1
|
Zhang M, Feng C, Zhang B, Yin Y, Chen J, Liu H, Farag MA, Mamadalieva NZ, Li N, Sun J, Sun S, Liu C. In vitro and in vivo immune-enhancing effects of punicic acid and the action mechanisms as revealed via microbiome and lipid profiling. Food Funct 2025. [PMID: 40159912 DOI: 10.1039/d4fo05023a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Punicic acid (PA) is a chief component of pomegranate seed oil with several health benefits. In this study, the in vitro immunomodulatory activity of PA was assessed using RAW264.7 cells, revealing that PA activated the macrophages, facilitated the concentration of immune-related cytokines and enzymes, and regulated the immune-related NF-κB and MAPK signaling pathways. Further, the in vivo immune-enhancing effect of PA was evaluated with the cyclophosphamide (CTX)-induced immune-compromised mouse model with 16S rDNA amplicon sequencing and relative quantification of lipidome. Results indicated that high doses of PA (200 mg kg-1) remarkably restored CTX-induced immune injury by enhancing the innate and adaptive immunity to stimulate the secretion of immune-related factors. In addition, PA improved gut microbiota dysbiosis and ameliorated lipid metabolism disorders. Our research provides a theoretical basis for the exploitation of PA as a functional component with immune-enhancing effects and adds to the potential health uses of pomegranate seed oil.
Collapse
Affiliation(s)
- Mengqi Zhang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China.
| | - Caiyun Feng
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Bo Zhang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China
| | - Yanlei Yin
- Shandong Institute of Pomology, Tai'an, 271000, China
| | - Jinlong Chen
- Work Station of Forest Fruit Industry in Kashi, Kashi, 844000, PR China
| | - Haoran Liu
- JiMei One Health Industry (Shandong) Co., Ltd, Zaozhuang, 277300, PR China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Nilufar Z Mamadalieva
- Institute of the Chemistry of Plant Substances of the Academy Sciences of Uzbekistan, Tashkent, 100170, Uzbekistan
| | - Ningyang Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, PR China
| | - Jinyue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China.
| | - Shutao Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China.
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China.
- Shandong Aojing Biotechnology Co., Ltd, Jining, 273500, PR China
| |
Collapse
|
2
|
Shanaida M, Mykhailenko O, Lysiuk R, Hudz N, Balwierz R, Shulhai A, Shapovalova N, Shanaida V, Bjørklund G. Carotenoids for Antiaging: Nutraceutical, Pharmaceutical, and Cosmeceutical Applications. Pharmaceuticals (Basel) 2025; 18:403. [PMID: 40143179 PMCID: PMC11945224 DOI: 10.3390/ph18030403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Carotenoids are bioactive tetraterpenoid C40 pigments that are actively synthesized by plants, bacteria, and fungi. Compounds such as α-carotene, β-carotene, lycopene, lutein, astaxanthin, β-cryptoxanthin, fucoxanthin, and zeaxanthin have attracted increasing attention for their antiaging properties. They exhibit antioxidant, neuroprotective, and anti-inflammatory properties, contributing to the prevention and treatment of age-related diseases. Objectives: The aim of this study was to comprehensively analyze the pharmacological potential and biological mechanisms of carotenoids associated with age-related disorders and to evaluate their application in nutraceuticals, pharmaceuticals, and cosmeceuticals. Methods: A systematic review of studies published over the past two decades was conducted using the databases PubMed, Scopus, and Web of Science. The selection criteria included clinical, in silico, in vivo, and in vitro studies investigating the pharmacological and therapeutic effects of carotenoids. Results: Carotenoids demonstrate a variety of health benefits, including the prevention of age-related macular degeneration, cancer, cognitive decline, metabolic disorders, and skin aging. Their role in nutraceuticals is well supported by their ability to modulate oxidative stress and inflammatory pathways. In pharmaceuticals, carotenoids show promising results in formulations targeting neurodegenerative diseases and metabolic disorders. In cosmeceuticals, they improve skin health by protecting it against UV radiation and oxidative damage. However, bioavailability, optimal dosages, toxicity, and interactions with other bioactive compounds remain critical factors to maximize therapeutic efficacy and still require careful evaluation by scientists. Conclusions: Carotenoids are promising bioactive compounds for antiaging interventions with potential applications in a variety of fields. Further research is needed to optimize their formulas, improve bioavailability, and confirm their long-term safety and effectiveness, especially in the aging population.
Collapse
Affiliation(s)
- Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
- CONEM Ukraine Natural Drugs Research Group, 46001 Ternopil, Ukraine;
| | - Olha Mykhailenko
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 61168 Kharkiv, Ukraine;
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (R.L.); (N.S.)
- CONEM Ukraine Life Science Research Group, 79010 Lviv, Ukraine
| | - Nataliia Hudz
- Department of Drug Technology and Biopharmacy, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
| | - Radosław Balwierz
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
| | - Arkadii Shulhai
- Department of Public Health and Healthcare Management, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Nataliya Shapovalova
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (R.L.); (N.S.)
| | - Volodymyr Shanaida
- CONEM Ukraine Natural Drugs Research Group, 46001 Ternopil, Ukraine;
- Design of Machine Tools, Instruments and Machines Department, Ternopil Ivan Puluj National Technical University, 46001 Ternopil, Ukraine
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, 8610 Mo i Rana, Norway
| |
Collapse
|
3
|
Deng Y, Shi B, Qi Y, Luo Z, Cui C, Chen S, Zhou X, Zhao Z, Zhang X, Hu J. Changes and Correlation Between Hormones, Immunoglobulins, and Minerals in Blood Serum and Hair of Tianzhu White Yaks of Different Ages and Gender. Animals (Basel) 2025; 15:682. [PMID: 40075965 PMCID: PMC11899661 DOI: 10.3390/ani15050682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
(1) Background: Hair growth can function as an indicator of an animal's health and nutritional status, furnishing a valuable means for early diagnosis and timely modifications to management practices, and is influenced by hormones, the immune system, and the levels of minerals within the animal's body. (2) Methods: In this study, a total of 81 yaks were selected and divided into three groups according to their ages (1-2 years, 3-4 years, 5-6 years), and the concentrations of melatonin, dihydrotestosterone, IgA, IgG, and IgM in their blood serum and the levels of Ca, Mg, Zn, Fe, and P in both their blood serum and hair were detected. (3) Results: The levels of melatonin and dihydrotestosterone in yaks aged 1-2 years were significantly higher than those of other age groups (p < 0.001). In addition, the concentration of melatonin in male yaks was markedly greater than that in female yaks (p < 0.05). When it came to immunoglobulins, the IgA level in 1-2-year-old yaks was strikingly higher than those in yaks aged 3-4 years and 5-6 years (p < 0.05). In terms of mineral elements, the concentrations of calcium, magnesium, zinc, and iron in the blood serum of 1-2-year-old and 5-6-year-old yaks were significantly elevated compared to those in 3-4-year-old yaks. However, there was no notable difference between the 1-2-year-old and 5-6-year-old groups. The correlation analysis showed that there was a significant correlation between DHT and the levels of melatonin and IgA in yaks. Additionally, a significant correlation was observed between IgA and IgG, as well as between IgA and the levels of Fe, Mg, and Ca. It is likely that they jointly regulate the hair growth and immune processes of yaks. (4) Conclusions: There are positive correlations among melatonin, dihydrotestosterone, and IgA in the blood serum and the content of Fe and Mg in the hair to varying degrees, implying these indicators may jointly regulate yak hair growth and immune status. These research findings provide data support for applied research into evaluating the overall health status of yaks through the growth status of hair or by measuring the mineral content in hair in a non-invasive way.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaolan Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.D.); (B.S.); (Y.Q.); (Z.L.); (C.C.); (S.C.); (X.Z.); (Z.Z.)
| | - Jiang Hu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.D.); (B.S.); (Y.Q.); (Z.L.); (C.C.); (S.C.); (X.Z.); (Z.Z.)
| |
Collapse
|
4
|
Kim S, Kim I, Park S, Seo J. The Immune-Enhancing Effects of a Lactobacillus paracasei L-30 Extract Through the NF-κB and MAPK Pathways in RAW264.7. Curr Issues Mol Biol 2025; 47:95. [PMID: 39996816 PMCID: PMC11854597 DOI: 10.3390/cimb47020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
Immune enhancement is an important factor that not only helps prevent infections but also affects overall health. This study aims to evaluate the immunostimulatory effects of a novel Lactobacillus strain, Lactobacillus paracasei L-30, and to elucidate its underlying mechanisms. The extract obtained from Lactobacillus paracasei L-30 significantly increased phagocytosis and the production of NO and ROS in RAW264.7 macrophages. The protein and mRNA expression levels of COX-2 and iNOS which are immune regulators were upregulated by the L-30 extract. The levels of cytokines and chemokines, such as G-CSF, IL-6, MIP-1α, MIP-1γ, RANTES, sTNF RI, and sTNF RII, were increased by the treatment with the L-30 extract. In addition, the L-30 extract degraded IκB-α and induced the phosphorylation of NF-κB. Furthermore, the MAPK signaling pathways ERK, JNK, and p38 were activated by the L-30 extract. The production of iNOS, COX-2, and NO was inhibited by MAPK pathway inhibitors. Therefore, our data suggest that the Lactobacillus paracasei L-30 extract has the potential to be developed as a healthy functional food that can enhance immune responses by activating macrophages.
Collapse
Affiliation(s)
| | | | - Sangkyu Park
- Biomedical Research Institute, NeoRegen Biotech Co., Ltd., Suwon 16614, Republic of Korea; (S.K.); (I.K.)
| | - Jeongmin Seo
- Biomedical Research Institute, NeoRegen Biotech Co., Ltd., Suwon 16614, Republic of Korea; (S.K.); (I.K.)
| |
Collapse
|
5
|
Napiórkowska-Baran K, Treichel P, Dardzińska A, Majcherczak A, Pilichowicz A, Szota M, Szymczak B, Alska E, Przybyszewska J, Bartuzi Z. Immunomodulatory Effects of Selected Non-Nutritive Bioactive Compounds and Their Role in Optimal Nutrition. Curr Issues Mol Biol 2025; 47:89. [PMID: 39996810 PMCID: PMC11854453 DOI: 10.3390/cimb47020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
The contemporary approach to nutrition increasingly considers the role of non-nutritive bioactive compounds in modulating the immune system and maintaining health. This article provides up-to-date insight into the immunomodulatory effects of selected bioactive compounds, including micro- and macronutrients, vitamins, as well as other health-promoting substances, such as omega-3 fatty acids, probiotics, prebiotics, postbiotics (including butyric acid and sodium butyrate), coenzyme Q10, lipoic acid, and plant-derived components such as phenolic acids, flavonoids, coumarins, alkaloids, polyacetylenes, saponins, carotenoids, and terpenoids. Micro- and macronutrients, such as zinc, selenium, magnesium, and iron, play a pivotal role in regulating the immune response and protecting against oxidative stress. Vitamins, especially vitamins C, D, E, and B, are vital for the optimal functioning of the immune system as they facilitate the production of cytokines, the differentiation of immunological cells, and the neutralization of free radicals, among other functions. Omega-3 fatty acids exhibit strong anti-inflammatory effects and enhance immune cell function. Probiotics, prebiotics, and postbiotics modulate the intestinal microbiota, thereby promoting the integrity of the intestinal barrier and communication between the microbiota and the immune system. Coenzyme Q10, renowned for its antioxidant attributes, participates in the protection of cells from oxidative stress and promotes energy processes essential for immune function. Sodium butyrate and lipoic acid exhibit anti-inflammatory effects and facilitate the regeneration of the intestinal epithelium, which is crucial for the maintenance of immune homeostasis. This article emphasizes the necessity of an integrative approach to optimal nutrition that considers not only nutritional but also non-nutritional bioactive compounds to provide adequate support for immune function. Without them, the immune system will never function properly, because it has been adapted to this in the course of evolution. The data presented in this article may serve as a foundation for further research into the potential applications of bioactive components in the prevention and treatment of diseases associated with immune dysfunction.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (M.S.); (E.A.); (Z.B.)
| | - Paweł Treichel
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Anita Dardzińska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Agata Majcherczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Anastazja Pilichowicz
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Maciej Szota
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (M.S.); (E.A.); (Z.B.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Ewa Alska
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (M.S.); (E.A.); (Z.B.)
| | - Justyna Przybyszewska
- Department of Nutrition and Dietetics, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland;
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (M.S.); (E.A.); (Z.B.)
| |
Collapse
|
6
|
Park SY, Truong VL, Jeon SG, Choe SY, Rarison RHG, Yoon BH, Park JW, Jeong HJ, Jeong WS. Anti-Inflammatory and Prebiotic Potential of Ethanol Extracts and Mucilage Polysaccharides from Korean Yams ( Dioscorea polystachya and Dioscorea bulbifera). Foods 2025; 14:173. [PMID: 39856842 PMCID: PMC11764955 DOI: 10.3390/foods14020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Korean yams are abundant in bioactive compounds with significant health-promoting properties. This study evaluated the anti-inflammatory potential of ethanol and water extracts from Dioscorea polystachya and Dioscorea bulbifera in RAW 264.7 macrophage cells. Among the extracts, the 95% ethanol extract exhibited the most potent inhibition of reactive oxygen species (ROS) and nitric oxide (NO) production, warranting further exploration of its mechanisms of action. Further analysis revealed that the ethanol extract modulated key inflammatory signaling pathways, including MAPK and NF-κB, contributing to its anti-inflammatory activity. Additionally, mucilage polysaccharides, a key bioactive component of Korean yams, were extracted and characterized for their structural and functional properties. These polysaccharides demonstrated immune-enhancing effects by reducing ROS and NO production while increasing phagocytic activity in the RAW 264.7 cells. Their prebiotic potential was also assessed through microbial growth assays, which showed an enhanced proliferation of beneficial bacteria such as Lactobacillus and Bifidobacterium. Furthermore, the adhesion assays using Caco-2 intestinal epithelial cells revealed that these polysaccharides promoted probiotic adhesion while inhibiting the adhesion of pathogenic bacteria. These findings highlight the bioactive potential of ethanol extracts and mucilage polysaccharides from Korean yams, emphasizing their promising applications as anti-inflammatory, immune-modulating, and prebiotic agents for functional food and nutraceutical development.
Collapse
Affiliation(s)
- So-Yoon Park
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (S.-Y.P.); (V.-L.T.); (R.H.G.R.); (B.-H.Y.); (J.-W.P.); (H.-J.J.)
| | - Van-Long Truong
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (S.-Y.P.); (V.-L.T.); (R.H.G.R.); (B.-H.Y.); (J.-W.P.); (H.-J.J.)
- Food and Bio-Industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Su-Gyeong Jeon
- Institute for Bioresources Research, Gyeongsangbuk-do Agricultural Research and Extension Services, Andong 36614, Republic of Korea; (S.-G.J.); (S.-Y.C.)
| | - So-Young Choe
- Institute for Bioresources Research, Gyeongsangbuk-do Agricultural Research and Extension Services, Andong 36614, Republic of Korea; (S.-G.J.); (S.-Y.C.)
| | - Razanamanana H. G. Rarison
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (S.-Y.P.); (V.-L.T.); (R.H.G.R.); (B.-H.Y.); (J.-W.P.); (H.-J.J.)
| | - Byoung-Hoon Yoon
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (S.-Y.P.); (V.-L.T.); (R.H.G.R.); (B.-H.Y.); (J.-W.P.); (H.-J.J.)
| | - Ji-Won Park
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (S.-Y.P.); (V.-L.T.); (R.H.G.R.); (B.-H.Y.); (J.-W.P.); (H.-J.J.)
| | - Hye-Jeong Jeong
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (S.-Y.P.); (V.-L.T.); (R.H.G.R.); (B.-H.Y.); (J.-W.P.); (H.-J.J.)
| | - Woo-Sik Jeong
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (S.-Y.P.); (V.-L.T.); (R.H.G.R.); (B.-H.Y.); (J.-W.P.); (H.-J.J.)
- Food and Bio-Industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
7
|
Yang HJ, Kwon EB, Kim YS, Choi JG, Li W, Na M. Antiviral-effect of nitrogen-containing compounds isolated from Sarcodon imbricatus on influenza A virus through regulation of ZBP-1 mediated necroptosis. Biomed Pharmacother 2025; 182:117732. [PMID: 39671721 DOI: 10.1016/j.biopha.2024.117732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024] Open
Abstract
This study focuses on the elucidation of the structure and antiviral properties of six nitrogen-containing compounds including amino acid derivates (1 and 2) and heterocyclic compounds (3-6) isolated from the fruiting bodies of Sarcodon imbricatus, particularly Compound 2, an (S)-2-(hydroxyimino)-3-methylpentanoic acid ethyl ester. Their antiviral effects were tested against influenza A virus (IAV) in A549 cells. Particularly, Compound 2 exhibited significant antiviral activity in post-treatment assays, reducing viral protein expression and inhibiting viral replication with an IC50 of 14.9 μmol/L. Additionally, it demonstrated anti-inflammatory effects by reducing levels of cytokines such as TNF-α, IL-6 and IL-1β as well as the oxidative stress induced by IAV infection, while inhibiting necroptosis, a form of programmed cell death associated with inflammation. Thus, our findings demonstrate the antiviral and anti-inflammatory properties of Compound 2, making it a promising candidate for further research as an anti-influenza agent.
Collapse
Affiliation(s)
- Hye Jin Yang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Eun-Bin Kwon
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Young Soo Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Jang-Gi Choi
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea.
| | - Wei Li
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea.
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
8
|
Wadhwa K, Kapoor N, Kaur H, Abu-Seer EA, Tariq M, Siddiqui S, Yadav VK, Niazi P, Kumar P, Alghamdi S. A Comprehensive Review of the Diversity of Fungal Secondary Metabolites and Their Emerging Applications in Healthcare and Environment. MYCOBIOLOGY 2024; 52:335-387. [PMID: 39845176 PMCID: PMC11749308 DOI: 10.1080/12298093.2024.2416736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 01/24/2025]
Abstract
Fungi and their natural products, like secondary metabolites, have gained a huge demand in the last decade due to their increasing applications in healthcare, environmental cleanup, and biotechnology-based industries. The fungi produce these secondary metabolites (SMs) during the different phases of their growth, which are categorized into terpenoids, alkaloids, polyketides, and non-ribosomal peptides. These SMs exhibit significant biological activity, which contributes to the formulation of novel pharmaceuticals, biopesticides, and environmental bioremediation agents. Nowadays, these fungal-derived SMs are widely used in food and beverages, for fermentation, preservatives, protein sources, and in dairy industries. In healthcare, it is being used as an antimicrobial, anticancer, anti-inflammatory, and immunosuppressive drug. The usage of modern tools of biotechnology can achieve an increase in demand for these SMs and large-scale production. The present review comprehensively analyses the diversity of fungal SMs along with their emerging applications in healthcare, agriculture, environmental sustainability, and nutraceuticals. Here, the authors have reviewed the recent advancements in genetic engineering, metabolic pathway manipulation, and synthetic biology to improve the production and yield of these SMs. Advancement in fermentation techniques, bioprocessing, and co-cultivation approaches for large-scale production of SMs. Investigators further highlighted the importance of omics technologies in understanding the regulation and biosynthesis of SMs, which offers an understanding of novel applications in drug discovery and sustainable agriculture. Finally, the authors have addressed the potential for genetic manipulation and biotechnological innovations for further exploitation of fungal SMs for commercial and environmental benefits.
Collapse
Affiliation(s)
- Khushbu Wadhwa
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Neha Kapoor
- Department of Chemistry, Hindu College, University of Delhi, Delhi, India
| | - Hardeep Kaur
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Eman A. Abu-Seer
- Department of Epidemiology and Medical Statistics, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Mohd. Tariq
- Department of Life Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Sazada Siddiqui
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Virendra Kumar Yadav
- Marwadi University Research Center, Department of Microbiology, Faculty of Sciences, Marwadi University, Rajkot, Gujarat, India
| | - Parwiz Niazi
- Department of Biology, Faculty of Education, Kandahar University, Kandahar, Afghanistan
- Department of Plant Protection, Faculty of Agriculture, EGE University, İzmir, Turkey
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
9
|
Vlasheva M, Katsarova M, Kandilarov I, Zlatanova-Tenisheva H, Gardjeva P, Denev P, Sadakova N, Filipov V, Kostadinov I, Dimitrova S. Echinacea purpurea and Onopordum acanthium Combined Extracts Cause Immunomodulatory Effects in Lipopolysaccharide-Challenged Rats. PLANTS (BASEL, SWITZERLAND) 2024; 13:3397. [PMID: 39683190 DOI: 10.3390/plants13233397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Echinacea purpurea and Onopordum acanthium, which belong to the Asteraceae family, are widely used plants in traditional medicine. Their antioxidant, anti-inflammatory, antiviral, antibacterial, and antitumor effects are well known. However, there are no data on the effects of their combination. The aim of the present study was to combine E. purpurea with O. acanthium to study the in vivo immunomodulatory effect of two combinations and to compare it with that of single plants. Their total polyphenolic and flavonoid content and the amounts of individual compounds characteristic of both species were determined. The influence of the obtained extracts on the serum concentrations of cytokines IFN-γ, TNF-α, and IL-10 in experimental animals with lipopolysaccharide-induced systemic inflammatory response was investigated. This research found that a combination of E. purpurea/O. acanthium in the ratio 1:1 reduced the proinflammatory cytokines TNF-α (244.82 pg/mL) and IFN-γ (1327.92 pg/mL) compared to the LPS-control, respectively, (574.17 pg/mL) and (3354.00 pg/mL), and the combination E. purpurea/O. acanthium in the ratio of 3:1 significantly increased the levels of the anti-inflammatory cytokine IL-10 (1313.95 pg/mL) compared to the LPS-control (760.09 pg/mL). In conclusion, our results could be a basis for future biomedical research on creating phytopreparations with an immunomodulatory effect.
Collapse
Affiliation(s)
- Maria Vlasheva
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd., 4002 Plovdiv, Bulgaria
| | - Mariana Katsarova
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd., 4002 Plovdiv, Bulgaria
| | - Ilin Kandilarov
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Medical University of Plovdiv, 15A Vassil Aprilov Blvd., 4002 Plovdiv, Bulgaria
| | - Hristina Zlatanova-Tenisheva
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Medical University of Plovdiv, 15A Vassil Aprilov Blvd., 4002 Plovdiv, Bulgaria
| | - Petya Gardjeva
- Department of Microbiology and Immunology, Faculty of Medicine, Medical University of Plovdiv, 15A Vasil Aprilov Blvd., 4002 Plovdiv, Bulgaria
| | - Petko Denev
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| | - Nora Sadakova
- Clinic of Neurology, St. Panteleimon Hospital Plovdiv, 9 Nicola Vaptsarov Blvd., 4004 Plovdiv, Bulgaria
| | - Viktor Filipov
- Faculty of Medicine, Medical University of Plovdiv, 15A Vasil Aprilov Blvd., 4002 Plovdiv, Bulgaria
| | - Ilia Kostadinov
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Medical University of Plovdiv, 15A Vassil Aprilov Blvd., 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 15A Vassil Aprilov Blvd., 4002 Plovdiv, Bulgaria
| | - Stela Dimitrova
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd., 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 15A Vassil Aprilov Blvd., 4002 Plovdiv, Bulgaria
| |
Collapse
|
10
|
Chemek M, Kadi A, Al-Mahdawi FKI, Potoroko I. Zinc as a Possible Critical Element to Prevent Harmful Effects of COVID-19 on Testicular Function: a Narrative Review. Reprod Sci 2024; 31:3673-3687. [PMID: 38987405 DOI: 10.1007/s43032-024-01638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Research into innovative non-pharmacological therapeutic routes via the utilization of natural elements like zinc (Zn) has been motivated by the discovery of new severe acute respiratory syndrome-related coronavirus 2 (SARS-COV2) variants and the ineffectiveness of certain vaccination treatments during COVID-19 pandemic. In addition, research on SARS-COV-2's viral cellular entry and infection mechanism has shown that it may seriously harm reproductive system cells and impair testicular function in young men and adolescents, which may lead to male infertility over time. In this context, we conducted a narrative review to give an overview of the data pertaining to Zn's critical role in testicular tissue, the therapeutic use of such micronutrients to enhance male fertility, as well as in the potential mitigation of COVID-19, with the ultimate goal of elucidating the hypothesis of the potential use of Zn supplements to prevent the possible harmful effects of SARS-COV2 infection on testis physiological function, and subsequently, on male fertility.
Collapse
Affiliation(s)
- Marouane Chemek
- Department of food and biotechnology, South Ural State University, Chelyabinsk, 454080, Russia.
| | - Ammar Kadi
- Department of food and biotechnology, South Ural State University, Chelyabinsk, 454080, Russia
| | | | - Irina Potoroko
- Department of food and biotechnology, South Ural State University, Chelyabinsk, 454080, Russia
| |
Collapse
|
11
|
Tekşen Y, Gündüz MK, Berikten D, Özatik FY, Aydın HE. Peganum harmala L. seed extract attenuates anxiety and depression in rats by reducing neuroinflammation and restoring the BDNF/TrkB signaling pathway and monoamines after exposure to chronic unpredictable mild stress. Metab Brain Dis 2024; 39:1523-1541. [PMID: 39172328 DOI: 10.1007/s11011-024-01416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Depression is a mental disorder characterised by persistent low mood, anhedonia and cognitive impairment that affects an estimated 3.8% of the world's population, including 5% of adults. Peganum harmala L. (P. harmala) is a medicinal plant and has been reported to be effective against Alzheimer's disease, Parkinson's disease and depression. The present study was aimed to evaluate the behavioral and pharmacological effects of P. harmala seed extract in rats exposed to chronic unpredictable mild stress (CUMS) in vivo and to investigate the mechanism of action. CUMS-exposed rats were treated with P. harmala extract (75 and 150 mg/kg, i.p.) for 2 weeks. HPLC analysis was used to determine the concentration of harmaline and harmine alkaloids in the extract. Heavy metal analysis in seeds was performed by ICP-MS. Our results showed that P. harmala at the dose of 150 mg/kg significantly reduced the depressive-like behaviors in CUMS-exposed rats, as evidenced by increased sucrose consumption in the sucrose preference test (SPT), decreased immobility time in the forced swim test (FST) and plasma corticosterone levels, increased the time spent in open arms in the elevated plus maze (EPM), and improved memory and learning in the passive avoidance test (PAT). In addition, P. harmala decreased monoamine oxidase-A (MAO-A) levels, and increased serotonin (5-HT), dopamine (DA), and noradrenaline (NA) levels in the brains of rats exposed to CUMS. P. harmala decreased the expression of the pro-inflammatory transcription factor nuclear factor-κB (NF-κB), and increased the antioxidant nuclear factor erythroid 2-related factor 2 (Nrf2) in rat brain. Furthermore, P. harmala improved brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) protein expression in rat brain. In conclusion, P. harmala at a dose of 150 mg/kg is more effective in preventing depressive-like behavior in CUMS-exposed rats by improving neurotransmitter levels, reducing oxidative stress, suppressing neuroinflammation and activating the BDNF/TrkB pathway, all of which are important in the pathogenesis of depression.
Collapse
Affiliation(s)
- Yasemin Tekşen
- Faculty of Medicine, Department of Pharmacology, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, Kütahya, 43000, Türkiye.
| | - Meliha Koldemir Gündüz
- Faculty of Engineering and Natural Sciences, Department of Basic Sciences of Engineering, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, Kütahya, 43000, Türkiye
| | - Derya Berikten
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, 43000, Kütahya, Türkiye
| | - Fikriye Yasemin Özatik
- Faculty of Medicine, Department of Pharmacology, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, Kütahya, 43000, Türkiye
| | - Hasan Emre Aydın
- Faculty of Medicine, Department of Neurosurgery, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, 43000, Kütahya, Türkiye
| |
Collapse
|
12
|
Liu Y, Zhang J, Zhao H, Zhong F, Li J, Zhao L. VBNC Cronobacter sakazakii survives in macrophages by resisting oxidative stress and evading recognition by macrophages. BMC Microbiol 2024; 24:458. [PMID: 39506633 PMCID: PMC11539806 DOI: 10.1186/s12866-024-03595-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Survival in host macrophages is an effective strategy for pathogenic bacterial transmission and pathogenesis. Our previous study found that viable but non-culturable (VBNC) Cronobacter Sakazakii (C. sakazakii) can survive in macrophages, but its survival mechanism is not clear. In this study, we investigated the possible mechanisms of VBNC C. sakazakii survival in macrophages in terms of environmental tolerance within macrophages and evasion of macrophages recognition. The results revealed that VBNC C. sakazakii survived under oxidative conditions at a higher rate than the culturable C. sakazakii. Moreover, the stringent response gene (relA and spoT) and the antioxidant-related genes (sodA, katG, and trxA) were up-regulated, indicating that VBNC C. sakazakii may regulate antioxidation through stringent response. On the other hand, compared with culturable C. sakazakii, VBNC C. sakazakii caused reduced response (Toll-like receptor 4) in macrophages, which was attributed to the suppression of biosynthesis of the lipopolysaccharides (LPS). Furthermore, we found that ellagic acid can reduce the survival rate of bacteria in macrophages by improving the immune TLR4 recognition ability of macrophages. In conclusion, VBNC C. sakazakii may survive in macrophages by regulating oxidative tolerance through stringent response and altering LPS synthesis to evade TLR4 recognition by macrophages, which suggests the pathogenic risk of VBNC C. sakazakii.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong Province, 510642, China
| | - Jingfeng Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong Province, 510642, China
| | - Haoqing Zhao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong Province, 510642, China
| | - Feifeng Zhong
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong Province, 510642, China
| | - Jianyu Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong Province, 510642, China
| | - Lichao Zhao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong Province, 510642, China.
| |
Collapse
|
13
|
Mohajeri M, Abedi N. Association of using enteral nutrition containing probiotics and dietary inflammatory index with inflammatory factors serum levels and gastrointestinal complications in infected patients with COVID-19. NUTRITION & FOOD SCIENCE 2024; 54:1219-1233. [DOI: 10.1108/nfs-12-2023-0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
PurposeThis paper aims to examine the association between the dietary inflammatory index, the consumption of Enteral Nutrition Supplemented with probiotics with certain serum inflammation markers and gastrointestinal complications among individuals diagnosed with COVID-19.Design/methodology/approachThis cross-sectional investigation involved 100 COVID-19 patients who were admitted to intensive care units in hospitals. These patients were administered two different types of Enteral Nutrition, so the dietary inflammatory index (DII), gastrointestinal complications and some serum inflammation markers have been compared between two groups.FindingsThe mean DII scores in all patients were significantly pro-inflammatory (probiotic formula 2.81 ± 0.01 vs usual formula group 2.93 ± 0.14p= 0.19). The probiotic formula consumption had an inverse association with High-sensitivity C-reactive Protein concentration (coef = −3.19, 95% CI −1.25, −5.14p= 0.001) and lead to a reduction of 2.14 mm/h in the serum level of Erythrocyte sedimentation rate compared to normal formula. The incidence of diarrhea, abdominal pain and vomiting in probiotic formula patients was respectively 94%, 14% and 86% less than in usual formula patients (p= 0.05).Originality/valueIn this cross-sectional study for the first time, the authors found that probiotic formula consumption was inversely associated with serum inflammation markers and gastrointestinal complications incidence. The high DII leads to more gastrointestinal complications incidence and inflammation markers. More studies are needed to prove this relationship.
Collapse
|
14
|
Karateke F, Karateke A, Topdagi B, Atilgan M, Dokuyucu R. The Role of Mannitol and Vitamin D in Ovarian Ischemia/Reperfusion Injury in Rats with Acute Abdominal. Curr Issues Mol Biol 2024; 46:8903-8913. [PMID: 39194743 DOI: 10.3390/cimb46080526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
This study was designed to investigate the effects of vitamin D and mannitol in an experimental rat ovarian torsion model. Thirty-two female Wistar albino rats were randomly classified as group 1: (sham), group 2: (detorsion), group 3: (detorsion + mannitol), group 4: (detorsion + vitamin D) and group 5: (detorsion + mannitol + vitamin D) (for each group n = 8). All groups were subjected to bilateral adnexal torsion for 2 h except for group 1. Bilateral adnexal detorsion was performed in all groups except for group 1. Groups 3 and 5 intraperitoneally received the injection of mannitol at a dose of 0.3 mg/kg 30 min before detorsion. Also, the group's 4 and 5 orally received vitamin D in a dose of 500 IU/kg/day for two weeks before torsion. Total oxidant status (TOS), total antioxidant status (TAS), oxidative stress index (OSI) and proliferating cell nuclear antigen (PCNA) levels were analyzed. According to the histopathological analyses, ovarian tissue damage and follicle counting were evaluated. TOS, OSI and histopathologic score values of ovarian tissue were significantly lower in group 5 than groups 2, 3 and 4 (p < 0.05). The PCNA level was significantly higher in group 5 than in groups 2, 3 and 4 (p < 0.05). A strong negative correlation was found between OSI and PCNA in groups 2, 3, 4 and 5 (r = -0.92, p = 0.01; r = -0.98, p < 0.0001; r = -0.98, p < 0.0001 and r = -0.96, p = 0.0002, respectively). The numbers of primordial follicles in group 5 (p < 0.001) and primary follicles in group 4 (p < 0.001) were significantly higher when compared to group 2. Based on the results of this study, it could be suggested that combination treatment of mannitol with vitamin D is more effective in reversing tissue damage induced by ischemia-reperfusion (I/R) injury in the ovarian torsion model than administration of only an agent.
Collapse
Affiliation(s)
- Faruk Karateke
- Department of General Surgery, Adana Private Middle East Hospital, 01140 Adana, Turkey
| | - Atilla Karateke
- Department of Gynecology and Obstetrics, Private Reyhanlı MMT Amerikan Hospital, 31500 Hatay, Turkey
| | - Basak Topdagi
- Department of Dentistry, School of Medicine, Sultan II. Abdulhamid Han Training and Research Hospital, 34668 Istanbul, Turkey
| | - Merve Atilgan
- Department of Pediatric Surgery, School of Medicine, Necmettin Erbakan University, 42090 Konya, Turkey
| | - Recep Dokuyucu
- Department of Physiology, Medical Specialization Training Center (TUSMER), 06420 Ankara, Turkey
| |
Collapse
|
15
|
Jang JH, Lee JE, Kim KT, Ahn DU, Paik HD. Immunostimulatory Effect of Ovomucin Hydrolysates by Pancreatin in RAW 264.7 Macrophages via Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway. Food Sci Anim Resour 2024; 44:885-898. [PMID: 38974730 PMCID: PMC11222692 DOI: 10.5851/kosfa.2024.e25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/26/2024] [Accepted: 03/17/2024] [Indexed: 07/09/2024] Open
Abstract
Ovomucin (OM), which has insoluble fractions is a viscous glycoprotein, found in egg albumin. Enzymatic hydrolysates of OM have water solubility and bioactive properties. This study investigated that the immunostimulatory effects of OM hydrolysates (OMHs) obtained by using various proteolytic enzymes (Alcalase®, bromelain, α-chymotrypsin, Neutrase®, pancreatin, papain, Protamax®, and trypsin) in RAW 264.7 cells. The results showed that OMH prepared with pancreatin (OMPA) produced the highest levels of nitrite oxide in RAW 264.7 cells, through upregulation of inducible nitric oxide synthase mRNA expression. The production of pro-inflammatory cytokines such as tumor necrosis factor-α and interleukin-6 were increased with the cytokines mRNA expression. The effect of OMPA on mitogen-activated protein kinase signaling pathway was increased the phosphorylation of p38, c-Jun NH2-terminal kinase, and extracellular signal-regulated kinase in a concentration-dependent manner. Therefore, OMPA could be used as a potential immune-stimulating agent in the functional food industry.
Collapse
Affiliation(s)
- Jin-Hong Jang
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University, Seoul
05029, Korea
| | - Ji-Eun Lee
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University, Seoul
05029, Korea
| | - Kee-Tae Kim
- Research Institute, WithBio
Inc, Seoul 05029, Korea
| | - Dong Uk Ahn
- Department of Animal Science, Iowa State
University, Ames, IA 50011, USA
| | - Hyun-Dong Paik
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University, Seoul
05029, Korea
| |
Collapse
|
16
|
Vang D, Moreira-Souza ACA, Zusman N, Moncada G, Matshik Dakafay H, Asadi H, Ojcius DM, Almeida-da-Silva CLC. Frankincense ( Boswellia serrata) Extract Effects on Growth and Biofilm Formation of Porphyromonas gingivalis, and Its Intracellular Infection in Human Gingival Epithelial Cells. Curr Issues Mol Biol 2024; 46:2991-3004. [PMID: 38666917 PMCID: PMC11049348 DOI: 10.3390/cimb46040187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Frankincense is produced by Boswellia trees, which can be found throughout the Middle East and parts of Africa and Asia. Boswellia serrata extract has been shown to have anti-cancer, anti-inflammatory, and antimicrobial effects. Periodontitis is an oral chronic inflammatory disease that affects nearly half of the US population. We investigated the antimicrobial effects of B. serrata extract on two oral pathogens associated with periodontitis. Using the minimum inhibitory concentration and crystal violet staining methods, we demonstrated that Porphyromonas gingivalis growth and biofilm formation were impaired by treatment with B. serrata extracts. However, the effects on Fusobacterium nucleatum growth and biofilm formation were not significant. Using quantification of colony-forming units and microscopy techniques, we also showed that concentrations of B. serrata that were not toxic for host cells decreased intracellular P. gingivalis infection in human gingival epithelial cells. Our results show antimicrobial activity of a natural product extracted from Boswellia trees (B. serrata) against periodontopathogens. Thus, B. serrata has the potential for preventing and/or treating periodontal diseases. Future studies will identify the molecular components of B. serrata extracts responsible for the beneficial effects.
Collapse
Affiliation(s)
- David Vang
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (D.V.); (A.C.A.M.-S.); (G.M.); (H.M.D.); (H.A.); (D.M.O.)
| | - Aline Cristina Abreu Moreira-Souza
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (D.V.); (A.C.A.M.-S.); (G.M.); (H.M.D.); (H.A.); (D.M.O.)
| | - Nicholas Zusman
- Dental Surgery Program, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA;
| | - German Moncada
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (D.V.); (A.C.A.M.-S.); (G.M.); (H.M.D.); (H.A.); (D.M.O.)
| | - Harmony Matshik Dakafay
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (D.V.); (A.C.A.M.-S.); (G.M.); (H.M.D.); (H.A.); (D.M.O.)
| | - Homer Asadi
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (D.V.); (A.C.A.M.-S.); (G.M.); (H.M.D.); (H.A.); (D.M.O.)
| | - David M. Ojcius
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (D.V.); (A.C.A.M.-S.); (G.M.); (H.M.D.); (H.A.); (D.M.O.)
| | - Cassio Luiz Coutinho Almeida-da-Silva
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (D.V.); (A.C.A.M.-S.); (G.M.); (H.M.D.); (H.A.); (D.M.O.)
| |
Collapse
|
17
|
Rizzi M, Avellis V, Messina A, Germano C, Tavella E, Dodaro V, Vitale R, Revelli A, Zola P, Picone S, Paolillo PM, Mondì V, Masturzo B, Manzoni P, Sainaghi PP. Vitamin D Supplementation in Neonatal and Infant MIS-C Following COVID-19 Infection. Int J Mol Sci 2024; 25:3712. [PMID: 38612523 PMCID: PMC11011671 DOI: 10.3390/ijms25073712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
To date, the SARS-CoV-2 pandemic still represents a great clinical challenge worldwide, and effective anti-COVID-19 drugs are limited. For this reason, nutritional supplements have been investigated as adjuvant therapeutic approaches in disease management. Among such supplements, vitamin D has gained great interest, due to its immunomodulatory and anti-inflammatory actions both in adult and pediatric populations. Even if there is conflicting evidence about its prevention and/or mitigation effectiveness in SARS-CoV-2 infection, several studies demonstrated a strict correlation between hypovitaminosis D and disease severity in acute COVID-19 and MIS-C (multisystem inflammatory syndrome in children). This narrative review offers a resume of the state of the art about vitamin D's role in immunity and its clinical use in the context of the current pandemic, specially focusing on pediatric manifestations and MIS-C. It seems biologically reasonable that interventions aimed at normalizing circulating vitamin D levels could be beneficial. To help clinicians in establishing the correct prophylaxis and/or supportive therapy with vitamin D, well-designed and adequately statistically powered clinical trials involving both adult and pediatric populations are needed. Moreover, this review will also discuss the few other nutraceuticals evaluated in this context.
Collapse
Affiliation(s)
- Manuela Rizzi
- Department of Health Sciences (DiSS), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- IRCAD (Interdisciplinary Research Center of Autoimmune Diseases), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Vincenzo Avellis
- School of Medicine, University of Turin, 10124 Turin, Italy
- Sant’Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy (B.M.)
| | - Alessandro Messina
- School of Medicine, University of Turin, 10124 Turin, Italy
- Sant’Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy (B.M.)
| | - Chiara Germano
- Sant’Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy (B.M.)
- Department of Maternal, Neonatal and Infant Medicine, University Hospital “Degli Infermi”, 13875 Ponderano, Italy
| | - Elena Tavella
- School of Medicine, University of Turin, 10124 Turin, Italy
- Sant’Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy (B.M.)
| | - Valentina Dodaro
- Sant’Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy (B.M.)
| | - Raffaele Vitale
- School of Medicine, University of Turin, 10124 Turin, Italy
- Sant’Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy (B.M.)
| | - Alberto Revelli
- School of Medicine, University of Turin, 10124 Turin, Italy
- Sant’Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy (B.M.)
| | - Paolo Zola
- School of Medicine, University of Turin, 10124 Turin, Italy
- Sant’Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy (B.M.)
| | - Simonetta Picone
- Neonatology and Neonatal Intensive Care Unit, Policlinico Casilino, 00169 Rome, Italy
| | - Pier Michele Paolillo
- Neonatology and Neonatal Intensive Care Unit, Policlinico Casilino, 00169 Rome, Italy
| | - Vito Mondì
- Neonatology and Neonatal Intensive Care Unit, Policlinico Casilino, 00169 Rome, Italy
| | - Bianca Masturzo
- Sant’Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy (B.M.)
- Department of Maternal, Neonatal and Infant Medicine, University Hospital “Degli Infermi”, 13875 Ponderano, Italy
| | - Paolo Manzoni
- Sant’Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy (B.M.)
- Department of Maternal, Neonatal and Infant Medicine, University Hospital “Degli Infermi”, 13875 Ponderano, Italy
| | - Pier Paolo Sainaghi
- IRCAD (Interdisciplinary Research Center of Autoimmune Diseases), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| |
Collapse
|
18
|
Jaiswal V, Lee HJ. The Bioactivity and Phytochemicals of Muscari comosum ( Leopoldia comosa), a Plant of Multiple Pharmacological Activities. Int J Mol Sci 2024; 25:2592. [PMID: 38473839 DOI: 10.3390/ijms25052592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Leopoldia comosa (LC), popularly known as Muscari comosum, spontaneously grows in the Mediterranean region and its bulbs are used as a vegetable. Traditionally, they are also used to treat various diseases and conditions, which has inspired the study of the pharmacological activities of different parts of LC. These studies revealed the numerous biological properties of LC including antioxidant, anti-inflammatory, anti-diabetes, anti-obesity, anti-cancer, anti-Alzheimer's disease, antibacterial, and immune stimulant. High antioxidant activity compared to other non-cultivated plants, and the potential role of antioxidant activity in other reported activities make LC an excellent candidate to be developed as an antioxidant plant against important associated diseases. The presence of a diverse class of phytochemicals (n = 85), especially flavonoids and homoisoflavones, in LC, also imparts significance to the nutraceutical candidature of the plant. However, limited animal studies and the lack of a directional approach have limited the further design of effective clinical studies for the development of LC. The current study is the first attempt to comprehensively compile information regarding the phytochemicals and pharmacological activities of LC, emphasize the targets/markers targeted by LC, important in other activities, and also highlight the current gaps and propose possible bridges for the development of LC as a therapeutic and/or supplement against important diseases.
Collapse
Affiliation(s)
- Varun Jaiswal
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
19
|
Lee HJ, Tran MTH, Le MH, Justine EE, Kim YJ. Paraprobiotic derived from Bacillus velezensis GV1 improves immune response and gut microbiota composition in cyclophosphamide-treated immunosuppressed mice. Front Immunol 2024; 15:1285063. [PMID: 38455053 PMCID: PMC10918466 DOI: 10.3389/fimmu.2024.1285063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/12/2024] [Indexed: 03/09/2024] Open
Abstract
Paraprobiotics that benefit human health have the capacity to modulate innate and adaptive immune systems. In this study, we prepared the paraprobiotic from Bacillus velezensis GV1 using the heat-killing method and investigated its effects on immunity and gut microbiota in vitro and in vivo. The morphology of inactivated strain GV1 was observed using scanning electron microscopy. Treatment with GV1 promoted nitric oxide production and augmented cytokine (IL-6, IL-1β, and TNF-α) expression and secretion in RAW 264.7 macrophages. Moreover, the strain GV1 could alleviate cyclophosphamide monohydrate (CTX)-induced immunosuppression by reversing spleen damage and restoring the immune organ index, as well as by increasing the expression of immune-related cytokines (TNF-α, IL-1β, IFN-γ, and IL-2) in the spleen and thymus, respectively. Furthermore, GV1 treatment dramatically healed the CTX-damaged colon and regulated gut microbiota by increasing the relative abundance of beneficial bacterial families (Lactobacillaceae, Akkermansiaceae, and Coriobacteriaceae) and decreasing that of harmful bacterial families (Desulfovibrionaceae, Erysipelotrichaceae, and Staphylococcaceae). Thus, the heat-killed GV1 can be considered a potential immunoregulatory agent for use as a functional food or immune-enhancing medicine.
Collapse
Affiliation(s)
| | | | | | | | - Yeon-Ju Kim
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
20
|
Cappellucci G, Baini G, Miraldi E, Pauletto L, De Togni H, Raso F, Biagi M. Investigation on the Efficacy of Two Food Supplements Containing a Fixed Combination of Selected Probiotics and β-Glucans or Elderberry Extract for the Immune System: Modulation on Cytokines Expression in Human THP-1 and PBMC. Foods 2024; 13:458. [PMID: 38338593 PMCID: PMC10855234 DOI: 10.3390/foods13030458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Several herbal and other natural products are used as ingredients in food supplements to strengthen immunity even if, very often, marketed products are proposed without a clear rationale or experimental evidence. In this study, we aimed to investigate the effect on human monocytes (THP-1) and on ex vivo human peripheral blood mononuclear cells (PBMC) of two formulations, one containing Bifidobacterium animalis subsp. lactis Bl-04® with β-glucans (for adults) and one containing Lactobacillus rhamnosus CRL1505 with elderberry extract (for children). We compared formulations with single ingredients, with bacterial lipopolysaccharide (LPS) and the drug pidotimod; cytokines expression level was evaluated testing different concentrations of samples at two exposure times. As expected, LPS caused a non-specific huge upregulation of cytokines expression both in THP-1 and in PBMC, whereas pidotimod mainly upregulated IL-2 in PBMC and IL-8 in THP-1. The two formulations showed a difference between a pro-inflammatory stimulus such as LPS, and also from an immunostimulant drug, such as pidotimod, as they mainly upregulated the expression of IL-6 and IL-10 in PBMC but not in THP-1, in a concentration-dependent mode. Probiotics were shown to play a major role, but β-glucans and elderberry extract exerted a synergistic activity. This work demonstrated that combining selected probiotics with other natural products having immunomodulatory properties is an interesting strategy to develop innovative formulations in the sector of food supplements.
Collapse
Affiliation(s)
- Giorgio Cappellucci
- Department of Physics, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy; (G.C.); (G.B.); (E.M.)
| | - Giulia Baini
- Department of Physics, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy; (G.C.); (G.B.); (E.M.)
| | - Elisabetta Miraldi
- Department of Physics, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy; (G.C.); (G.B.); (E.M.)
| | - Lara Pauletto
- Scientific Affairs Department Schwabe Pharma Italia, 39044 Egna, Italy; (L.P.); (H.D.T.); (F.R.)
| | - Heide De Togni
- Scientific Affairs Department Schwabe Pharma Italia, 39044 Egna, Italy; (L.P.); (H.D.T.); (F.R.)
| | - Floriana Raso
- Scientific Affairs Department Schwabe Pharma Italia, 39044 Egna, Italy; (L.P.); (H.D.T.); (F.R.)
| | - Marco Biagi
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| |
Collapse
|
21
|
Kim H, Hong JY, Lee J, Yeo C, Jeon WJ, Lee YJ, Ha IH. Immune-boosting effect of Yookgong-dan against cyclophosphamide-induced immunosuppression in mice. Heliyon 2024; 10:e24033. [PMID: 38293434 PMCID: PMC10826668 DOI: 10.1016/j.heliyon.2024.e24033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Immune responses must be strictly regulated to prevent autoimmune and infectious diseases and to protect against infectious agents. As people age, their immunity wanes, leading to a decrease in lymphocyte production in bone marrow and thymus and a decline in the efficacy of mature lymphocytes in secondary lymphoid organs. This study explores the immune-boosting potential of Yookgong-dan (YGD) in enhancing the immune system by activating immune cells. In our in vitro experiments, cyclophosphamide (Cy) treatment led to a significant decrease in primary splenocyte viability. However, subsequent treatment with YGD significantly improved cell viability, with doses ranging between 1 and 25 μg/mL in Cy-treated splenocytes. Flow cytometry analysis demonstrated that the Cy group exhibited reduced positivity of CD3+ T cells and CD45+ leukocytes compared to the blank group. In contrast, treatment with YGD led to a notable, dose-responsive increase in these immune cell types. In our in vivo experiments, YGD was orally administered to Cy-induced immunosuppressed mice at 20 and 100 mg/kg doses for 10 days. The results indicated a dose-dependent elevation in immunoglobulin (Ig)G and IgM levels in the serum, emphasizing the immunostimulatory effect of YGD. Furthermore, the Cy-treated group showed decreased T cells, B (CD19+) cells, and leukocytes in the total splenocyte population. Yet, YGD treatment resulted in a dose-dependent reversal of this pattern, suggesting its ability to counter immunosuppression. Notably, YGD was found to effectively stimulate T (CD4+ and CD8+) lymphocyte subsets and natural killer cells, along with enhancing Th1/Th2 cytokines in immunosuppressed conditions. These outcomes correlated with the modulation of BCL-2 and BAX expression, which are critical for apoptosis. In conclusion, YGD has the potential to bolster immune functionality through the activation of immune cells, thereby enhancing the immune system's capacity to combat diseases and improve overall health and wellness.
Collapse
Affiliation(s)
- Hyunseong Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, South Korea
| | - Jin Young Hong
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, South Korea
| | - Junseon Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, South Korea
| | - Changhwan Yeo
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, South Korea
| | - Wan-Jin Jeon
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, South Korea
| | - Yoon Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, South Korea
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, South Korea
| |
Collapse
|
22
|
Benahmed AG, Tippairote T, Gasmi A, Noor S, Avdeev O, Shanaida Y, Mojgani N, Emadali A, Dadar M, Bjørklund G. Periodontitis Continuum: Antecedents, Triggers, Mediators, and Treatment Strategies. Curr Med Chem 2024; 31:6775-6800. [PMID: 39428847 DOI: 10.2174/0109298673265862231020051338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 10/22/2024]
Abstract
Periodontitis (PD) is a chronic inflammatory disease of the periodontium characterized by the formation of gingival pockets and gingival recession. The local inflammatory environment can lead to the destruction of the extracellular matrix and subsequent bone loss. The pathophysiology of PD involves interactions between genetic predisposition, lifestyle, environmental factors, the oral microbiota condition, systemic health disorders, innate and adaptive immune responses, and various host defenses. The review highlighted the importance of the oral cavity condition in systemic health. Thus, a correlation between harmful oral microbiota and cardiovascular disease (CVD)/diabetes/ arthritis, etc, progressions through inflammation and bacterial translocation was highlighted. Antecedents increase an individual's risk of developing PD, trigger initiate microbe-host immunologic responses, and mediators sustain inflammatory interactions. Generally, this review explores the antecedents, triggers, and mediators along the pathophysiological continuum of PD. An analysis of modern approaches to treating periodontitis, including antibiotics for systemic and local use, was carried out. The potential role of natural ingredients such as herbal extracts, phytoconstituents, propolis, and probiotics in preventing and treating PD was highlighted.
Collapse
Affiliation(s)
| | - Torsak Tippairote
- Department of Research, HP Medical Centre, Bangkok, Thailand
- Thailand Initiatives for Functional Medicine, Bangkok, Thailand
| | - Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Sadaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Oleksandr Avdeev
- Pediatric Dentistry Department, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Yurii Shanaida
- Pediatric Dentistry Department, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Naheed Mojgani
- Biotechnology Department, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Alireza Emadali
- School of Dentistry Medicine, Ahvaz Jondishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Dadar
- Department of Research, CONEM Iran Microbiology Research Group, Tehran, Iran
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
23
|
Bjørklund G, Cruz-Martins N, Goh BH, Mykhailenko O, Lysiuk R, Shanaida M, Lenchyk L, Upyr T, Rusu ME, Pryshlyak A, Shanaida V, Chirumbolo S. Medicinal Plant-derived Phytochemicals in Detoxification. Curr Pharm Des 2024; 30:988-1015. [PMID: 37559241 DOI: 10.2174/1381612829666230809094242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
The average worldwide human life expectancy is 70 years, with a significantly higher value in Western societies. Many modern diseases are not associated with premature mortality but with a decreased quality of life in aged patients and an excessive accumulation of various toxic compounds in the human body during life. Today, scientists are especially interested in finding compounds that can help increase a healthy lifespan by detoxifying the body. Phytotherapy with specific approaches is used in alternative medicine to remove toxins from the body. Worldwide, research is conducted to identify medicinal plant-derived molecules that, with few or no side effects, may protect the liver and other organs. This review provides updated information about the detoxification process, the traditional and modern use of the most effective medicinal plants, their active metabolites as detoxifying agents, and the mechanisms and pathways involved in the detoxification process. Among medicinal plants with substantial detoxifying properties, a major part belongs to the Asteraceae family (Silybum marianum, Cynara scolymus, Arctium lappa, Helichrysum species, Inula helenium, and Taraxacum officinale). The most widely used hepatoprotective phytocomponent is silymarin, a standardized extract from the Silybum marianum seeds containing a mixture of flavonolignans. Many polysaccharides, polyphenols, and terpenoids have a detoxifying effect. Overall, scientific data on medicinal plants used in phytotherapeutic practice worldwide provides an understanding and awareness of their efficacy in detoxification.
Collapse
Affiliation(s)
- Geir Bjørklund
- Department of Research, Council for Nutritional and Environmental Medicine (CONEM), Toften 24, Mo i Rana 8610, Norway
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
- TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Victoria, Malaysia
- Institute of Pharmaceutical Science, University of Veterinary and Animal Science, Lahore, Pakistan
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Olha Mykhailenko
- Department of Pharmaceutical Chemistry, National University of Pharmacy of Ministry of Health of Ukraine, Kharkiv, Ukraine
- CONEM Ukraine Bromatology and Medicinal Chemistry Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Larysa Lenchyk
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
- Department of Pharmaceutical Technologies and Quality of Medicines, Institute for Advanced Training of Pharmacy Specialists, National University of Pharmacy, Kharkiv, Ukraine
| | - Taras Upyr
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Antonina Pryshlyak
- Department of Human Anatomy, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Volodymyr Shanaida
- Design of Machine Tools, Instruments and Machines Department, Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- CONEM Scientific Secretary, Verona, Italy
| |
Collapse
|