1
|
Seplovich G, Bouchi Y, de Rivero Vaccari JP, Pareja JCM, Reisner A, Blackwell L, Mechref Y, Wang KK, Tyndall JA, Tharakan B, Kobeissy F. Inflammasome links traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Neural Regen Res 2025; 20:1644-1664. [PMID: 39104096 PMCID: PMC11688549 DOI: 10.4103/nrr.nrr-d-24-00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/20/2024] [Accepted: 06/03/2024] [Indexed: 08/07/2024] Open
Abstract
Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela of neuroinflammation includes the pathologic hyperphosphorylation of tau protein, an endogenous microtubule-associated protein that protects the integrity of neuronal cytoskeletons. Tau hyperphosphorylation results in protein misfolding and subsequent accumulation of tau tangles forming neurotoxic aggregates. These misfolded proteins are characteristic of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease and can lead to downstream neuroinflammatory processes, including assembly and activation of the inflammasome complex. Inflammasomes refer to a family of multimeric protein units that, upon activation, release a cascade of signaling molecules resulting in caspase-induced cell death and inflammation mediated by the release of interleukin-1β cytokine. One specific inflammasome, the NOD-like receptor protein 3, has been proposed to be a key regulator of tau phosphorylation where it has been shown that prolonged NOD-like receptor protein 3 activation acts as a causal factor in pathological tau accumulation and spreading. This review begins by describing the epidemiology and pathophysiology of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Next, we highlight neuroinflammation as an overriding theme and discuss the role of the NOD-like receptor protein 3 inflammasome in the formation of tau deposits and how such tauopathic entities spread throughout the brain. We then propose a novel framework linking traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease as inflammasome-dependent pathologies that exist along a temporal continuum. Finally, we discuss potential therapeutic targets that may intercept this pathway and ultimately minimize long-term neurological decline.
Collapse
Affiliation(s)
| | - Yazan Bouchi
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jennifer C. Munoz Pareja
- Division of Pediatric Critical Care, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrew Reisner
- Department of Pediatrics, Emory University, Atlanta, GA, USA
- Department of Neurosurgery, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Laura Blackwell
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Kevin K. Wang
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Binu Tharakan
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Taylor RR, Keane RW, Guardiola B, López-Lage S, Moratinos L, Dietrich WD, Perez-Barcena J, de Rivero Vaccari JP. Inflammasome Proteins Are Reliable Biomarkers of the Inflammatory Response in Aneurysmal Subarachnoid Hemorrhage. Cells 2024; 13:1370. [PMID: 39195261 DOI: 10.3390/cells13161370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is caused by abnormal blood vessel dilation and subsequent rupture, resulting in blood pooling in the subarachnoid space. This neurological insult results in the activation of the inflammasome, a multiprotein complex that processes pro-inflammatory interleukin (IL)-1 cytokines leading to morbidity and mortality. Moreover, increases in inflammasome proteins are associated with clinical deterioration in many neurological diseases. Limited studies have investigated inflammasome protein expression following aSAH. Reliable markers of the inflammatory response associated with aSAH may allow for earlier detection of patients at risk for complications and aid in the identification of novel pharmacologic targets. Here, we investigated whether inflammasome signaling proteins may serve as potential biomarkers of the inflammatory response in aSAH. Serum and cerebrospinal fluid (CSF) from fifteen aSAH subjects and healthy age-matched controls and hydrocephalus (CSF) no-aneurysm controls were evaluated for levels of inflammasome signaling proteins and downstream pro-inflammatory cytokines. Protein measurements were carried out using Simple Plex and Single-Molecule Array (Simoa) technology. The area under the curve (AUC) was calculated using receiver operating characteristics (ROCs) to obtain information on biomarker reliability, specificity, sensitivity, cut-off points, and likelihood ratio. In addition, a Spearman r correlation matrix was performed to determine the correlation between inflammasome protein levels and clinical outcome measures. aSAH subjects demonstrated elevated caspase-1, apoptosis-associated speck-like protein with a caspase recruiting domain (ASC), IL-18 and IL-1β levels in serum, and CSF when compared to controls. Each of these proteins was found to be a promising biomarker of inflammation in aSAH in the CSF. In addition, ASC, caspase-1, and IL-1β were found to be promising biomarkers of inflammation in aSAH in serum. Furthermore, we found that elevated levels of inflammasome proteins in serum are useful to predict worse functional outcomes following aSAH. Thus, the determination of inflammasome protein levels in CSF and serum in aSAH may be utilized as reliable biomarkers of inflammation in aSAH and used clinically to monitor patient outcomes.
Collapse
Affiliation(s)
- Ruby R Taylor
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Medical Scientist Training Program, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Robert W Keane
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Cellular Physiology and Molecular Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Begoña Guardiola
- Intensive Care Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain
| | - Sofía López-Lage
- Neurosurgical Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain
| | - Lesmes Moratinos
- Neurosurgical Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jon Perez-Barcena
- Intensive Care Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain
| | - Juan Pablo de Rivero Vaccari
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Cellular Physiology and Molecular Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
3
|
Ma ZL, Wang ZL, Zhang FY, Liu HX, Mao LH, Yuan L. Biomarkers of Parkinson's Disease: From Basic Research to Clinical Practice. Aging Dis 2024; 15:1813-1830. [PMID: 37815899 PMCID: PMC11272192 DOI: 10.14336/ad.2023.1005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized pathologically by dopaminergic neuron loss and the formation of Lewy bodies, which are enriched with aggregated α-synuclein (α-syn). PD currently has no cure, but therapeutic strategies are available to alleviate symptoms. Early diagnosis can greatly improve therapeutic interventions, but the clinical diagnosis of PD remains challenging and depends mainly on clinical features and imaging tests. Efficient and specific biomarkers are crucial for the diagnosis, monitoring, and evaluation of PD. Here, we reviewed the biomarkers of PD in different tissues and biofluids, along with the current clinical biochemical detection methods. We found that the sensitivity and specificity of single biomarkers are limited, and selecting appropriate indicators for combined detection can improve the diagnostic accuracy of PD.
Collapse
Affiliation(s)
| | | | - Fei-yue Zhang
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute, China Medical University, Shenyang, China
| | - Hong-xun Liu
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute, China Medical University, Shenyang, China
| | - Li-hong Mao
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute, China Medical University, Shenyang, China
| | - Lin Yuan
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute, China Medical University, Shenyang, China
| |
Collapse
|
4
|
Cyr B, Curiel Cid R, Loewenstein D, Vontell RT, Dietrich WD, Keane RW, de Rivero Vaccari JP. The Inflammasome Adaptor Protein ASC in Plasma as a Biomarker of Early Cognitive Changes. Int J Mol Sci 2024; 25:7758. [PMID: 39063000 PMCID: PMC11276719 DOI: 10.3390/ijms25147758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Dementia is a group of symptoms including memory loss, language difficulties, and other types of cognitive and functional impairments that affects 57 million people worldwide, with the incidence expected to double by 2040. Therefore, there is an unmet need to develop reliable biomarkers to diagnose early brain impairments so that emerging interventions can be applied before brain degeneration. Here, we performed biomarker analyses for apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), and amyloid-β 42/40 (Aβ42/40) ratio in the plasma of older adults. Participants had blood drawn at baseline and underwent two annual clinical and cognitive evaluations. The groups tested either cognitively normal on both evaluations (NN), cognitively normal year 1 but cognitively impaired year 2 (NI), or cognitively impaired on both evaluations (II). ASC was elevated in the plasma of the NI group compared to the NN and II groups. Additionally, Aβ42 was increased in the plasma in the NI and II groups compared to the NN group. Importantly, the area under the curve (AUC) for ASC in participants older than 70 years old in NN vs. NI groups was 0.81, indicating that ASC is a promising plasma biomarker for early detection of cognitive decline.
Collapse
Affiliation(s)
- Brianna Cyr
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, Miami, FL 33136, USA; (B.C.); (W.D.D.); (R.W.K.)
| | - Rosie Curiel Cid
- Center for Cognitive Neuroscience and Aging, University of Miami, Miami, FL 33136, USA; (R.C.C.); (D.L.)
| | - David Loewenstein
- Center for Cognitive Neuroscience and Aging, University of Miami, Miami, FL 33136, USA; (R.C.C.); (D.L.)
| | | | - W. Dalton Dietrich
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, Miami, FL 33136, USA; (B.C.); (W.D.D.); (R.W.K.)
| | - Robert W. Keane
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, Miami, FL 33136, USA; (B.C.); (W.D.D.); (R.W.K.)
- Department of Physiology and Biophysics, University of Miami, Miami, FL 33136, USA
| | - Juan Pablo de Rivero Vaccari
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami, Miami, FL 33136, USA; (B.C.); (W.D.D.); (R.W.K.)
- Center for Cognitive Neuroscience and Aging, University of Miami, Miami, FL 33136, USA; (R.C.C.); (D.L.)
- Department of Physiology and Biophysics, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
5
|
Xue H, Luo Q, Chen J, Fan W. Assessing the Causal Relationship between Genetically Determined Inflammatory Cytokines and Parkinson's Disease Risk: A Bidirectional Two-Sample Mendelian Randomization Study. J Immunol Res 2024; 2024:9069870. [PMID: 38455364 PMCID: PMC10919978 DOI: 10.1155/2024/9069870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/08/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Background Observational studies have suggested an association between inflammatory cytokines and Parkinson's disease (PD). This Mendelian randomization (MR) was conducted to further assess the causal correlations between inflammatory cytokines and PD. Methods Genetic instruments associated with inflammatory cytokines were extracted from a large summary genome-wide association studies (GWAS) involving 8,293 European participants. Summary-level statistics for PD were obtained from a large-sample GWAS containing 17 studies that involved European participants. Causalities of exposures and outcomes were explored mainly using inverse variance weighted (IVW) method. Results The IVW method indicated that basic fibroblast growth factor (FGFBasic), interleukin-2 (IL-2), and macrophage migration inhibitory factor (MIF) may be suggestively associated with the risk of PD (OR: 0.71, 95%CI: 0.52-0.96, P = 0.027; OR: 1.18, 95%CI: 1.01-1.38, P = 0.041; and OR: 1.23, 95%CI: 1.04-1.46, P = 0.018). In the reverse direction, monokine induced by interferon gamma (MIG), beta nerve growth factor (bNGF), interleukin-17 (IL-17), and interferon gamma (IFNg) are suggested to be the consequences of PD. Conclusion Our MR analysis indicated that suggestive associations between circulating levels of FGFBasic, IL-2, and MIF and PD risk. In addition, MIG, bNGF, IL-17, and IFNg are more likely to be involved in the development of downstream PD.
Collapse
Affiliation(s)
- Hua Xue
- Department of Neurology, Sichuan Taikang Hospital, Chengdu, Sichuan 610213, China
| | - Qian Luo
- Department of Dermatology, Jian Yang Hospital of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jiajia Chen
- Sichuan University of Science and Engineering, Zigong, Sichuan, China
| | - Wenhui Fan
- Department of Neurology, Sichuan Taikang Hospital, Chengdu, Sichuan 610213, China
| |
Collapse
|
6
|
Ravichandran KA, Heneka MT. Inflammasomes in neurological disorders - mechanisms and therapeutic potential. Nat Rev Neurol 2024; 20:67-83. [PMID: 38195712 DOI: 10.1038/s41582-023-00915-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
Inflammasomes are molecular scaffolds that are activated by damage-associated and pathogen-associated molecular patterns and form a key element of innate immune responses. Consequently, the involvement of inflammasomes in several diseases that are characterized by inflammatory processes, such as multiple sclerosis, is widely appreciated. However, many other neurological conditions, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, stroke, epilepsy, traumatic brain injury, sepsis-associated encephalopathy and neurological sequelae of COVID-19, all involve persistent inflammation in the brain, and increasing evidence suggests that inflammasome activation contributes to disease progression in these conditions. Understanding the biology and mechanisms of inflammasome activation is, therefore, crucial for the development of inflammasome-targeted therapies for neurological conditions. In this Review, we present the current evidence for and understanding of inflammasome activation in neurological diseases and discuss current and potential interventional strategies that target inflammasome activation to mitigate its pathological consequences.
Collapse
Affiliation(s)
- Kishore Aravind Ravichandran
- Department of Neuroinflammation, Institute of innate immunity, University of Bonn Medical Center Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Esch-sur-Alzette, Luxembourg.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, North Worcester, MA, USA.
| |
Collapse
|
7
|
Salemi M, Ravo M, Lanza G, Schillaci FA, Ventola GM, Marchese G, Salluzzo MG, Cappelletti G, Ferri R. Gene Expression Profiling of Post Mortem Midbrain of Parkinson's Disease Patients and Healthy Controls. Int J Mol Sci 2024; 25:707. [PMID: 38255780 PMCID: PMC10815072 DOI: 10.3390/ijms25020707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Parkinson's disease (PD) stands as the most prevalent degenerative movement disorder, marked by the degeneration of dopaminergic neurons in the substantia nigra of the midbrain. In this study, we conducted a transcriptome analysis utilizing post mortem mRNA extracted from the substantia nigra of both PD patients and healthy control (CTRL) individuals. Specifically, we acquired eight samples from individuals with PD and six samples from CTRL individuals, with no discernible pathology detected in the latter group. RNA sequencing was conducted using the TapeStation 4200 system from Agilent Technologies. A total of 16,148 transcripts were identified, with 92 mRNAs displaying differential expression between the PD and control groups. Specifically, 33 mRNAs were significantly up-regulated, while 59 mRNAs were down-regulated in PD compared to the controls. The identification of statistically significant signaling pathways, with an adjusted p-value threshold of 0.05, unveiled noteworthy insights. Specifically, the enriched categories included cardiac muscle contraction (involving genes such as ATPase Na+/K+ transporting subunit beta 2 (ATP1B2), solute carrier family 8 member A1 (SLC8A1), and cytochrome c oxidase subunit II (COX2)), GABAergic synapse (involving GABA type A receptor-associated protein-like 1 (GABARAPL1), G protein subunit beta 5 (GNB5), and solute carrier family 38 member 2 (SLC38A2), autophagy (involving GABARAPL1 and tumor protein p53-inducible nuclear protein 2 (TP53INP2)), and Fc gamma receptor (FcγR) mediated phagocytosis (involving amphiphysin (AMPH)). These findings uncover new pathophysiological dimensions underlying PD, implicating genes associated with heart muscle contraction. This knowledge enhances diagnostic accuracy and contributes to the advancement of targeted therapies.
Collapse
Affiliation(s)
- Michele Salemi
- Oasi Research Institute–IRCCS, 94018 Troin, Italy; (G.L.); (F.A.S.); (M.G.S.); (R.F.)
| | - Maria Ravo
- Genomix4Life Srl, 94081 Baroniss, Italy; (M.R.); (G.M.V.); (G.M.)
- Genome Research Center for Health–CRGS, 94081 Baronissi, Italy
| | - Giuseppe Lanza
- Oasi Research Institute–IRCCS, 94018 Troin, Italy; (G.L.); (F.A.S.); (M.G.S.); (R.F.)
- Department of Surgery and Medical–Surgical Specialties, University of Catania, 95100 Catania, Italy
| | | | - Giovanna Maria Ventola
- Genomix4Life Srl, 94081 Baroniss, Italy; (M.R.); (G.M.V.); (G.M.)
- Genome Research Center for Health–CRGS, 94081 Baronissi, Italy
| | - Giovanna Marchese
- Genomix4Life Srl, 94081 Baroniss, Italy; (M.R.); (G.M.V.); (G.M.)
- Genome Research Center for Health–CRGS, 94081 Baronissi, Italy
| | - Maria Grazia Salluzzo
- Oasi Research Institute–IRCCS, 94018 Troin, Italy; (G.L.); (F.A.S.); (M.G.S.); (R.F.)
| | | | - Raffaele Ferri
- Oasi Research Institute–IRCCS, 94018 Troin, Italy; (G.L.); (F.A.S.); (M.G.S.); (R.F.)
| |
Collapse
|
8
|
Pardridge WM. Treatment of Parkinson's disease with biologics that penetrate the blood-brain barrier via receptor-mediated transport. Front Aging Neurosci 2023; 15:1276376. [PMID: 38035276 PMCID: PMC10682952 DOI: 10.3389/fnagi.2023.1276376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Parkinson's disease (PD) is characterized by neurodegeneration of nigral-striatal neurons in parallel with the formation of intra-neuronal α-synuclein aggregates, and these processes are exacerbated by neuro-inflammation. All 3 components of PD pathology are potentially treatable with biologics. Neurotrophins, such as glial derived neurotrophic factor or erythropoietin, can promote neural repair. Therapeutic antibodies can lead to disaggregation of α-synuclein neuronal inclusions. Decoy receptors can block the activity of pro-inflammatory cytokines in brain. However, these biologic drugs do not cross the blood-brain barrier (BBB). Biologics can be made transportable through the BBB following the re-engineering of the biologic as an IgG fusion protein, where the IgG domain targets an endogenous receptor-mediated transcytosis (RMT) system within the BBB, such as the insulin receptor or transferrin receptor. The receptor-specific antibody domain of the fusion protein acts as a molecular Trojan horse to ferry the biologic into brain via the BBB RMT pathway. This review describes the re-engineering of all 3 classes of biologics (neurotrophins, decoy receptor, therapeutic antibodies) for BBB delivery and treatment of PD. Targeting the RMT pathway at the BBB also enables non-viral gene therapy of PD using lipid nanoparticles (LNP) encapsulated with plasmid DNA encoding therapeutic genes. The surface of the lipid nanoparticle is conjugated with a receptor-specific IgG that triggers RMT of the LNP across the BBB in vivo.
Collapse
|
9
|
Keane RW, Hadad R, Scott XO, Cabrera Ranaldi EDLRM, Pérez-Bárcena J, de Rivero Vaccari JP. Neural-Cardiac Inflammasome Axis after Traumatic Brain Injury. Pharmaceuticals (Basel) 2023; 16:1382. [PMID: 37895853 PMCID: PMC10610322 DOI: 10.3390/ph16101382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Traumatic brain injury (TBI) affects not only the brain but also peripheral organs like the heart and the lungs, which influences long-term outcomes. A heightened systemic inflammatory response is often induced after TBI, but the underlying pathomechanisms that contribute to co-morbidities remain poorly understood. Here, we investigated whether extracellular vehicles (EVs) containing inflammasome proteins are released after severe controlled cortical impact (CCI) in C57BL/6 mice and cause activation of inflammasomes in the heart that result in tissue damage. The atrium of injured mice at 3 days after TBI showed a significant increase in the levels of the inflammasome proteins AIM2, ASC, caspases-1, -8 and -11, whereas IL-1β was increased in the ventricles. Additionally, the injured cortex showed a significant increase in IL-1β, ASC, caspases-1, -8 and -11 and pyrin at 3 days after injury when compared to the sham. Serum-derived extracellular vesicles (EVs) from injured patients were characterized with nanoparticle tracking analysis and Ella Simple Plex and showed elevated levels of the inflammasome proteins caspase-1, ASC and IL-18. Mass spectrometry of serum-derived EVs from mice after TBI revealed a variety of complement- and cardiovascular-related signaling proteins. Moreover, adoptive transfer of serum-derived EVs from TBI patients resulted in inflammasome activation in cardiac cells in culture. Thus, TBI elicits inflammasome activation, primarily in the atrium, that is mediated, in part, by EVs that contain inflammasome- and complement-related signaling proteins that are released into serum and contribute to peripheral organ systemic inflammation, which increases inflammasome activation in the heart.
Collapse
Affiliation(s)
- Robert W. Keane
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.W.K.); (E.d.l.R.M.C.R.)
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Roey Hadad
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xavier O. Scott
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Erika d. l. R. M. Cabrera Ranaldi
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.W.K.); (E.d.l.R.M.C.R.)
| | - Jon Pérez-Bárcena
- Intensive Care Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.W.K.); (E.d.l.R.M.C.R.)
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|