or mitochondrial stress. In addition to estrogen replacement in otherwise deficient states, exercise has been found to serve as a means of augmenting and/or mimicking the effects of estrogen on skeletal muscle function in recent literature. Detailed mechanisms behind the estrogenic effect on muscle mass, strength, as well as the injury response are beginning to be elucidated and point to estrogen-mediated molecular cross talk amongst signalling pathways, such as apoptotic signaling, contractile protein modifications, including myosin regulatory light chain phosphorylation, and the maintenance of muscle satellite cells. This review discusses current understandings and highlights new insights regarding the role of estrogen in skeletal muscle, with particular regard to muscle mass, mitochondrial function, the response to muscle damage, and the potential implications for human physiology and mobility.
Collapse
|
11
|
miR-222 Is Involved in the Amelioration Effect of Genistein on Dexamethasone-Induced Skeletal Muscle Atrophy. Nutrients 2022; 14:nu14091861. [PMID: 35565830 PMCID: PMC9104324 DOI: 10.3390/nu14091861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle atrophy is a complex degenerative disease characterized by decreased skeletal muscle mass, skeletal muscle strength, and function. MicroRNAs (miRNAs) are a potential therapeutic target, and natural products that regulate miRNA expression may be a safe and effective treatment strategy for muscle atrophy. Previous studies have shown beneficial effects of genistein treatment on muscle mass and muscle atrophy, but the mechanism is not fully understood. Differential co-expression network analysis revealed that miR-222 was upregulated in multiple skeletal muscle atrophy models. Subsequent in vitro (C2C12 myoblasts) and in vivo (C57BL/6 mice) experiments showed that genistein could alleviate dexamethasone-induced muscle atrophy and downregulate the expression of miR-222 in muscle tissue and C2C12 myotubes. The dual-luciferase reporter assay system confirmed that IGF1 is a target gene of miR-222 and is regulated by genistein. In C2C12 myotubes, both dexamethasone and miR-222 overexpression promoted muscle atrophy, however, this function was significantly reduced after genistein treatment. Furthermore, we also observed that both genistein and miR-222 antagomiR could significantly inhibit dexamethasone-induced muscle atrophy in vivo. These results suggest that miR-222 may be involved in the regulation of genistein on muscle atrophy, and genistein and miR-222 may be used to improve muscle health.
Collapse
|