1
|
Ghaffarzadegan R, Karimi M, Hedayatjoo B, Behnoud H, Jasemi E, Mohammadi M, Roustaei S, Razmi A, Vaseghi S. The Effect of Psilocybe cubensis on Spatial Memory and BDNF Expression in Male Rats Exposed to Chronic Unpredictable Mild Stress. J Psychoactive Drugs 2024:1-13. [PMID: 39535167 DOI: 10.1080/02791072.2024.2428241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/31/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Psilocybin-containing mushrooms, commonly known as magic mushrooms, drastically affect mental processing, cognitive functioning, and the mood state. In the present study, we investigated the effect of the Psilocybe cubensis extract on spatial memory and the brain-derived neurotrophic factor (BDNF) in rats exposed to chronic unpredictable mild stress (CUMS). The duration of CUMS was 4 weeks. Spatial learning and memory were measured using the Morris water maze apparatus. The Psilocybe cubensis extract was intraperitoneally injected (20 mg/kg) in different time periods: 5 min before training, 24 h before training, 48 h before training, 5 min after training, and 5 min before the probe test. Results showed that CUMS impaired spatial learning and memory, and decreased BDNF in the hippocampus. Psilocybe cubensis (24 and 48 h before training) restored spatial learning, while (48 h before training) restored spatial memory impairment in CUMS rats. Psilocybe cubensis (24 and 48 h before training) increased BDNF in CUMS rats. Psilocybe cubensis administrations (expect 48 h before training) impaired spatial learning and memory and decreased BDNF levels in controls. In conclusion, we suggested that Psilocybe cubensis may be beneficial for the improvement of memory deficits induced by CUMS, while the time of injection seems to be an important factor in its final effect.
Collapse
Affiliation(s)
- Reza Ghaffarzadegan
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | | | | | - Hamidreza Behnoud
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Eghbal Jasemi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Mahsa Mohammadi
- Department of Physiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Samira Roustaei
- Molecular Diagnosis Section, Laboratory of Takhte Jamshid Hospital, Karaj, Iran
| | - Ali Razmi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| |
Collapse
|
2
|
Bobula B, Bąk J, Kania A, Siwiec M, Kiełbiński M, Tokarski K, Pałucha-Poniewiera A, Hess G. Maternal fluoxetine impairs synaptic transmission and plasticity in the medial prefrontal cortex and alters the structure and function of dorsal raphe nucleus neurons in offspring mice. Pharmacol Biochem Behav 2024; 244:173849. [PMID: 39142357 DOI: 10.1016/j.pbb.2024.173849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Selective serotonin (5-HT) reuptake inhibitors (SSRIs) are commonly prescribed to women during pregnancy and breastfeeding despite posing a risk of adverse cognitive outcomes and affective disorders for the child. The consequences of SSRI-induced excess of 5-HT during development for the brain neuromodulatory 5-HT system remain largely unexplored. In this study, an SSRI - fluoxetine (FLX) - was administered to C57BL/6 J mouse dams during pregnancy and lactation to assess its effects on the offspring. We found that maternal FLX decreased field potentials, impaired long-term potentiation, facilitated long-term depression and tended to increase the density of 5-HTergic fibers in the medial prefrontal cortex (mPFC) of female but not male adolescent offspring. These effects were accompanied by deteriorated performance in the temporal order memory task and reduced sucrose preference with no change in marble burying behavior in FLX-exposed female offspring. We also found that maternal FLX reduced the axodendritic tree complexity of 5-HT dorsal raphe nucleus (DRN) neurons in female but not male offspring, with no changes in the excitability of DRN neurons of either sex. While no effects of maternal FLX on inhibitory postsynaptic currents (sIPSCs) in DRN neurons were found, we observed a significant influence of FLX exposure on kinetics of spontaneous excitatory postsynaptic currents (sEPSCs) in DRN neurons. Finally, we report that no changes in field potentials and synaptic plasticity were evident in the mPFC of the offspring after maternal exposure during pregnancy and lactation to a new antidepressant, vortioxetine. These findings show that in contrast to the mPFC, long-term consequences of maternal FLX exposure on the structure and function of DRN 5-HT neurons are mild and suggest a sex-dependent, distinct sensitivity of cortical and brainstem neurons to FLX exposure in early life. Vortioxetine appears to exert fewer side effects with regards to the mPFC when compared with FLX.
Collapse
Affiliation(s)
- Bartosz Bobula
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Joanna Bąk
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Agnieszka Kania
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Marcin Siwiec
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Michał Kiełbiński
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Krzysztof Tokarski
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Agnieszka Pałucha-Poniewiera
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Grzegorz Hess
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| |
Collapse
|
3
|
Kawczak P, Feszak I, Bączek T. Ketamine, Esketamine, and Arketamine: Their Mechanisms of Action and Applications in the Treatment of Depression and Alleviation of Depressive Symptoms. Biomedicines 2024; 12:2283. [PMID: 39457596 PMCID: PMC11505277 DOI: 10.3390/biomedicines12102283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Research over the past years has compared the enantiomers (S)-ketamine (esketamine) and (R)-ketamine (arketamine) of the previously known racemic mixture called ketamine (R/S-ketamine). Esketamine has been found to be more potent, offering three times stronger analgesic effects and 1.5 times greater anesthetic efficacy than arketamine. It provides smoother anesthesia with fewer side effects and is widely used in clinical settings due to its neuroprotective, bronchodilatory, and antiepileptic properties. Approved by the FDA and EMA in 2019, esketamine is currently used alongside SSRIs or SNRIs for treatment-resistant depression (TRD). On the other hand, arketamine has shown potential for treating neurological disorders such as Alzheimer's, Parkinson's, and multiple sclerosis, offering possible antidepressant effects and anti-inflammatory benefits. While esketamine is already in clinical use, arketamine's future depends on further research to address its safety, efficacy, and optimal dosing. Both enantiomers hold significant clinical value, with esketamine excelling in anesthesia, and arketamine showing promise in neurological and psychiatric treatments.
Collapse
Affiliation(s)
- Piotr Kawczak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
| | - Igor Feszak
- Institute of Health Sciences, Pomeranian University in Słupsk, 76-200 Słupsk, Poland;
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
- Department of Nursing and Medical Rescue, Institute of Health Sciences, Pomeranian University in Słupsk, 76-200 Słupsk, Poland
| |
Collapse
|
4
|
De Jager JE, Boesjes R, Roelandt GHJ, Koliaki I, Sommer IEC, Schoevers RA, Nuninga JO. Shared effects of electroconvulsive shocks and ketamine on neuroplasticity: A systematic review of animal models of depression. Neurosci Biobehav Rev 2024; 164:105796. [PMID: 38981574 DOI: 10.1016/j.neubiorev.2024.105796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Electroconvulsive shocks (ECS) and ketamine are antidepressant treatments with a relatively fast onset of therapeutic effects compared to conventional medication and psychotherapy. While the exact neurobiological mechanisms underlying the antidepressant response of ECS and ketamine are unknown, both interventions are associated with neuroplasticity. Restoration of neuroplasticity may be a shared mechanism underlying the antidepressant efficacy of these interventions. In this systematic review, literature of animal models of depression is summarized to examine the possible role of neuroplasticity in ECS and ketamine on a molecular, neuronal, synaptic and functional level, and specifically to what extent these mechanisms are shared between both interventions. The results highlight that hippocampal neurogenesis and brain-derived neurotrophic factor (BDNF) levels are consistently increased after ECS and ketamine. Moreover, both interventions positively affect glutamatergic neurotransmission, astrocyte and neuronal morphology, synaptic density, vasculature and functional plasticity. However, a small number of studies investigated these processes after ECS. Understanding the shared fundamental mechanisms of fast-acting antidepressants can contribute to the development of novel therapeutic approaches for patients with severe depression.
Collapse
Affiliation(s)
- Jesca E De Jager
- Department of Biomedical Sciences, Brain Center, University Medical Center, Groningen, the Netherlands.
| | - Rutger Boesjes
- University Centre of Psychiatry, University Medical Center Groningen, the Netherlands
| | - Gijs H J Roelandt
- University Centre of Psychiatry, University Medical Center Groningen, the Netherlands
| | - Ilektra Koliaki
- University Centre of Psychiatry, University Medical Center Groningen, the Netherlands
| | - Iris E C Sommer
- Department of Biomedical Sciences, Brain Center, University Medical Center, Groningen, the Netherlands
| | - Robert A Schoevers
- University Centre of Psychiatry, University Medical Center Groningen, the Netherlands
| | - Jasper O Nuninga
- Department of Biomedical Sciences, Brain Center, University Medical Center, Groningen, the Netherlands; University Medical Centre Utrecht, Department of Psychiatry, the Netherlands
| |
Collapse
|
5
|
Zhang S, Pu Y, Liu J, Li L, An C, Wu Y, Zhang W, Zhang W, Qu S, Yan W. Exploring the multifaceted potential of (R)-ketamine beyond antidepressant applications. Front Pharmacol 2024; 15:1337749. [PMID: 38666026 PMCID: PMC11043571 DOI: 10.3389/fphar.2024.1337749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
(R, S)- and (S)-ketamine have made significant progress in the treatment of treatment-resistant depression (TRD) and have become a research focus in recent years. However, they both have risks of psychomimetic effects, dissociative effects, and abuse liability, which limit their clinical use. Recent preclinical and clinical studies have shown that (R)-ketamine has a more efficient and lasting antidepressant effect with fewer side effects compared to (R, S)- and (S)-ketamine. However, a recent small-sample randomized controlled trial found that although (R)-ketamine has a lower incidence of adverse reactions in adult TRD treatment, its antidepressant efficacy is not superior to the placebo group, indicating its antidepressant advantage still needs further verification and clarification. Moreover, an increasing body of research suggests that (R)-ketamine might also have significant applications in the prevention and treatment of medical fields or diseases such as cognitive disorders, perioperative anesthesia, ischemic stroke, Parkinson's disease, multiple sclerosis, osteoporosis, substance use disorders, inflammatory diseases, COVID-19, and organophosphate poisoning. This article briefly reviews the mechanism of action and research on antidepressants related to (R)-ketamine, fully revealing its application potential and development prospects, and providing some references and assistance for subsequent expanded research.
Collapse
Affiliation(s)
- Senbing Zhang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
- Department of Anesthesiology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yanzhu Pu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jianning Liu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Lewen Li
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chibing An
- Department of Anesthesiology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yumin Wu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wenjie Zhang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wenxia Zhang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Song Qu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wenjun Yan
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Brown KA, Gould TD. Targeting metaplasticity mechanisms to promote sustained antidepressant actions. Mol Psychiatry 2024; 29:1114-1127. [PMID: 38177353 PMCID: PMC11176041 DOI: 10.1038/s41380-023-02397-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The discovery that subanesthetic doses of (R, S)-ketamine (ketamine) and (S)-ketamine (esketamine) rapidly induce antidepressant effects and promote sustained actions following drug clearance in depressed patients who are treatment-resistant to other therapies has resulted in a paradigm shift in the conceptualization of how rapidly and effectively depression can be treated. Consequently, the mechanism(s) that next generation antidepressants may engage to improve pathophysiology and resultant symptomology are being reconceptualized. Impaired excitatory glutamatergic synapses in mood-regulating circuits are likely a substantial contributor to the pathophysiology of depression. Metaplasticity is the process of regulating future capacity for plasticity by priming neurons with a stimulation that alters later neuronal plasticity responses. Accordingly, the development of treatment modalities that specifically modulate the duration, direction, or magnitude of glutamatergic synaptic plasticity events such as long-term potentiation (LTP), defined here as metaplastogens, may be an effective approach to reverse the pathophysiology underlying depression and improve depression symptoms. We review evidence that the initiating mechanisms of pharmacologically diverse rapid-acting antidepressants (i.e., ketamine mimetics) converge on consistent downstream molecular mediators that facilitate the expression/maintenance of increased synaptic strength and resultant persisting antidepressant effects. Specifically, while the initiating mechanisms of these therapies may differ (e.g., cell type-specificity, N-methyl-D-aspartate receptor (NMDAR) subtype-selective inhibition vs activation, metabotropic glutamate receptor 2/3 antagonism, AMPA receptor potentiation, 5-HT receptor-activating psychedelics, etc.), the sustained therapeutic mechanisms of putative rapid-acting antidepressants will be mediated, in part, by metaplastic effects that converge on consistent molecular mediators to enhance excitatory neurotransmission and altered capacity for synaptic plasticity. We conclude that the convergence of these therapeutic mechanisms provides the opportunity for metaplasticity processes to be harnessed as a druggable plasticity mechanism by next-generation therapeutics. Further, targeting metaplastic mechanisms presents therapeutic advantages including decreased dosing frequency and associated diminished adverse responses by eliminating the requirement for the drug to be continuously present.
Collapse
Affiliation(s)
- Kyle A Brown
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA.
| |
Collapse
|