1
|
Zine A, Fritzsch B. Early Steps towards Hearing: Placodes and Sensory Development. Int J Mol Sci 2023; 24:6994. [PMID: 37108158 PMCID: PMC10139157 DOI: 10.3390/ijms24086994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Sensorineural hearing loss is the most prevalent sensory deficit in humans. Most cases of hearing loss are due to the degeneration of key structures of the sensory pathway in the cochlea, such as the sensory hair cells, the primary auditory neurons, and their synaptic connection to the hair cells. Different cell-based strategies to replace damaged inner ear neurosensory tissue aiming at the restoration of regeneration or functional recovery are currently the subject of intensive research. Most of these cell-based treatment approaches require experimental in vitro models that rely on a fine understanding of the earliest morphogenetic steps that underlie the in vivo development of the inner ear since its initial induction from a common otic-epibranchial territory. This knowledge will be applied to various proposed experimental cell replacement strategies to either address the feasibility or identify novel therapeutic options for sensorineural hearing loss. In this review, we describe how ear and epibranchial placode development can be recapitulated by focusing on the cellular transformations that occur as the inner ear is converted from a thickening of the surface ectoderm next to the hindbrain known as the otic placode to an otocyst embedded in the head mesenchyme. Finally, we will highlight otic and epibranchial placode development and morphogenetic events towards progenitors of the inner ear and their neurosensory cell derivatives.
Collapse
Affiliation(s)
- Azel Zine
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Bernd Fritzsch
- Department of Biology, CLAS, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Shang F, Wang Y, Ma R, Rong Y, Wang M, Wu Z, Hai E, Pan J, Liang L, Wang Z, Wang R, Su R, Liu Z, Zhao Y, Wang Z, Li J, Zhang Y. Screening of microRNA and mRNA related to secondary hair follicle morphogenesis and development and functional analysis in cashmere goats. Funct Integr Genomics 2022; 22:835-848. [PMID: 35488101 PMCID: PMC9550687 DOI: 10.1007/s10142-022-00842-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 01/30/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
Abstract
microRNA (miRNA) is a type of endogenous short-chain non-coding RNA with regulatory function found in eukaryotes, which is involved in the regulation of a variety of cellular and biological processes. However, the research on the development of cashmere goat secondary hair follicles is still relatively scarce. In this study, small RNA libraries and mRNA libraries of 45 days, 55 days, 65 days, and 75 days of fetal skin of cashmere goats were constructed, and the constructed libraries were sequenced using Illumina Hiseq4000, and the expression profiles of miRNA and mRNA in cashmere goat fetal skin were obtained. The differentially expressed miRNAs and mRNAs in six control groups were identified and the qRT-PCR experiment shows that the sequencing results are accurate. Sixty-six miRNAs related to secondary hair follicle development were screened, and used TargetScan and miRanda to predict 33 highly expressed miRNA target genes. At the same time, 664 mRNAs related to the development of secondary hair follicles were screened, and GO enrichment and KEGG pathway analysis were performed. It was found that some miRNA target genes were consistent with the screening results of mRNAs related to secondary hair follicle development and were enriched in Notch signaling pathway, TGF-β signaling pathway. Therefore, miR-145-5p-DLL4, miR-27b-3p-DLL4, miR-30e-5p-DLL4, miR-193b-3p-TGF-β1, miR-181b-5p-NOTCH2, and miR-103-3p-NOTCH2 regulatory network related to the development of secondary hair follicles were constructed and the results of dual-luciferase reporter gene assay indicated that there is a targeted relationship between chi-miR-30e-5p and DLL4, which will provide a basis for molecular mechanism of miRNA-mRNA in the development of the hair follicles in cashmere goats.
Collapse
Affiliation(s)
- Fangzheng Shang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.
| | - Yu Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Rong Ma
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Youjun Rong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Min Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Zhihong Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Erhan Hai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Jianfeng Pan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Lili Liang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Yanhong Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Zhixin Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Jinquan Li
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, Inner Mongolia, China. .,Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Autonomous Region, China. .,Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Autonomous Region, Hohhot, China.
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.
| |
Collapse
|
3
|
Febles NK, Bauer MA, Ding B, Zhu X, Gallant ND, Frisina RD. A combinatorial approach to protect sensory tissue against cisplatin-induced ototoxicity. Hear Res 2022; 415:108430. [PMID: 35051751 PMCID: PMC8810742 DOI: 10.1016/j.heares.2022.108430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 12/23/2022]
Abstract
Sensorineural Hearing Loss (SNHL) is a highly prevalent disorder involving permanent damage or loss to the inner ear's mechano-sensory hair cells and nerve fibers. Major contributing causes are ototoxic drugs, loud noises, and aging. Drug-induced hearing loss (DIHL), affects over 25% of patients treated with common therapeutics such as aminoglycoside antibiotics, loop diuretics or chemotherapeutics. A commonly used chemotherapeutic agent, cisplatin, is very effective for treating malignant tumors, but results in a majority of patients experiencing irreversible hearing loss and/or tinnitus. Additionally, since there is currently no FDA-approved treatments for SNHL, attenuation of ototoxicity is a major area of investigation in oncology, otolaryngology and hearing research. Several potential otoprotective agents have been investigated at the clinical trial stage, but none have progressed to a full FDA-approval. In this study, we investigated a combinatorial approach comprised of an antioxidant, a p53 inhibitor and a neurotrophin, as a multifactorial otoprotective treatment for cisplatin exposure. In vitro, HEI-OC1 cells, an immortalized organ of Corti epithelial cell line, pre-treated with this biotherapeutic cocktail had significantly reduced cisplatin-induced cell death, DNA fragmentation, and apoptotic activation. In an ex vivo study, rat pup D2-D3 organ of Corti explants, significant protection against cisplatin-based hair cell and neuronal loss was achieved by delivery of the same combinatorial pretreatment. Interestingly, the hair cell protection was localized to the basal and middle regions of the organ of Corti. Together, these findings highlight a novel approach to attenuate cisplatin ototoxicity and potentially prevent DIHL by addressing biological mechanisms of cisplatin ototoxicity.
Collapse
Affiliation(s)
- Nicole K Febles
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33602, USA
| | - Mark A Bauer
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33602, USA
| | - Bo Ding
- Department of Communicative Sciences and Disorders, University of South Florida, Tampa, FL 33602, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33602, USA
| | - Xiaoxia Zhu
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33602, USA
| | - Nathan D Gallant
- Department of Mechanical Engineering, University of South Florida, Tampa, FL 33602, USA.
| | - Robert D Frisina
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA; Department of Communicative Sciences and Disorders, University of South Florida, Tampa, FL 33602, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33602, USA.
| |
Collapse
|
4
|
Jahan I, Elliott KL, Fritzsch B. Understanding Molecular Evolution and Development of the Organ of Corti Can Provide Clues for Hearing Restoration. Integr Comp Biol 2018; 58:351-365. [PMID: 29718413 PMCID: PMC6104702 DOI: 10.1093/icb/icy019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mammalian hearing organ is a stereotyped cellular assembly with orderly innervation: two types of spiral ganglion neurons (SGNs) innervate two types of differentially distributed hair cells (HCs). HCs and SGNs evolved from single neurosensory cells through gene multiplication and diversification. Independent regulation of HCs and neuronal differentiation through expression of basic helix-loop-helix transcription factors (bHLH TFs: Atoh1, Neurog1, Neurod1) led to the evolution of vestibular HC assembly and their unique type of innervation. In ancestral mammals, a vestibular organ was transformed into the organ of Corti (OC) containing a single row of inner HC (IHC), three rows of outer HCs (OHCs), several unique supporting cell types, and a peculiar innervation distribution. Restoring the OC following long-term hearing loss is complicated by the fact that the entire organ is replaced by a flat epithelium and requires reconstructing the organ from uniform undifferentiated cell types, recapitulating both evolution and development. Finding the right sequence of gene activation during development that is useful for regeneration could benefit from an understanding of the OC evolution. Toward this end, we report on Foxg1 and Lmx1a mutants that radically alter the OC cell assembly and its innervation when mutated and may have driven the evolutionary reorganization of the basilar papilla into an OC in ancestral Therapsids. Furthermore, genetically manipulating the level of bHLH TFs changes HC type and distribution and allows inference how transformation of HCs might have happened evolutionarily. We report on how bHLH TFs regulate OHC/IHC and how misexpression (Atoh1-Cre; Atoh1f/kiNeurog1) alters HC fate and supporting cell development. Using mice with altered HC types and distribution, we demonstrate innervation changes driven by HC patterning. Using these insights, we speculate on necessary steps needed to convert a random mixture of post-mitotic precursors into the orderly OC through spatially and temporally regulated critical bHLH genes in the context of other TFs to restore normal innervation patterns.
Collapse
Affiliation(s)
- Israt Jahan
- Department of Biology, University of Iowa, 129 East Jefferson, Iowa City, IA 52242, USA
| | - Karen L Elliott
- Department of Biology, University of Iowa, 129 East Jefferson, Iowa City, IA 52242, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, 129 East Jefferson, Iowa City, IA 52242, USA
| |
Collapse
|
5
|
Fang G, Jia X, Li H, Tan S, Nie Q, Yu H, Yang Y. Characterization of microRNA and mRNA expression profiles in skin tissue between early-feathering and late-feathering chickens. BMC Genomics 2018; 19:399. [PMID: 29801437 PMCID: PMC5970437 DOI: 10.1186/s12864-018-4773-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/09/2018] [Indexed: 01/05/2023] Open
Abstract
Background Early feathering and late feathering in chickens are sex-linked phenotypes, which have commercial application in the poultry industry for sexing chicks at hatch and have important impacts on performance traits. However, the genetic mechanism controlling feather development and feathering patterns is unclear. Here, miRNA and mRNA expression profiles in chicken wing skin tissues were analysed through high-throughput transcriptomic sequencing, aiming to understand the biological process of follicle development and the formation of different feathering phenotypes. Results Compared to the N1 group with no primary feathers extending out, 2893 genes and 31 miRNAs displayed significantly different expression in the F1 group with primary feathers longer than primary-covert feathers, and 1802 genes and 11 miRNAs in the L2 group displayed primary feathers shorter than primary-covert feathers. Only 201 altered genes and 3 altered miRNAs were identified between the N1 and L2 groups (fold change > 2, q value < 0.01). Both sequencing and qPCR tests revealed that PRLR was significantly decreased in the F1 and L2 groups compared to the N1 group, whereas SPEF2 was significantly decreased in the F1 group compared to the N1 or L2 group. Functional analysis revealed that the altered genes or targets of altered miRNAs were involved in multiple biological processes and pathways related to feather growth and development, such as the Wnt signalling pathway, the TGF-beta signalling pathway, the MAPK signalling pathway, epithelial cell differentiation, and limb development. Integrated analysis of miRNA and mRNA showed that 14 pairs of miRNA-mRNA negatively interacted in the process of feather formation. Conclusions Transcriptomic sequencing of wing skin tissues revealed large changes in F1 vs. N1 and L2 vs. N1, but few changes in F1 vs. L2 for both miRNA and mRNA expression. PRLR might only contribute to follicle development, while SPEF2 was highly related to the growth rate of primary feathers or primary-covert feathers and could be responsible for early and late feather formation. Interactions between miR-1574-5p/NR2F, miR-365-5p/JAK3 and miR-365-5p/CDK6 played important roles in hair or feather formation. In all, our results provide novel evidence to understand the molecular regulation of follicle development and feathering phenotype. Electronic supplementary material The online version of this article (10.1186/s12864-018-4773-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guijun Fang
- School of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China.,College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xinzheng Jia
- School of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China.,College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Hua Li
- School of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China. .,Guangdong Tinoo's Foods Limited Company, Qingyuan, 511827, Guangdong, China.
| | - Shuwen Tan
- School of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China.,Guangdong Tinoo's Foods Limited Company, Qingyuan, 511827, Guangdong, China
| | - Qinghua Nie
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Hui Yu
- School of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China.,Guangdong Tinoo's Foods Limited Company, Qingyuan, 511827, Guangdong, China
| | - Ying Yang
- School of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| |
Collapse
|
6
|
Sekine K, Matsumura T, Takizawa T, Kimura Y, Saito S, Shiiba K, Shindo S, Okubo K, Ikezono T. Expression Profiling of MicroRNAs in the Inner Ear of Elderly People by Real-Time PCR Quantification. Audiol Neurootol 2017; 22:135-145. [DOI: 10.1159/000479724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/20/2017] [Indexed: 12/12/2022] Open
Abstract
The molecular mechanisms underlying age-related hearing loss are unknown, and currently, there is no treatment for this condition. Recent studies have shown that microRNAs (miRNAs) and age-related diseases are intimately linked, suggesting that some miRNAs may present attractive therapeutic targets. In this study, we obtained 8 human temporal bones from 8 elderly subjects at brain autopsy in order to investigate the expression profile of miRNAs in the inner ear with miRNA arrays. A mean of 478 different miRNAs were expressed in the samples, of which 348 were commonly expressed in all 8 samples. Of these, levels of 16 miRNAs significantly differed between young elderly and old elderly subjects. miRNAs, which play important roles in inner ear development, were detected in all samples, i.e., in both young and old elderly subjects, whether with or without hearing loss. Our results suggest that these miRNAs play important roles not only in development, but also in the maintenance of inner ear homeostasis.
Collapse
|
7
|
Almeida-Branco MS, Cabrera S, Lopez-Escamez JA. Perspectivas para el tratamiento de la hipoacusia neurosensorial mediante regeneración celular del oído interno. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2015; 66:286-95. [DOI: 10.1016/j.otorri.2014.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 07/30/2014] [Indexed: 12/16/2022]
|
8
|
Perspectives for the Treatment of Sensorineural Hearing Loss by Cellular Regeneration of the Inner Ear. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2015. [DOI: 10.1016/j.otoeng.2015.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Men Y, Zhang A, Li H, Zhang T, Jin Y, Li H, Zhang J, Gao J. LKB1 Is Required for the Development and Maintenance of Stereocilia in Inner Ear Hair Cells in Mice. PLoS One 2015; 10:e0135841. [PMID: 26274331 PMCID: PMC4537123 DOI: 10.1371/journal.pone.0135841] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/27/2015] [Indexed: 01/14/2023] Open
Abstract
The LKB1 gene, which encodes a serine/threonine kinase, was discovered to play crucial roles in cell differentiation, proliferation, and the establishment of cell polarity. In our study, LKB1 conditional knockout mice (Atoh1-LKB1-/- mice) were generated to investigate LKB1 function in the inner ear. Tests of auditory brainstem response and distortion product otoacoustic emissions revealed significant decreases in the hearing sensitivities of the Atoh1-LKB1-/- mice. In Atoh1-LKB1-/- mice, malformations of hair cell stereocilliary bundles were present as early as postnatal day 1 (P1), a time long before the maturation of the hair cell bundles. In addition, we also observed outer hair cell (OHC) loss starting at P14. The impaired stereocilliary bundles occurred long before the presence of hair cell loss. Stereociliary cytoskeletal structure depends on the core actin-based cytoskeleton and several actin-binding proteins. By Western blot, we examined actin-binding proteins, specifically ERM (ezrin/radixin/moesin) proteins involved in the regulation of the actin cytoskeleton of hair cell stereocilia. Our results revealed that the phosphorylation of ERM proteins (pERM) was significantly decreased in mutant mice. Thus, we propose that the decreased pERM may be a key factor for the impaired stereocillia function, and the damaged stereocillia may induce hair cell loss and hearing impairments. Taken together, our data indicates that LKB1 is required for the development and maintenance of stereocilia in the inner ear.
Collapse
Affiliation(s)
- Yuqin Men
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Aizhen Zhang
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Haixiang Li
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Tingting Zhang
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Yecheng Jin
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Huashun Li
- SARITEX Center for Stem Cell, Engineering Translational Medicine, Shanghai East Hospital, Advanced Institute of Translational Medicine, Tongji University School of Medicine, Shanghai, China
- Center for Stem Cell&Nano-Medicine, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Jian Zhang
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, Shandong, China
- * E-mail: (JG); (JZ)
| | - Jiangang Gao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, Shandong, China
- * E-mail: (JG); (JZ)
| |
Collapse
|
10
|
Ding L, Liu J, Shen HX, Pan LP, Liu QD, Zhang HD, Han L, Shuai LG, Ding EM, Zhao QN, Wang BS, Zhu BL. Analysis of plasma microRNA expression profiles in male textile workers with noise-induced hearing loss. Hear Res 2015; 333:275-282. [PMID: 26278637 DOI: 10.1016/j.heares.2015.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 07/29/2015] [Accepted: 08/11/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND Circulating microRNAs (miRNAs) have attracted interests as non-invasive biomarkers of physiological and pathological conditions, which may be applied in noise-induced hearing loss (NIHL). However, no epidemiology studies have yet examined the potential effects of NIHL or noise exposure on miRNA expression profiles. OBJECTIVES We sought to identify permanent NIHL-related miRNAs and to predict the biological functions of the putative genes encoding the indicated miRNAs. METHODS In the discovery stage, we used a microarray assay to detect the miRNA expression profiles between pooled plasma samples from 10 noise-exposed individuals with normal hearing and 10 NIHL patients. In addition, we conducted a preliminary validation of six candidate miRNAs in the same 20 workers. Subsequently, three miRNAs were selected for expanded validation in 23 non-exposed individuals with normal hearing and 46 noise-exposed textile workers which including 23 noise-exposed workers with normal hearing and 23 NIHL patients. Moreover, we predicted the biological functions of the putative target genes using a Gene Ontology (GO) function enrichment analysis. RESULTS In the discovery stage, compared with the noise exposures with normal hearing, 73 miRNAs demonstrated at least a 1.5-fold differential expression in the NIHL patients. In the preliminary validation, compared with the noise exposures, the plasma levels of miR-16-5p, miR-24-3p, miR-185-5p and miR-451a were all upregulated (P < 0.001) in the NIHL patients. In the expanded validation stage, compared with the non-exposures, the plasma levels of miR-24, miR-185-5p and miR-451a were all significantly downregulated (P < 0.001) in the exposures. And compared with the noise exposures, the plasma levels of miR-185-5p and miR-451a were slightly elevated (P < 0.001) in the NIHL patients, which were consistent with the results of preliminary validation and microarray analysis. CONCLUSION The two indicated plasma miRNAs may be biomarkers of indicating responses to noise exposure. However, further studies are necessary to prove the causal association between miRNAs changes and noise exposure, and to determine whether these two miRNAs are clear biomarkers to noise exposure.
Collapse
Affiliation(s)
- Lu Ding
- Suzhou Municipal Center for Disease Prevention and Control, Suzhou, Jiangsu, China
| | - Jing Liu
- Department of Occupational and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huan-Xi Shen
- Kunshan Municipal Center for Disease Prevention and Control, Suzhou, Jiangsu, China
| | - Li-Ping Pan
- Department of Occupational and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qing-Dong Liu
- Department of Occupational and Environmental Health, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Heng-Dong Zhang
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu, China
| | - Lei Han
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu, China
| | - Li-Guo Shuai
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - En-Min Ding
- Department of Occupational and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiu-Ni Zhao
- Department of Occupational and Environmental Health, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Bo-Shen Wang
- Department of Occupational and Environmental Health, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Bao-Li Zhu
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu, China.
| |
Collapse
|
11
|
Kersigo J, Fritzsch B. Inner ear hair cells deteriorate in mice engineered to have no or diminished innervation. Front Aging Neurosci 2015; 7:33. [PMID: 25852547 PMCID: PMC4364252 DOI: 10.3389/fnagi.2015.00033] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/28/2015] [Indexed: 12/14/2022] Open
Abstract
The innervation of the inner ear critically depends on the two neurotrophins Ntf3 and Bdnf. In contrast to this molecularly well-established dependency, evidence regarding the need of innervation for long-term maintenance of inner ear hair cells is inconclusive, due to experimental variability. Mutant mice that lack both neurotrophins could shed light on the long-term consequences of innervation loss on hair cells without introducing experimental variability, but do not survive after birth. Mutant mice with conditional deletion of both neurotrophins lose almost all innervation by postnatal day 10 and show an initially normal development of hair cells by this stage. No innervation remains after 3 weeks and complete loss of all innervation results in near complete loss of outer and many inner hair cells of the organ of Corti within 4 months. Mutants that retain one allele of either neurotrophin have only partial loss of innervation of the organ of Corti and show a longer viability of cochlear hair cells with more profound loss of inner hair cells. By 10 months, hair cells disappear with a base to apex progression, proportional to the residual density of innervation and similar to carboplatin ototoxicity. Similar to reports of hair cell loss after aminoglycoside treatment, blobbing of stereocilia of apparently dying hair cells protrude into the cochlear duct. Denervation of vestibular sensory epithelia for several months also resulted in variable results, ranging from unusual hair cells resembling the aberrations found in the organ of Corti, to near normal hair cells in the canal cristae. Fusion and/or resorption of stereocilia and loss of hair cells follows a pattern reminiscent of Myo6 and Cdc42 null mice. Our data support a role of innervation for long-term maintenance but with a remarkable local variation that needs to be taken into account when attempting regeneration of the organ of Corti.
Collapse
Affiliation(s)
| | - Bernd Fritzsch
- Department of Biology, University of IowaIowa City, IA, USA
| |
Collapse
|
12
|
Toward Translating Molecular Ear Development to Generate Hair Cells from Stem Cells. ADULT STEM CELLS 2014. [DOI: 10.1007/978-1-4614-9569-7_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Chiang DY, Cuthbertson DW, Ruiz FR, Li N, Pereira FA. A coregulatory network of NR2F1 and microRNA-140. PLoS One 2013; 8:e83358. [PMID: 24349493 PMCID: PMC3857795 DOI: 10.1371/journal.pone.0083358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/11/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Both nuclear receptor subfamily 2 group F member 1 (NR2F1) and microRNAs (miRNAs) have been shown to play critical roles in the developing and functional inner ear. Based on previous studies suggesting interplay between NR2F1 and miRNAs, we investigated the coregulation between NR2F1 and miRNAs to better understand the regulatory mechanisms of inner ear development and functional maturation. RESULTS Using a bioinformatic approach, we identified 11 potential miRNAs that might coregulate target genes with NR2F1 and analyzed their targets and potential roles in physiology and disease. We selected 6 miRNAs to analyze using quantitative real-time (qRT) -PCR and found that miR-140 is significantly down-regulated by 4.5-fold (P=0.004) in the inner ear of NR2F1 knockout (Nr2f1(-/-)) mice compared to wild-type littermates but is unchanged in the brain. Based on this, we performed chromatin-immunoprecipitation followed by qRT-PCR and confirmed that NR2F1 directly binds and regulates both miR-140 and Klf9 in vivo. Furthermore, we performed luciferase reporter assay and showed that miR-140 mimic directly regulates KLF9-3'UTR, thereby establishing and validating an example coregulatory network involving NR2F1, miR-140, and Klf9. CONCLUSIONS We have described and experimentally validated a novel tissue-dependent coregulatory network for NR2F1, miR-140, and Klf9 in the inner ear and we propose the existence of many such coregulatory networks important for both inner ear development and function.
Collapse
Affiliation(s)
- David Y. Chiang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - David W. Cuthbertson
- Bobby R. Alford Department of Otolaryngology- Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Fernanda R. Ruiz
- Huffington Center on Aging and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Na Li
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Fred A. Pereira
- Bobby R. Alford Department of Otolaryngology- Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, United States of America
- Huffington Center on Aging and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
14
|
Abstract
Basic helix-loop-helix (bHLH) transcription factors (TFs) are crucial for inner ear neurosensory development. The proneural TF Atoh1 regulates the differentiation of hair cells (HCs) whereas Neurog1 and Neurod1 regulate specification and differentiation of neurons, respectively, but also affect HC development. Expression of Delta and Jagged ligands in nascent HCs and Notch receptors in supporting cells induce supporting cell differentiation through the regulation of neurogenic bHLH TFs (such as Hes1, Hes5) and suppression of limited Atoh1 expression. In sensorineural hearing loss, HCs are lost followed by supporting cells and progressive degeneration of neurons, at least in rodents. Regaining complete hearing may require reconstituting the organ of Corti from scratch, including the two types of HCs, inner and outer hair cells with the precise sorting of two types of afferent (type I and II) and efferent (lateral and medial olivo-cochlear) innervation. We review effects of bHLH TF dosage and their cross-regulation to differentiate HC types in the organ of Corti. We categorize findings of specific gene expressions in HCs: 1. as markers without meaning for the regeneration task, 2. as stabilizers who are needed to maintain or complete differentiation, and 3. as decision-making genes, expressed and acting early enough to be useful in this process. Only one TF has been characterized that fits the last aspect: Atoh1. We propose that temporal and intensity variations of Atoh1 are naturally modulated to differentiate specific types of HCs. Importantly, the molecular means to modify the Atoh1 expression are at least partially understood and can be readily implemented in the attempts to regenerate specific types of HCs.
Collapse
|
15
|
Kopecky B, Fritzsch B. The myc road to hearing restoration. Cells 2012; 1:667-98. [PMID: 24710525 PMCID: PMC3901154 DOI: 10.3390/cells1040667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/12/2012] [Accepted: 09/14/2012] [Indexed: 01/01/2023] Open
Abstract
Current treatments for hearing loss, the most common neurosensory disorder, do not restore perfect hearing. Regeneration of lost organ of Corti hair cells through forced cell cycle re-entry of supporting cells or through manipulation of stem cells, both avenues towards a permanent cure, require a more complete understanding of normal inner ear development, specifically the balance of proliferation and differentiation required to form and to maintain hair cells. Direct successful alterations to the cell cycle result in cell death whereas regulation of upstream genes is insufficient to permanently alter cell cycle dynamics. The Myc gene family is uniquely situated to synergize upstream pathways into downstream cell cycle control. There are three Mycs that are embedded within the Myc/Max/Mad network to regulate proliferation. The function of the two ear expressed Mycs, N-Myc and L-Myc were unknown less than two years ago and their therapeutic potentials remain speculative. In this review, we discuss the roles the Mycs play in the body and what led us to choose them to be our candidate gene for inner ear therapies. We will summarize the recently published work describing the early and late effects of N-Myc and L-Myc on hair cell formation and maintenance. Lastly, we detail the translational significance of our findings and what future work must be performed to make the ultimate hearing aid: the regeneration of the organ of Corti.
Collapse
Affiliation(s)
- Benjamin Kopecky
- Department of Biology, 143 Biology Building, University of Iowa, Iowa City, IA 52242, USA.
| | - Bernd Fritzsch
- Department of Biology, 143 Biology Building, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
16
|
Kopecky BJ, Decook R, Fritzsch B. N-Myc and L-Myc are essential for hair cell formation but not maintenance. Brain Res 2012; 1484:1-14. [PMID: 23022312 DOI: 10.1016/j.brainres.2012.09.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/31/2012] [Accepted: 09/13/2012] [Indexed: 01/01/2023]
Abstract
Sensorineural hearing loss results from damage to the hair cells of the organ of Corti and is irreversible in mammals. While hair cell regeneration may prove to be the ideal therapy after hearing loss, prevention of initial hair cell loss could provide even more benefit at a lower cost. Previous studies have shown that the deletion of Atoh1 results in embryonic loss of hair cells while the absence of Barhl1, Gfi1, and Pou4f3 leads to the progressive loss of hair cells in newborn mice. We recently reported that in the early embryonic absence of N-Myc (using Pax2-Cre), hair cells in the organ of Corti develop and remain until at least seven days after birth, with subsequent progressive loss. Thus, N-Myc plays a role in hair cell viability; however, it is unclear if this is due to its early expression in hair cell precursors and throughout the growing otocyst as it functions through proliferation or its late expression exclusively in differentiated hair cells. Furthermore, the related family member L-Myc is mostly co-expressed in the ear, including in differentiated hair cells, but its function has not been studied and could be partially redundant to N-Myc. To test for a long-term function of the Mycs in differentiated hair cells, we generated nine unique genotypes knocking out N-Myc and/or L-Myc after initial formation of hair cells using the well-characterized Atoh1-Cre. We tested functionality of the auditory and vestibular systems at both P21 and four months of age and under the administration of the ototoxic drug cisplatin. We conclude that neither N-Myc nor L-Myc is likely to play important roles in long-term hair cell maintenance. Therefore, it is likely that the late-onset loss of hair cells resulting from early deletion of the Mycs leads to an unsustainable developmental defect.
Collapse
|
17
|
Transcriptomic analysis of the developing and adult mouse cochlear sensory epithelia. PLoS One 2012; 7:e42987. [PMID: 22900075 DOI: 10.1371/journal.pone.0042987] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 07/16/2012] [Indexed: 01/13/2023] Open
Abstract
The adult mammalian cochlea lacks regenerative ability and the irreversible degeneration of cochlear sensory hair cells leads to permanent hearing loss. Previous data show that early postnatal cochlea harbors stem/progenitor-like cells and shows a limited regenerative/repair capacity. These properties are progressively lost later during the postnatal development. Little is known about the genes and pathways that are potentially involved in this difference of the regenerative/repair potentialities between early postnatal and adult mammalian cochlear sensory epithelia (CSE). The goal of our study is to investigate the transcriptomic profiles of these two stages. We used Mouse Genome 430 2.0 microarray to perform an extensive analysis of the genes expressed in mouse postnatal day-3 (P3) and adult CSE. Statistical analysis of microarray data was performed using SAM (Significance Analysis of Microarrays) software. We identified 5644 statistically significant differentially expressed transcripts with a fold change (FC) >2 and a False Discovery Rate (FDR) ≤0.05. The P3 CSE signature included 3,102 transcripts, among which were known genes in the cochlea, but also new transcripts such as, Hmga2 (high mobility group AT-hook 2) and Nrarp (Notch-regulated ankyrin repeat protein). The adult CSE overexpressed 2,542 transcripts including new transcripts, such as Prl (Prolactin) and Ar (Androgen receptor), that previously were not known to be expressed in the adult cochlea. Our comparative study revealed important genes and pathways differentially expressed between the developing and adult CSE. The identification of new candidate genes would be useful as potential markers of the maintenance or the loss of stem cells and regenerative/repair ability during mammalian cochlear development.
Collapse
|
18
|
Pan N, Kopecky B, Jahan I, Fritzsch B. Understanding the evolution and development of neurosensory transcription factors of the ear to enhance therapeutic translation. Cell Tissue Res 2012; 349:415-32. [PMID: 22688958 DOI: 10.1007/s00441-012-1454-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/18/2012] [Indexed: 01/08/2023]
Abstract
Reconstructing a functional organ of Corti is the ultimate target towards curing hearing loss. Despite the impressive technical gains made over the last few years, many complications remain ahead for the two main restoration avenues: in vitro transformation of pluripotent cells into hair cell-like cells and adenovirus-mediated gene therapy. Most notably, both approaches require a more complete understanding of the molecular networks that ensure specific cell types form in the correct places to allow proper function of the restored organ of Corti. Important to this understanding are the basic helix-loop-helix (bHLH) transcription factors (TFs) that are highly diverse and serve to increase functional complexity but their evolutionary implementation in the inner ear neurosensory development is less conspicuous. To this end, we review the evolutionary and developmentally dynamic interactions of the three bHLH TFs that have been identified as the main players in neurosensory evolution and development, Neurog1, Neurod1 and Atoh1. These three TFs belong to the neurogenin/atonal family and evolved from a molecular precursor that likely regulated single sensory cell development in the ectoderm of metazoan ancestors but are now also expressed in other parts of the body, including the brain. They interact extensively via intracellular and intercellular cross-regulation to establish the two main neurosensory cell types of the ear, the hair cells and sensory neurons. Furthermore, the level and duration of their expression affect the specification of hair cell subtypes (inner hair cells vs. outer hair cells). We propose that appropriate manipulation of these TFs through their characterized binding sites may offer a solution by itself, or in conjunction with the two other approaches currently pursued by others, to restore the organ of Corti.
Collapse
Affiliation(s)
- Ning Pan
- Department of Biology, University of Iowa, College of Liberal Arts and Sciences, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
19
|
MicroRNAs in inner ear biology and pathogenesis. Hear Res 2012; 287:6-14. [PMID: 22484222 DOI: 10.1016/j.heares.2012.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 11/23/2022]
Abstract
MicroRNAs (miRNA) are a group of small noncoding RNAs that regulate gene expression. The discovery of these small RNAs has added a new layer of complexity to molecular biology. Every day, new advances are being made in understanding the biochemistry and genetics of miRNAs and their roles in cellular function and homeostasis. Studies indicate diverse roles for miRNAs in inner ear biology and pathogenesis. This article reviews recent developments in miRNA research in the field of inner ear biology. A brief history of miRNA discovery is discussed, and their genomics and functional roles are described. Advances in the understanding of miRNA involvement in inner ear development in the zebrafish and the mouse are presented. Finally, this review highlights the potential roles of miRNAs in genetic hearing loss, hair cell regeneration, and inner ear pathogenesis resulting from various pathological insults.
Collapse
|
20
|
Pan N, Jahan I, Kersigo J, Duncan JS, Kopecky B, Fritzsch B. A novel Atoh1 "self-terminating" mouse model reveals the necessity of proper Atoh1 level and duration for hair cell differentiation and viability. PLoS One 2012; 7:e30358. [PMID: 22279587 PMCID: PMC3261193 DOI: 10.1371/journal.pone.0030358] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 12/14/2011] [Indexed: 12/31/2022] Open
Abstract
Atonal homolog1 (Atoh1) is a bHLH transcription factor essential for inner ear hair cell differentiation. Targeted expression of Atoh1 at various stages in development can result in hair cell differentiation in the ear. However, the level and duration of Atoh1 expression required for proper hair cell differentiation and maintenance remain unknown. We generated an Atoh1 conditional knockout (CKO) mouse line using Tg(Atoh1-cre), in which the cre expression is driven by an Atoh1 enhancer element that is regulated by Atoh1 protein to “self-terminate” its expression. The mutant mice show transient, limited expression of Atoh1 in all hair cells in the ear. In the organ of Corti, reduction and delayed deletion of Atoh1 result in progressive loss of almost all the inner hair cells and the majority of the outer hair cells within three weeks after birth. The remaining cells express hair cell marker Myo7a and attract nerve fibers, but do not differentiate normal stereocilia bundles. Some Myo7a-positive cells persist in the cochlea into adult stages in the position of outer hair cells, flanked by a single row of pillar cells and two to three rows of disorganized Deiters cells. Gene expression analyses of Atoh1, Barhl1 and Pou4f3, genes required for survival and maturation of hair cells, reveal earlier and higher expression levels in the inner compared to the outer hair cells. Our data show that Atoh1 is crucial for hair cell mechanotransduction development, viability, and maintenance and also suggest that Atoh1 expression level and duration may play a role in inner vs. outer hair cell development. These genetically engineered Atoh1 CKO mice provide a novel model for establishing critical conditions needed to regenerate viable and functional hair cells with Atoh1 therapy.
Collapse
Affiliation(s)
- Ning Pan
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail: (NP); (BF)
| | - Israt Jahan
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Jennifer Kersigo
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Jeremy S. Duncan
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Benjamin Kopecky
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail: (NP); (BF)
| |
Collapse
|