1
|
Ala Çitlak FS, Köksal N, Avci B, Tibel Tuna N, Güllü YT. Investigation of pepsin levels in bronchial lavage in patients with interstitial lung disease and chronic cough. Respir Med 2024; 233:107781. [PMID: 39182853 DOI: 10.1016/j.rmed.2024.107781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
AIM Pepsin is an enzyme that helps digest protein secreted only from the gastric chief cell in an inactive state. Pepsin is a good marker for acidic gastroesophageal reflux (GER). Its presence in sputum or saliva is considered pathologic. In GER, cough is stimulated by broncho-esophageal neurogenic reflex and aspiration of gastric contents into the airways. GER is the most common cause of cough. Gastric acid reflux is also thought to play a role in Interstitial Lung Disease (ILD) etiology. In many studies, pepsin and bile acid levels in bronchial lavage were high in patients with interstitial lung disease and chronic cough. In our study, we aimed to evaluate pepsin levels in bronchial lavage in patients with ILD and chronic cough and to investigate the relationship between symptoms and reflux treatment. METHODS Between January 2021 and February 2022, 212 patients who underwent bronchoscopy in our tertiary clinic were evaluated. These patients were divided into three groups: 52 patients with interstitial lung disease, 81 patients with chronic cough, and 79 patients who underwent bronchoscopy with a pre-diagnosis of lung cancer as the control group. Bronchial lavage obtained by bronchoscopy was analyzed for pepsin levels. RESULTS Shortness of breath and cough were the most common symptoms in all three groups. Pepsin levels were 16.71 ± 8.6 ng/ml in the chronic cough group, 15.6 ± 8.9 ng/ml in the ILD group, and 10.58 ± 5.4 ng/ml in the lung cancer (control) group. Pepsin levels in the ILD and chronic cough group were statistically significantly higher than in the lung cancer group (p:0.00). There was no statistical difference between the ILD group and the chronic cough group regarding pepsin levels. It was found that pepsin levels were lower in the three groups who received anti-reflux treatment. There was no difference in pepsin levels between ILD subgroups. CONCLUSION Pepsin levels in bronchial lavage were higher in the ILD and chronic cough groups. This suggests that reflux may be involved in the etiology of chronic cough and ILD. Low pepsin values in patients receiving anti-reflux therapy have shown that occult reflux may occur. In our study, the high level of pepsin in bronchial lavage, especially in the chronic cough and ILD group, may be instructive in the etiology and treatment planning of the disease.
Collapse
Affiliation(s)
| | - Nurhan Köksal
- Ondokuz Mayıs University Faculty of Medicine, Department of Pulmonary Medicine, Samsun, Turkey
| | - Bahattin Avci
- Ondokuz Mayıs University Faculty of Medicine, Department of Medical Biochemistry, Samsun, Turkey
| | - Nazmiye Tibel Tuna
- Ondokuz Mayıs University Faculty of Medicine, Department of Pulmonary Medicine, Samsun, Turkey
| | - Yusuf Taha Güllü
- Mudanya University; Vocational School; Anesthesia Program Mudanya, Bursa, Turkey.
| |
Collapse
|
2
|
Ciornolutchii V, Ruta VM, Man AM, Motoc NS, Popa SL, Dumitrascu DL, Ismaiel A, Leucuta DC. Exploring the Role of Hemogram-Derived Ratios and Liver Fibrosis Scores in Pulmonary Fibrosis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1702. [PMID: 39459489 PMCID: PMC11509704 DOI: 10.3390/medicina60101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/28/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Pulmonary fibrosis, including idiopathic pulmonary fibrosis (IPF) and secondary pulmonary fibrosis (SPF), is a progressive lung disease that significantly impairs respiratory function. Accurate differentiation between IPF and SPF is crucial for effective management. This study explores the association between pulmonary fibrosis and hepatic conditions, evaluating the utility of various hemogram-derived ratios and hepatic fibrosis scores in distinguishing between IPF and SPF. Materials and Methods: We conducted a retrospective study involving patients diagnosed with IPF or SPF at the "Leon Daniello" Clinical Hospital of Pneumology in Cluj-Napoca, Romania. Pulmonary fibrosis was confirmed via imaging techniques, and hepatic steatosis and fibrosis were assessed using non-invasive scores. We analyzed clinical, laboratory, and pulmonary function data, focusing on hemogram-derived ratios and hepatic scores. Statistical analyses, including ROC curves, were used to evaluate the effectiveness of these biomarkers in differentiating IPF from SPF. Results: We included a total of 38 patients with IPF and 28 patients with SPF. Our findings revealed that IPF patients had a significantly higher FIB-4 score compared to SPF patients, suggesting increased hepatic fibrosis risk in IPF, as well as an increased RDW/PLT ratio. Conversely, SPF patients exhibited elevated PLR, PNR, and SII, reflecting a more pronounced inflammatory profile. PLR and PNR demonstrated the highest discriminatory ability between IPF and SPF, while traditional hepatic fibrosis scores showed limited differentiation capabilities. No significant differences in pulmonary function tests were observed across hepatic fibrosis risk categories. Conclusions: The study highlights the value of biomarkers like PLR and PNR in differentiating between IPF and SPF, offering additional diagnostic insights beyond traditional imaging. Integrating hepatic assessments into the management of pulmonary fibrosis could improve diagnostic accuracy and patient care.
Collapse
Affiliation(s)
- Vera Ciornolutchii
- 2nd Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (V.C.); (S.-L.P.); (D.L.D.)
| | - Victoria Maria Ruta
- Department of Pulmonology, “Leon Daniello” Clinical Hospital of Pulmonology, 400371 Cluj-Napoca, Romania;
| | - Adina Milena Man
- Department of Pneumology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (A.M.M.); (N.S.M.)
| | - Nicoleta Stefania Motoc
- Department of Pneumology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (A.M.M.); (N.S.M.)
| | - Stefan-Lucian Popa
- 2nd Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (V.C.); (S.-L.P.); (D.L.D.)
| | - Dan L. Dumitrascu
- 2nd Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (V.C.); (S.-L.P.); (D.L.D.)
| | - Abdulrahman Ismaiel
- 2nd Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (V.C.); (S.-L.P.); (D.L.D.)
| | - Daniel-Corneliu Leucuta
- Department of Medical Informatics and Biostatistics, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| |
Collapse
|
3
|
Maggisano M, Mondini L, Chernovsky M, Confalonieri P, Salton F, Reccardini N, Kodric M, Geri P, Confalonieri M, Hughes M, Cifaldi R, Ruaro B. Safety of Nintedanib in a Patient with Chronic Pulmonary Fibrosis and Kidney Disease. Pharmaceuticals (Basel) 2024; 17:1147. [PMID: 39338310 PMCID: PMC11434627 DOI: 10.3390/ph17091147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Nintedanib, an intracellular inhibitor that targets multiple tyrosine kinase, is an important drug for the treatment of pulmonary fibrosis. Until now, no studies have been published reporting the nintedanib tolerability or its efficacy in patients with chronic pulmonary lung disease and chronic kidney disease comorbidity. The safety, efficacy and pharmacokinetics of nintedanib have not been studied in patients with severe renal impairment (creatinine clearance < 30 mL/min) and for this reason it is contraindicated in these patients. We describe a case of use of nintedanib in a patient affected by idiopathic pulmonary fibrosis (IPF) who started, from 2022, nintedanib 150 mg twice a day with careful monitoring of liver and kidney function. Due to the onset of stage 3/4 chronic kidney disease associated with proteinuria, nintedanib was suspended for two months, and the patient received Prednisone at a dose of 12.5 mg/day. During the two months of suspension, the renal function did not improve, unlike the respiratory status worsened. In the past a renal biopsy was performed which showed no correlation with nintedanib use. Nintedanib therapy started again following the decline in lung function and desaturation below 90% in the 6-min walking test (6MWT). Patient showed a good tolerability of nintedanib with sporadic episode of diarrhea and an improvement of pulmonary function leading to a stable state of chronic pulmonary fibrosis disease. For this reason, in mutual agreement with the patient, we decided to maintain nintedanib therapy even when the patient required hemodialysis. No toxic effects appeared. This case report revealed the safety of nintedinab in patient with concomitant kidney failure, but more studies are necessary.
Collapse
Affiliation(s)
- Marta Maggisano
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Lucrezia Mondini
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Maria Chernovsky
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Paola Confalonieri
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Francesco Salton
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Nicolò Reccardini
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Metka Kodric
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Pietro Geri
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Marco Confalonieri
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Michael Hughes
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester Salford Royal NHS Foundation Trust, Manchester M6 8HD, UK
| | - Rossella Cifaldi
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Barbara Ruaro
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| |
Collapse
|
4
|
Fallert L, Urigoitia-Asua A, Cipitria A, Jimenez de Aberasturi D. Dynamic 3D in vitro lung models: applications of inorganic nanoparticles for model development and characterization. NANOSCALE 2024; 16:10880-10900. [PMID: 38787741 DOI: 10.1039/d3nr06672j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Being a vital organ exposed to the external environment, the lung is susceptible to a plethora of pathogens and pollutants. This is reflected in high incidences of chronic respiratory diseases, which remain a leading cause of mortality world-wide and pose a persistent global burden. It is thus of paramount importance to improve our understanding of these pathologies and provide better therapeutic options. This necessitates the development of representative and physiologically relevant in vitro models. Advances in bioengineering have enabled the development of sophisticated models that not only capture the three-dimensional architecture of the cellular environment but also incorporate the dynamics of local biophysical stimuli. However, such complex models also require novel approaches that provide reliable characterization. Within this review we explore how 3D bioprinting and nanoparticles can serve as multifaceted tools to develop such dynamic 4D printed in vitro lung models and facilitate their characterization in the context of pulmonary fibrosis and breast cancer lung metastasis.
Collapse
Affiliation(s)
- Laura Fallert
- Department of Hybrid Biofunctional Materials, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, 20014 Donostia-San Sebastián, Spain
- Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Spain
| | - Ane Urigoitia-Asua
- Department of Hybrid Biofunctional Materials, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Spain
- POLYMAT, Basque Centre for Macromolecular Design and Engineering, 20018 Donostia-San Sebastián, Spain
| | - Amaia Cipitria
- Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Dorleta Jimenez de Aberasturi
- Department of Hybrid Biofunctional Materials, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), 20014 Donostia-San Sebastián, Spain
| |
Collapse
|
5
|
Chianese M, Screm G, Salton F, Confalonieri P, Trotta L, Barbieri M, Ruggero L, Mari M, Reccardini N, Geri P, Hughes M, Lerda S, Confalonieri M, Mondini L, Ruaro B. Pirfenidone and Nintedanib in Pulmonary Fibrosis: Lights and Shadows. Pharmaceuticals (Basel) 2024; 17:709. [PMID: 38931376 PMCID: PMC11206515 DOI: 10.3390/ph17060709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Pirfenidone and Nintedanib are specific drugs used against idiopathic pulmonary fibrosis (IPF) that showed efficacy in non-IPF fibrosing interstitial lung diseases (ILD). Both drugs have side effects that affect patients in different ways and have different levels of severity, making treatment even more challenging for patients and clinicians. The present review aims to assess the effectiveness and potential complications of Pirfenidone and Nintedanib treatment regimens across various ILD diseases. A detailed search was performed in relevant articles published between 2018 and 2023 listed in PubMed, UpToDate, Google Scholar, and ResearchGate, supplemented with manual research. The following keywords were searched in the databases in all possible combinations: Nintedanib; Pirfenidone, interstitial lung disease, and idiopathic pulmonary fibrosis. The most widely accepted method for evaluating the progression of ILD is through the decline in forced vital capacity (FVC), as determined by respiratory function tests. Specifically, a decrease in FVC over a 6-12-month period correlates directly with increased mortality rates. Antifibrotic drugs Pirfenidone and Nintedanib have been extensively validated; however, some patients reported several side effects, predominantly gastrointestinal symptoms (such as diarrhea, dyspepsia, and vomiting), as well as photosensitivity and skin rashes, particularly associated with Pirfenidone. In cases where the side effects are extremely severe and are more threatening than the disease itself, the treatment has to be discontinued. However, further research is needed to optimize the use of antifibrotic agents in patients with PF-ILDs, which could slow disease progression and decrease all-cause mortality. Finally, other studies are requested to establish the treatments that can stop ILD progression.
Collapse
Affiliation(s)
- Maria Chianese
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy; (M.C.)
| | - Gianluca Screm
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy; (M.C.)
| | - Francesco Salton
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy; (M.C.)
| | - Paola Confalonieri
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy; (M.C.)
| | - Liliana Trotta
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy; (M.C.)
| | - Mariangela Barbieri
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy; (M.C.)
| | - Luca Ruggero
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy; (M.C.)
| | - Marco Mari
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy; (M.C.)
| | - Nicolò Reccardini
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy; (M.C.)
| | - Pietro Geri
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy; (M.C.)
| | - Michael Hughes
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester M6 8HD, UK
| | - Selene Lerda
- Graduate School, University of Milan, 20149 Milano, Italy
| | - Marco Confalonieri
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy; (M.C.)
| | - Lucrezia Mondini
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy; (M.C.)
| | - Barbara Ruaro
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy; (M.C.)
| |
Collapse
|
6
|
Bandini G, Alunno A, Pinheiro FO, Campochiaro C, Galetti I, Matucci-Cerinic P, Ruaro B, El Aoufy K, Melis MR, Pignone AM, Randone SB, Dagna L, Matucci-Cerinic M, McMahan ZH, Hughes M. A Multinational Survey Investigating the Unmet Needs and Patient Perspectives Concerning Proton Pump Inhibitors in Systemic Sclerosis. Arthritis Care Res (Hoboken) 2024; 76:608-615. [PMID: 38111164 DOI: 10.1002/acr.25280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/23/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVE Proton pump inhibitors (PPIs) are widely prescribed to treat gastroesophageal reflux disease (GERD) in Systemic Sclerosis (SSc). However, not all patients adequately respond to the treatment, and there are frequent concerns about the safety of long-term use of PPIs. Our aim was to identify the main problems/complaints of SSc patients on PPIs, as well as understand their unmet needs. METHODS SSc patients treated with PPIs were invited through international patient associations and social media to participate in an online survey. RESULTS We gathered 301 valid responses from 14 countries (United Kingdom 19.3% and United States 70.4%). Multiple PPIs use (two: 30% and three: 21% in series) was common. The majority (89%) reported improvement in gastrointestinal symptoms from receiving PPIs. Side effects attributed to receiving PPIs were uncommon (19%); however, most (79%) were potentially concerned. Around half (58%) had received lifestyle information, and most (85%) had searched online for information about PPIs. Only in the minority (12%) had a surgical approach been discussed; however, half (46%) indicated that they would be willing to undergo surgery to resolve their GERD symptoms but had important concerns. CONCLUSION Despite the frequent use of PPIs in patients with SSc, there is significant heterogeneity in prescription, and combination therapy (PPIs plus other medication for acid reflux) is not uncommon (approximately 40%). Patients have significant concerns about PPIs side effects. Education about PPIs is often neglected, and patients very frequently use online sources to obtain information on drug treatment. A surgical approach is infrequently discussed, and patients fear this potential therapeutic approach.
Collapse
Affiliation(s)
- Giulia Bandini
- Department of Experimental and Clinical Medicine, Division of Internal Medicine, University of Florence, AOUC, Florence, Italy
| | - Alessia Alunno
- Department of Clinical Medicine, Life Health and Environmental Sciences, Internal Medicine and Nephrology Division, University of L'Aquila, L'Aquila, Italy
| | - Filipe O Pinheiro
- Department of Rheumatology, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Corrado Campochiaro
- Unit of Immunology, Rheumatology, Allergy and Rare diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy
| | - Ilaria Galetti
- FESCA (Federation of European Scleroderma Associations), Belgium, and GILS (Gruppo Italiano Lotta alla Sclerodermia), Milan, Italy
| | - Pietro Matucci-Cerinic
- Department of Surgery, Division of Surgery and Transplantation, University of Udine, Udine, Italy
| | - Barbara Ruaro
- Department of Medical Surgical and Health Sciences, Pulmonology Unit, University Hospital of Cattinara and University of Trieste, Trieste, Italy
| | - Khadija El Aoufy
- Department of Health Science, University of Florence, Florence, Italy
| | - Maria R Melis
- Department of Health Science, University of Florence, Florence, Italy
| | - Alberto Moggi Pignone
- Department of Experimental and Clinical Medicine, Division of Internal Medicine, University of Florence, AOUC, Florence, Italy
| | - Silvia Bellando Randone
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy
| | - Marco Matucci-Cerinic
- Unit of Immunology, Rheumatology, Allergy and Rare diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy
| | - Zsuzsanna H McMahan
- Department of Medicine, Division of Rheumatology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Michael Hughes
- Northern Care Alliance NHS Foundation Trust, Salford Care Organisation, Salford, UK; Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
7
|
Bandini G, Alunno A, Ruaro B, Galetti I, Hughes M, McMahan ZH. Significant gastrointestinal unmet needs in patients with Systemic Sclerosis: insights from a large international patient survey. Rheumatology (Oxford) 2024; 63:e92-e93. [PMID: 37725357 PMCID: PMC10907805 DOI: 10.1093/rheumatology/kead486] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/30/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023] Open
Affiliation(s)
- Giulia Bandini
- Department of Experimental and Clinical Medicine, Division of Internal Medicine, AOUC, University of Florence, Firenze, Italy
| | - Alessia Alunno
- Department of Life Health and Environmental Sciences, Internal Medicine and Nephrology Division, ASL1 Avezzano-Sulmona-L'Aquila, University of L’Aquila, L'Aquila, Italy
| | - Barbara Ruaro
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University Hospital of Cattinara, University of Trieste, Trieste, Italy
| | - Ilaria Galetti
- FESCA (Federation of European Scleroderma Associations) Belgium, GILS (Gruppo Italiano, Lotta alla Sclerodermia (Italy), Milan, Italy
| | - Michael Hughes
- Department of Rheumatology, Salford Care Organisation, Northern Care Alliance NHS Foundation Trust, Salford, UK
- Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, UK
| | - Zsuzsanna H McMahan
- Division of Rheumatology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
8
|
Iftikhar S, Alhaddad SF, Paulsingh CN, Riaz MF, Garg G, Umeano L, Hamid P. The Role of Proton Pump Inhibitors in the Realm of Idiopathic Pulmonary Fibrosis and its Associated Comorbidities: A Systematic Review. Cureus 2024; 16:e55980. [PMID: 38606271 PMCID: PMC11008918 DOI: 10.7759/cureus.55980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/10/2024] [Indexed: 04/13/2024] Open
Abstract
As the global incidence of idiopathic pulmonary fibrosis (IPF) is on the rise, there is a need for better diagnostic criteria, better treatment options, early and appropriate diagnosis, adequate care, and a multidisciplinary approach to the management of patients. This systematic review explores the role of proton pump inhibitors (PPIs) in IPF and answers the question, "Does proton pump inhibitor improve only the prognosis of gastroesophageal associated idiopathic pulmonary fibrosis or for other types of idiopathic pulmonary fibrosis too?" We used PubMed (PMC) and Google Scholar for data collection for this systematic review and followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for conducting this review. After in-depth literature screening and quality appraisal, 12 articles were selected for this systematic review. On the one hand, the efficacy of PPI therapy is supported by research such as the CAPACITY and ASCEND trials, a pilot randomized control trial (RCT) investigating the role of omeprazole in IPF and a bidirectional two-sample Mendelian randomization (MR) study, respectively. On the other hand, a systematic review and meta-analysis on antacid and antireflux surgery in IPF negate these results and show no statistical significance. Questions regarding the efficacy of PPI therapy must be dealt with in an adequately powered multicenter and double-blinded randomized control trial. The anti-inflammatory properties of antacids can serve as the cornerstone for future trials. In the following systematic review, antacid, antireflux therapy, omeprazole, and proton pump therapy are synonymous with stomach acid suppression therapy.
Collapse
Affiliation(s)
- Sadaf Iftikhar
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sarah F Alhaddad
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Christian N Paulsingh
- Pathology, St. George's University School of Medicine, St. Georges, GRD
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Muhammad Faisal Riaz
- Internal Medicine, Rawalpindi Medical University, Rawalpindi, PAK
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Gourav Garg
- Orthopaedics, Kings Mill Hospital, Sutton in Ashfield, GBR
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Lotanna Umeano
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Pousette Hamid
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
9
|
Chen P, Xie L, Ma L, Zhao X, Chen Y, Ge Z. Prediction and analysis of genetic effect in idiopathic pulmonary fibrosis and gastroesophageal reflux disease. IET Syst Biol 2023; 17:352-365. [PMID: 37907428 PMCID: PMC10725712 DOI: 10.1049/syb2.12081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
With increasing research on idiopathic pulmonary fibrosis (IPF) and gastroesophageal reflux disease (GERD), more and more studies have indicated that GERD is associated with IPF, but the underlying pathological mechanisms remain unclear. The aim of the present study is to identify and analyse the differentially expressed genes (DEGs) between IPF and GERD and explore the relevant molecular mechanisms via bioinformatics analysis. Four GEO datasets (GSE24206, GSE53845, GSE26886, and GSE39491) were downloaded from the GEO database, and DEGs between IPF and GERD were identified with the online tool GEO2R. Subsequently, a series of bioinformatics analyses are conducted, including Kyoto Encyclopaedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analyses, the PPI network, biological characteristics, TF-gene interactions, TF-miRNA coregulatory networks, and the prediction of drug molecules. Totally, 71 genes were identified as DEGs in IPF and GERD. Five KEGG pathways, including Amoebiasis, Protein digestion and absorption, Relaxin signalling pathway, AGE-RAGE signalling pathway in diabetic complications, and Drug metabolism - cytochrome P450, were significantly enriched. In addition, eight hub genes, including POSTN, MMP1, COL3A1, COL1A2, CXCL12, TIMP3, VCAM1, and COL1A1 were selected from the PPI network by Cytoscape software. Then, five hub genes (MMP1, POSTN, COL3A1, COL1A2, and COL1A1) with high diagnostic values for IPF and GERD were validated by GEO datasets. Finally, TF-gene and miRNA interaction was identified with hub genes and predicted drug molecules for the IPF and GERD. And the results suggest that cetirizine, luteolin, and pempidine may have great potential therapeutic value in IPF and GERD. This study will provide novel strategies for the identification of potential biomarkers and valuable therapeutic targets for IPF and GERD.
Collapse
Affiliation(s)
- Peipei Chen
- Department of Respiratory MedicineWenzhou People's HospitalWenzhouChina
| | - Lubin Xie
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Leikai Ma
- Department of AnesthesiologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xianda Zhao
- Department of AnesthesiologyFirst People's Hospital of WenlingWenlingChina
| | - Yong Chen
- Department of AnesthesiologyShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Zhouling Ge
- Department of Respiratory MedicineWenzhou People's HospitalWenzhouChina
| |
Collapse
|
10
|
Giriyappagoudar M, Vastrad B, Horakeri R, Vastrad C. Study on Potential Differentially Expressed Genes in Idiopathic Pulmonary Fibrosis by Bioinformatics and Next-Generation Sequencing Data Analysis. Biomedicines 2023; 11:3109. [PMID: 38137330 PMCID: PMC10740779 DOI: 10.3390/biomedicines11123109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with reduced quality of life and earlier mortality, but its pathogenesis and key genes are still unclear. In this investigation, bioinformatics was used to deeply analyze the pathogenesis of IPF and related key genes, so as to investigate the potential molecular pathogenesis of IPF and provide guidance for clinical treatment. Next-generation sequencing dataset GSE213001 was obtained from Gene Expression Omnibus (GEO), and the differentially expressed genes (DEGs) were identified between IPF and normal control group. The DEGs between IPF and normal control group were screened with the DESeq2 package of R language. The Gene Ontology (GO) and REACTOME pathway enrichment analyses of the DEGs were performed. Using the g:Profiler, the function and pathway enrichment analyses of DEGs were performed. Then, a protein-protein interaction (PPI) network was constructed via the Integrated Interactions Database (IID) database. Cytoscape with Network Analyzer was used to identify the hub genes. miRNet and NetworkAnalyst databaseswereused to construct the targeted microRNAs (miRNAs), transcription factors (TFs), and small drug molecules. Finally, receiver operating characteristic (ROC) curve analysis was used to validate the hub genes. A total of 958 DEGs were screened out in this study, including 479 up regulated genes and 479 down regulated genes. Most of the DEGs were significantly enriched in response to stimulus, GPCR ligand binding, microtubule-based process, and defective GALNT3 causes HFTC. In combination with the results of the PPI network, miRNA-hub gene regulatory network and TF-hub gene regulatory network, hub genes including LRRK2, BMI1, EBP, MNDA, KBTBD7, KRT15, OTX1, TEKT4, SPAG8, and EFHC2 were selected. Cyclothiazide and rotigotinethe are predicted small drug molecules for IPF treatment. Our findings will contribute to identification of potential biomarkers and novel strategies for the treatment of IPF, and provide a novel strategy for clinical therapy.
Collapse
Affiliation(s)
- Muttanagouda Giriyappagoudar
- Department of Radiation Oncology, Karnataka Institute of Medical Sciences (KIMS), Hubballi 580022, Karnataka, India;
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. Socitey’s College of Pharmacy, Gadag 582101, Karnataka, India;
| | - Rajeshwari Horakeri
- Department of Computer Science, Govt First Grade College, Hubballi 580032, Karnataka, India;
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
11
|
Luo W, Gu Y, Fu S, Wang J, Zhang J, Wang Y. Emerging opportunities to treat idiopathic pulmonary fibrosis: Design, discovery, and optimizations of small-molecule drugs targeting fibrogenic pathways. Eur J Med Chem 2023; 260:115762. [PMID: 37683364 DOI: 10.1016/j.ejmech.2023.115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common fibrotic form of idiopathic diffuse lung disease. Due to limited treatment options, IPF patients suffer from poor survival. About ten years ago, Pirfenidone (Shionogi, 2008; InterMune, 2011) and Nintedanib (Boehringer Ingelheim, 2014) were approved, greatly changing the direction of IPF drug design. However, limited efficacy and side effects indicate that neither can reverse the process of IPF. With insights into the occurrence of IPF, novel targets and agents have been proposed, which have fundamentally changed the treatment of IPF. With the next-generation agents, targeting pro-fibrotic pathways in the epithelial-injury model offers a promising approach. Besides, several next-generation IPF drugs have entered phase II/III clinical trials with encouraging results. Due to the rising IPF treatment requirements, there is an urgent need to completely summarize the mechanisms, targets, problems, and drug design strategies over the past ten years. In this review, we summarize known mechanisms, target types, drug design, and novel technologies of IPF drug discovery, aiming to provide insights into the future development and clinical application of next-generation IPF drugs.
Collapse
Affiliation(s)
- Wenxin Luo
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Gu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Siyu Fu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Jifa Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
12
|
Di Maggio G, Confalonieri P, Salton F, Trotta L, Ruggero L, Kodric M, Geri P, Hughes M, Bellan M, Gilio M, Lerda S, Baratella E, Confalonieri M, Mondini L, Ruaro B. Biomarkers in Systemic Sclerosis: An Overview. Curr Issues Mol Biol 2023; 45:7775-7802. [PMID: 37886934 PMCID: PMC10604992 DOI: 10.3390/cimb45100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease characterized by significant fibrosis of the skin and internal organs, with the main involvement of the lungs, kidneys, heart, esophagus, and intestines. SSc is also characterized by macro- and microvascular damage with reduced peripheral blood perfusion. Several studies have reported more than 240 pathways and numerous dysregulation proteins, giving insight into how the field of biomarkers in SSc is still extremely complex and evolving. Antinuclear antibodies (ANA) are present in more than 90% of SSc patients, and anti-centromere and anti-topoisomerase I antibodies are considered classic biomarkers with precise clinical features. Recent studies have reported that trans-forming growth factor β (TGF-β) plays a central role in the fibrotic process. In addition, interferon regulatory factor 5 (IRF5), interleukin receptor-associated kinase-1 (IRAK-1), connective tissue growth factor (CTGF), transducer and activator of transcription signal 4 (STAT4), pyrin-containing domain 1 (NLRP1), as well as genetic factors, including DRB1 alleles, are implicated in SSc damage. Several interleukins (e.g., IL-1, IL-6, IL-10, IL-17, IL-22, and IL-35) and chemokines (e.g., CCL 2, 5, 23, and CXC 9, 10, 16) are elevated in SSc. While adiponectin and maresin 1 are reduced in patients with SSc, biomarkers are important in research but will be increasingly so in the diagnosis and therapeutic approach to SSc. This review aims to present and highlight the various biomarker molecules, pathways, and receptors involved in the pathology of SSc.
Collapse
Affiliation(s)
- Giuseppe Di Maggio
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| | - Paola Confalonieri
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| | - Francesco Salton
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| | - Liliana Trotta
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| | - Luca Ruggero
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| | - Metka Kodric
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| | - Pietro Geri
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| | - Michael Hughes
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester M6 8HD, UK;
| | - Mattia Bellan
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Center for Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Medicine, Azienda Ospedaliero–Universitaria, Maggiore della Carità, 28100 Novara, Italy
| | - Michele Gilio
- Infectious Disease Unit, San Carlo Hospital, 85100 Potenza, Italy
| | - Selene Lerda
- Graduate School, University of Milan, 20149 Milano, Italy
| | - Elisa Baratella
- Department of Radiology, Cattinara Hospital, University of Trieste, 34149 Trieste, Italy
| | - Marco Confalonieri
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| | - Lucrezia Mondini
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| | - Barbara Ruaro
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| |
Collapse
|
13
|
Ruaro B, Baron M, Rosato E, Martini R, Confalonieri M. Special Issue "Rheumatic Diseases: Pathophysiology, Targeted Therapy, Focus on Vascular and Pulmonary Manifestations 2022". Pharmaceuticals (Basel) 2023; 16:652. [PMID: 37242435 PMCID: PMC10221728 DOI: 10.3390/ph16050652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
This Special Issue, titled "Rheumatic Diseases: Pathophysiology, Targeted Therapy, Focus on Vascular and Pulmonary Manifestations", aims to demonstrate recent and new advances and future trends in the field of rheumatic diseases [...].
Collapse
Affiliation(s)
- Barbara Ruaro
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy
| | - Murray Baron
- Division of Rheumatology, Jewish General Hospital, McGill University, Montreal, QC 3755, Canada
| | - Edoardo Rosato
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Romeo Martini
- Unit of Angiology, AULSS 1 Dolomiti, Ospedale San Martino, 32100 Belluno, Italy
| | - Marco Confalonieri
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy
| |
Collapse
|
14
|
Ruaro B, Tavano S, Confalonieri P, Pozzan R, Hughes M, Braga L, Volpe MC, Ligresti G, Andrisano AG, Lerda S, Geri P, Biolo M, Baratella E, Confalonieri M, Salton F. Transbronchial lung cryobiopsy and pulmonary fibrosis: A never-ending story? Heliyon 2023; 9:e14768. [PMID: 37025914 PMCID: PMC10070648 DOI: 10.1016/j.heliyon.2023.e14768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Background The diagnostic process of pulmonary fibrosis (PF) is often challenging, requires a collaborative effort of several experts, and often requires bioptic material, which can be difficult to obtain, both in terms of quality and technique. The main procedures available to obtain such samples are transbronchial lung cryobiopsy (TBLC) and surgical lung biopsy (SLB). Objective The purpose of this paper is to review the evidence for the role of TBLC in the diagnostic-therapeutic process of PF. Methods A comprehensive review was performed to identify articles to date that addressed the role of TBLC in the diagnostic-therapeutic process of PF using the PubMed® database. Results The reasoned search identified 206 papers, including 21 manuscripts (three reviews, one systematic review, two guidelines, two prospective studies, three retrospective studies, one cross-sectional study, one original article, three editorials, three clinical trials, and two unclassifiable studies), which were included in the final review. Conclusions TBLC is gaining increasing efficacy and improving safety profile; however, there are currently no clear data demonstrating its superiority over SLB. Therefore, the two techniques should be considered with careful rationalization on a case-by-case basis. Further research is needed to further optimize and standardize the procedure and to thoroughly study the histological and molecular characteristics of PF.
Collapse
|
15
|
Alqalyoobi S, Little BB, Oldham JM, Obi ON. The prognostic value of gastroesophageal reflux disorder in interstitial lung disease related hospitalizations. Respir Res 2023; 24:97. [PMID: 36998050 PMCID: PMC10061884 DOI: 10.1186/s12931-023-02407-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Abstract
Background
Gastroesophageal reflux disease (GERD) is a common comorbidity in patients with interstitial lung disease (ILD). We built and validated a model using the national inpatient sample (NIS) database to assess the contributory role of GERD in ILD-related hospitalizations mortality.
Methods
In this retrospective analysis, we extracted ILD-related hospitalizations data between 2007 and 2019 from the NIS database. Univariable logistic regression was used for predictor selection. Data were split into the training and validation cohorts (0.6 and 0.4, respectively). We used decision tree analysis (classification and regression tree, CART) to create a predictive model to explore the role of GERD in ILD-related hospitalizations mortality. Different metrics were used to evaluate our model. A bootstrap-based technique was implemented to balance our training data outcome to improve our model metrics in the validation cohort. We conducted a variance-based sensitivity analysis to evaluate GERD's importance in our model.
Findings
The model had a sensitivity of 73.43%, specificity of 66.15%, precision of 0.27, negative predictive value (NPV) of 93.62%, accuracy of 67.2%, Matthews Correlation Coefficient (MCC) of 0.3, F1 score of 0.4, and area under the curve (AUC) for the receiver operating characteristic (ROC) curve of 0.76. GERD did not predict survival in our cohort. GERD contribution to the model was ranked the eleventh among twenty-nine variables included in this analysis (importance of 0.003, normalized importance of 5%). GERD was the best predictor in ILD-related hospitalizations who didn’t receive mechanical ventilation.
Interpretations
GERD is associated with mild ILD-related hospitalization. Our model-performance measures suggest overall an acceptable discrimination. Our model showed that GERD does not have a prognostic value in ILD-related hospitalization, indicating that GERD per se might not have any impact on mortality in hospitalized ILD patients.
Collapse
|
16
|
Macklin M, Yadav S, Jan R, Reid P. Checkpoint Inhibitor-Associated Scleroderma and Scleroderma Mimics. Pharmaceuticals (Basel) 2023; 16:259. [PMID: 37259404 PMCID: PMC9962184 DOI: 10.3390/ph16020259] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 10/28/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) are the standard of care for various malignancies and have been associated with a wide spectrum of complications that are phenotypically akin to primary autoimmune diseases. While the literature on these toxicities is growing, there is a paucity of data regarding ICI-associated scleroderma which can carry significant morbidity and limit the ability to continue effective ICI therapy. Our review aimed to analyze the current literature on ICI-associated systemic scleroderma (ICI-SSc) and key scleroderma mimics. Cases of ICI-SSc had notable differences from primary SSc, such as fewer vascular features and less seropositivity (such as scleroderma-specific antibodies and antinuclear antibodies). We found that patients with a diagnosis of SSc prior to the start of ICI can also experience flares of pre-existing disease after ICI treatment used for their cancer. Regarding scleroderma mimics, several cases of ICI-eosinophilic fasciitis have also been described with variable clinical presentations and courses. We found no cases of scleroderma mimics: ICI-scleromyxedema or ICI-scleroedema. There is a critical need for multi-institutional efforts to collaborate on developing a patient database and conducting robust, prospective research on ICI-scleroderma. This will ultimately facilitate more effective clinical evaluations and management for ICI-scleroderma.
Collapse
Affiliation(s)
- Michael Macklin
- Section of Rheumatology, Department of Medicine, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sudeep Yadav
- Section of Rheumatology, Department of Medicine, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Reem Jan
- Section of Rheumatology, Department of Medicine, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Pankti Reid
- Section of Rheumatology, Department of Medicine, University of Chicago Medical Center, Chicago, IL 60637, USA
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
17
|
Wang F, Stappenbeck F, Parhami F. Oxy210, a Semi-Synthetic Oxysterol, Inhibits Profibrotic Signaling in Cellular Models of Lung and Kidney Fibrosis. Pharmaceuticals (Basel) 2023; 16:114. [PMID: 36678611 PMCID: PMC9862207 DOI: 10.3390/ph16010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Oxy210, a semi-synthetic oxysterol derivative, displays cell-selective inhibition of Hedgehog (Hh) and transforming growth factor beta (TGF-β) signaling in epithelial cells, fibroblasts, and macrophages as well as antifibrotic and anti-inflammatory efficacy in models of liver fibrosis. In the present report, we examine the effects of Oxy210 in cellular models of lung and kidney fibrosis, such as human lung fibroblast cell lines IMR-90, derived from healthy lung tissue, and LL97A, derived from an idiopathic pulmonary fibrosis (IPF) patient. In addition, we examine the effects of Oxy210 in primary human renal fibroblasts, pericytes, mesangial cells, and renal tubular epithelial cells, known for their involvement in chronic kidney disease (CKD) and kidney fibrosis. We demonstrate in fibroblasts that the expression of several profibrotic TGF-β target genes, including fibronectin (FN), collagen 1A1 (COL1A1), and connective tissue growth factor (CTGF) are inhibited by Oxy210, both at the basal level and following TGF-β stimulation in a statistically significant manner. The inhibition of COL1A1 gene expression translated directly to significantly reduced COL1A1 protein expression. In human primary small airway epithelial cells (HSAECs) and renal tubular epithelial cells, Oxy210 significantly inhibited TGF-β target gene expression associated with epithelial-mesenchymal transition (EMT). Oxy210 also inhibited the proliferation of fibroblasts, pericytes, and mesangial cells in a dose-dependent and statistically significant manner.
Collapse
Affiliation(s)
| | | | - Farhad Parhami
- MAX BioPharma, Inc., 2870 Colorado Avenue, Santa Monica, CA 90404, USA
| |
Collapse
|
18
|
Pulmonary Fibrosis as a Result of Acute Lung Inflammation: Molecular Mechanisms, Relevant In Vivo Models, Prognostic and Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms232314959. [PMID: 36499287 PMCID: PMC9735580 DOI: 10.3390/ijms232314959] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Pulmonary fibrosis is a chronic progressive lung disease that steadily leads to lung architecture disruption and respiratory failure. The development of pulmonary fibrosis is mostly the result of previous acute lung inflammation, caused by a wide variety of etiological factors, not resolved over time and causing the deposition of fibrotic tissue in the lungs. Despite a long history of study and good coverage of the problem in the scientific literature, the effective therapeutic approaches for pulmonary fibrosis treatment are currently lacking. Thus, the study of the molecular mechanisms underlying the transition from acute lung inflammation to pulmonary fibrosis, and the search for new molecular markers and promising therapeutic targets to prevent pulmonary fibrosis development, remain highly relevant tasks. This review focuses on the etiology, pathogenesis, morphological characteristics and outcomes of acute lung inflammation as a precursor of pulmonary fibrosis; the pathomorphological changes in the lungs during fibrosis development; the known molecular mechanisms and key players of the signaling pathways mediating acute lung inflammation and pulmonary fibrosis, as well as the characteristics of the most common in vivo models of these processes. Moreover, the prognostic markers of acute lung injury severity and pulmonary fibrosis development as well as approved and potential therapeutic approaches suppressing the transition from acute lung inflammation to fibrosis are discussed.
Collapse
|
19
|
Fenbendazole Attenuates Bleomycin-Induced Pulmonary Fibrosis in Mice via Suppression of Fibroblast-to-Myofibroblast Differentiation. Int J Mol Sci 2022; 23:ijms232214088. [PMID: 36430565 PMCID: PMC9693227 DOI: 10.3390/ijms232214088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fatal interstitial lung disease with unknown etiology. Despite substantial progress in understanding the pathogenesis of pulmonary fibrosis and drug development, there is still no cure for this devastating disease. Fenbendazole (FBZ) is a benzimidazole compound that is widely used as an anthelmintic agent and recent studies have expanded the scope of its pharmacological effects and application prospect. This study demonstrated that FBZ treatment blunted bleomycin-induced lung fibrosis in mice. In vitro studies showed that FBZ inhibited the proliferation and migration of human embryo lung fibroblasts. Further studies showed that FBZ significantly inhibited glucose consumption, moderated glycolytic metabolism in fibroblasts, thus activated adenosine monophosphate-activated protein kinase (AMPK), and reduced the activation of the mammalian target of rapamycin (mTOR) pathway, thereby inhibiting transforming growth factor-β (TGF-β1)-induced fibroblast-to-myofibroblast differentiation and collagen synthesis. In summary, our data suggested that FBZ has potential as a novel treatment for pulmonary fibrosis.
Collapse
|
20
|
Yang L, Zhai Z, Zhang J. The Role of Serum 1,25-Dihydroxy Vitamin D3 and PCT in Idiopathic Pulmonary Fibrosis. Int J Gen Med 2022; 15:8081-8092. [PMID: 36389018 PMCID: PMC9653052 DOI: 10.2147/ijgm.s386984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/27/2022] [Indexed: 08/25/2023] Open
Abstract
OBJECTIVE Biomarkers for the acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) are urgently needed to provide better patient management. We aimed to investigate whether serum 1,25(OH)2D3 (1,25-dihydroxy vitamin D3) levels predict AE-IPF and whether they could be a potential prognostic biomarker for IPF. PARTICIPANTS AND METHODS This prospective study included 72 patients with IPF (31 with stable IPF and 41 with AE-IPF). All participants were recruited during hospitalisation at Tianjin Chest Hospital and were followed up for at least 12 months. Demographics, comorbidities, arterial blood gas, and serum biochemical profile, radiological features, and anti-fibrotic therapy were evaluated. Serum concentrations of 1,25(OH)2D3 and transforming growth factor beta1 (TGFβ1) were detected using enzyme-linked immunosorbent assay (ELISA). Risk factors for AE-IPF were identified using multivariate analysis. Prognostic factors were assessed using Kaplan-Meier and Cox regression analyses. RESULTS Baseline values of alveolar-arterial oxygen difference (A-aDO2) (40.85 mmHg vs 29.2 mmHg, p =0.035), white blood cell counts (10.09 ± 4.2×109/L vs 7.46 ± 7.84×109/L, p <0.001), percentage of monocytes (7.36 ± 1.36% vs 6.6 ± 1.2%, p =0.017), C-reactive protein (CRP) (2.1 mg/dL vs 1.12 mg/dL, p =0.015) and procalcitonin (PCT) (36.59% vs 3.23%, p <0.001) were significantly higher in AE-IPF patients than in stable IPF patients. Instead, the mean concentration of serum calcium and 1,25(OH)2D3 at baseline were higher in IPF patients with stable disease than in those with acute exacerbation (2.17 ± 0.13 nmol/L vs 2.09 ± 0.13 nmol/L, p =0.023 and 16.62 pg/mL vs 11.58 pg/mL, p <0.001, respectively). In multivariate analysis, a higher proportion of patients with lower serum 1,25(OH)2D3 levels experienced AE-IPF (OR 0.884, 95% CI 0.791-0.987, p =0.029), and rising serum PCT level (PCT > 0.05 ng/mL) was associated with an increased risk of mortality (HR 3.664, 95% CI 1.010-12.900, p =0.043). CONCLUSION Decreased serum 1,25(OH)2D3 is associated with an increased risk of acute exacerbation for patients with IPF. A high serum PCT level is predictive of worse prognosis in IPF patients. 1,25(OH)2D3 may be a potential biomarker for AE-IPF, while PCT could be a prognostic biomarker for IPF.
Collapse
Affiliation(s)
- Li Yang
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, People’s Republic of China
| | - Zhinan Zhai
- Department of Medical Laboratory Science, Tianjin Chest Hospital, Tianjin, People’s Republic of China
| | - Jinxiang Zhang
- Department of Nutrition, Tianjin Chest Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
21
|
Ruaro B, Matucci Cerinic M, Salton F, Baratella E, Confalonieri M, Hughes M. Editorial: Pulmonary fibrosis: One manifestation, various diseases. Front Pharmacol 2022; 13:1027332. [PMID: 36324683 PMCID: PMC9620474 DOI: 10.3389/fphar.2022.1027332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Barbara Ruaro
- Pulmonology Unit, Department of Medical Surgical and Health Sciences. University Hospital of Cattinara, University of Trieste, Trieste, Italy
| | - Marco Matucci Cerinic
- Unit of Immunology, Rheumatology, Department of Experimental and Clinical Medicine, IRCCS San Raffaele Hospital, University of Florence and Division of Rheumatology AOUC & Scleroderma Unit, Allergy and Rare Diseases (UnIRAR), Milan, Italy
| | - Francesco Salton
- Pulmonology Unit, Department of Medical Surgical and Health Sciences. University Hospital of Cattinara, University of Trieste, Trieste, Italy
| | - Elisa Baratella
- Department of Radiology, Department of Medicine, Surgery and Health Science, University of Trieste, Trieste, Italy
| | - Marco Confalonieri
- Pulmonology Unit, Department of Medical Surgical and Health Sciences. University Hospital of Cattinara, University of Trieste, Trieste, Italy
| | - Michael Hughes
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
22
|
Mesenchyme Stem Cell-Derived Conditioned Medium as a Potential Therapeutic Tool in Idiopathic Pulmonary Fibrosis. Biomedicines 2022; 10:biomedicines10092298. [PMID: 36140399 PMCID: PMC9496127 DOI: 10.3390/biomedicines10092298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Mesenchyme Stem Cells (MSCs) are the most used types of stem cells in regenerative medicine. Regenerative medicine is a rapidly emerging medicine section that creates new methods to regrow, restore, and replace diseased and damaged tissues, organs, and cells. Scholars have shown a positive correlation between MSCs-based therapies and successful treatment of diseases like cardiac ischemia, cartilage problems, bone diseases, diabetes, and even neurological disorders. Although MSCs have several varying features that make them unique, their immuno-regulatory effects in tissue repair emerge from their secretion of paracrine growth factors, exosomes, and cytokines. These cells secrete a secretome, which has regenerative and reparative properties that lead to injury amelioration, immune modulation, or fibrosis reduction. Recent studies have shown that the administration MCSs derived conditioned medium (MSCs-CM) in acute doses in humans is safe and well-tolerated. Studies from animal models and human clinical trials have also shown that they are efficacious tools in regenerative medicine. In this review, we will explore the therapeutic potential of MSCs-CM in pulmonary fibrosis, with further insight into the treatment of Idiopathic Pulmonary Fibrosis (IPF).
Collapse
|