1
|
Moreira GG, Taveira SF, Martins FT, Wagner KG, Marreto RN. Multivariate Analysis of Solubility Parameters for Drug-Polymer Miscibility Assessment in Preparing Raloxifene Hydrochloride Amorphous Solid Dispersions. AAPS PharmSciTech 2024; 25:127. [PMID: 38844724 DOI: 10.1208/s12249-024-02844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/21/2024] [Indexed: 09/05/2024] Open
Abstract
The success of obtaining solid dispersions for solubility improvement invariably depends on the miscibility of the drug and polymeric carriers. This study aimed to categorize and select polymeric carriers via the classical group contribution method using the multivariate analysis of the calculated solubility parameter of RX-HCl. The total, partial, and derivate parameters for RX-HCl were calculated. The data were compared with the results of excipients (N = 36), and a hierarchical clustering analysis was further performed. Solid dispersions of selected polymers in different drug loads were produced using solvent casting and characterized via X-ray diffraction, infrared spectroscopy and scanning electron microscopy. RX-HCl presented a Hansen solubility parameter (HSP) of 23.52 MPa1/2. The exploratory analysis of HSP and relative energy difference (RED) elicited a classification for miscible (n = 11), partially miscible (n = 15), and immiscible (n = 10) combinations. The experimental validation followed by a principal component regression exhibited a significant correlation between the crystallinity reduction and calculated parameters, whereas the spectroscopic evaluation highlighted the hydrogen-bonding contribution towards amorphization. The systematic approach presented a high discrimination ability, contributing to optimal excipient selection for the obtention of solid solutions of RX-HCl.
Collapse
Affiliation(s)
- Guilherme G Moreira
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás, 74.605-170, Brazil
| | - Stephânia F Taveira
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás, 74.605-170, Brazil
| | - Felipe T Martins
- Institute of Chemistry, Universidade Federal de Goiás, Goiânia, 74.001-970, Brazil
| | - Karl G Wagner
- Department of Pharmaceutics, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany
| | - Ricardo N Marreto
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás, 74.605-170, Brazil.
| |
Collapse
|
2
|
Stoilov B, Truong VK, Gronthos S, Vasilev K. Noninvasive and Microinvasive Nanoscale Drug Delivery Platforms for Hard Tissue Engineering. ACS APPLIED BIO MATERIALS 2023; 6:2925-2943. [PMID: 37565698 DOI: 10.1021/acsabm.3c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Bone tissue plays a crucial role in protecting internal organs and providing structural support and locomotion of the body. Treatment of hard tissue defects and medical conditions due to physical injuries, genetic disorders, aging, metabolic syndromes, and infections is more often a complex and drawn out process. Presently, dealing with hard-tissue-based clinical problems is still mostly conducted via surgical interventions. However, advances in nanotechnology over the last decades have led to shifting trends in clinical practice toward noninvasive and microinvasive methods. In this review article, recent advances in the development of nanoscale platforms for bone tissue engineering have been reviewed and critically discussed to provide a comprehensive understanding of the advantages and disadvantages of noninvasive and microinvasive methods for treating medical conditions related to hard tissue regeneration and repair.
Collapse
Affiliation(s)
- Borislav Stoilov
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Vi Khanh Truong
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Stan Gronthos
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide/SAHMRI, North Terrace, Adelaide, South Australia 5001, Australia
| | - Krasimir Vasilev
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| |
Collapse
|
3
|
Pant A, Kaur T, Sharma T, Singh J, Suttee A, Barnwal RP, Kaur IP, Singh G, Singh B. A glass matrices-assisted quantum dots-based biosensor for selective capturing and detection of Escherichia coli. JOURNAL OF WATER AND HEALTH 2022; 20:1673-1687. [PMID: 36573672 DOI: 10.2166/wh.2022.293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bacterial contamination of water and food is a grave health concern rendering humans quite vulnerable to disease(s), and proving, at times, fatal too. Exploration of the novel diagnostic tools is, accordingly, highly called for to ensure rapid detection of the pathogenic bacteria, particularly Escherichia coli. The current manuscript, accordingly, reports the use of silane-functionalized glass matrices and antibody-conjugated cadmium telluride (CdTe) quantum dots (QDs) for efficient detection of E. coli. Synthesis of QDs (size: 5.4-6.8 nm) using mercaptopropionic acid (MPA) stabilizer yielded stable photoluminescence (∼62%), corroborating superior fluorescent characteristics. A test sample, when added to antibody-conjugated matrices, followed by antibody-conjugated CdTe-MPA QDs, formed a pathogen-antibody QDs complex. The latter, during confocal microscopy, demonstrated rapid detection of the selectively captured pathogenic bacteria (10 microorganism cells/10 μL) with enhanced sensitivity and specificity. The work, overall, encompasses establishment and design of an innovative detection platform in microbial diagnostics for rapid capturing of pathogens in water and food samples.
Collapse
Affiliation(s)
- Anjali Pant
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India 160014
| | - Taranvir Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India 160014
| | - Teenu Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India 140401
| | - Joga Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India 160014
| | - Ashish Suttee
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Punjab, India
| | | | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India 160014
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India 160014
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India 160014 ; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India 140401
| |
Collapse
|
4
|
Alyamani M, Alshehri S, Alam P, Ud Din Wani S, Ghoneim MM, Shakeel F. Solubility and solution thermodynamics of raloxifene hydrochloride in various (DMSO + water) compositions. ALEXANDRIA ENGINEERING JOURNAL 2022; 61:9119-9128. [DOI: 10.1016/j.aej.2022.02.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
|
5
|
Zupančič O, Spoerk M, Paudel A. Lipid-based solubilization technology via hot melt extrusion: promises and challenges. Expert Opin Drug Deliv 2022; 19:1013-1032. [PMID: 35943158 DOI: 10.1080/17425247.2022.2112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Self-emulsifying drug delivery systems (SEDDS) are a promising strategy to improve the oral bioavailability of poorly water-soluble drugs (PWSD). The excipients of SEDDS enable permeation through the mucus and gastro-intestinal barrier, inhibiting efflux transporters (e.g. P-glycoprotein) of drugs. Poor drug loading capacity and formulation instability are the main setbacks of traditional SEDDS. The use of polymeric precipitation inhibitors was shown to create supersaturable SEDDS with increased drug payload, and their solidification can help to overcome the instability challenge. As an alternative to several existing SEDDS solidification technologies, hot melt extrusion (HME) holds the potential for lean and continuous manufacturing of supersaturable solid-SEDDS. Despite being ubiquitously applied in solid lipid and polymeric processing, HME has not yet been widely considered for the preparation of SEDDS. AREAS COVERED The review begins with the rationale why SEDDS as the preferred lipid-based delivery systems (LBDS) is suitable for the oral delivery of PWSD and discusses the common barriers to oral administration. The potential of LBDS to surmount them is discussed. SEDDS as the flagship of LBDS for PWSD is proposed with a special emphasis on solid-SEDDS. Finally, the opportunities and challenges of HME from the lipid-based excipient (LBE) processing and product performance standpoint are highlighted. EXPERT OPINION HME can be a continuous, solvent-free, cost-effective, and scalable technology for manufacturing solid supersaturable SEDDS. Several critical formulations and process parameters in successfully preparing SEDDS via HME are identified.
Collapse
Affiliation(s)
- Ožbej Zupančič
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria.,Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
6
|
Gao H, Jia H, Dong J, Yang X, Li H, Ouyang D. Integrated in silico formulation design of self-emulsifying drug delivery systems. Acta Pharm Sin B 2021; 11:3585-3594. [PMID: 34900538 PMCID: PMC8642610 DOI: 10.1016/j.apsb.2021.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
The drug formulation design of self-emulsifying drug delivery systems (SEDDS) often requires numerous experiments, which are time- and money-consuming. This research aimed to rationally design the SEDDS formulation by the integrated computational and experimental approaches. 4495 SEDDS formulation datasets were collected to predict the pseudo-ternary phase diagram by the machine learning methods. Random forest (RF) showed the best prediction performance with 91.3% for accuracy, 92.0% for sensitivity and 90.7% for specificity in 5-fold cross-validation. The pseudo-ternary phase diagrams of meloxicam SEDDS were experimentally developed to validate the RF prediction model and achieved an excellent prediction accuracy (89.51%). The central composite design (CCD) was used to screen the best ratio of oil-surfactant-cosurfactant. Finally, molecular dynamic (MD) simulation was used to investigate the molecular interaction between excipients and drugs, which revealed the diffusion behavior in water and the role of cosurfactants. In conclusion, this research combined machine learning, central composite design, molecular modeling and experimental approaches for rational SEDDS formulation design. The integrated computer methodology can decrease traditional drug formulation design works and bring new ideas for future drug formulation design.
Collapse
|
7
|
Ultradeformable vesicles: concepts and applications relating to the delivery of skin cosmetics. Ther Deliv 2021; 12:739-756. [PMID: 34519219 DOI: 10.4155/tde-2021-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Skin aging is a phenomenon resulting in reduced self-confidence, thus becoming a major factor in social determinants of health. The use of active cosmetic ingredients can help prevent skin aging. Transfersomes are well known to be capable of deeply penetrating the dermis. This scoping review provides an insight into transfersomes and their prospective use in anti-aging cosmetics. Numerous reports exist highlighting the successful skin delivery of therapeutic agents such as high-molecular-weight, poorly water soluble and poorly permeable active ingredients by means of transfersomes. Moreover, in vitro and in vivo studies have indicated that transfersomes increase the deposition, penetration and efficacy of active ingredients. However, the use of transfersomes in the delivery of active cosmetic ingredients is limited. Considering their similar physicochemical properties, transfersomes should possess considerable potential as a delivery system for anti-aging cosmetics.
Collapse
|
8
|
Lin L, Asghar S, Huang L, Hu Z, Ping Q, Chen Z, Shao F, Xiao Y. Preparation and evaluation of oral self-microemulsifying drug delivery system of Chlorophyll. Drug Dev Ind Pharm 2021; 47:857-866. [PMID: 33650446 DOI: 10.1080/03639045.2021.1892746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE This study was aimed at improving the water solubility and oral bioavailability of Chl by self-microemulsifying drug delivery system (Chl-SMEDDS). METHODS Compatibility experiments, pseudo-ternary phase diagram and central composite design were used to optimize the formulation. The selected systems were further evaluated for physical characteristics, including particle size, zeta potential, and appearance. The stability, in vitro dispersion test, and in vivo intestinal perfusion experiments were used to evaluate the SMEDDS. RESULTS The optimal composition of Chl-SMEDDS included: Labrafil M 1944 CS (35%), kolliphor RH 40 (46%), Transcutol HP (19%) and 60 mg/g Chl. The appearance of water emulsified Chl-SMEDDS was green and transparent. The particle size, ζ-potential, and transmission electron microscopy studies showed that spherical globules of Chl-SMEDDS with a size of about 22.82 ± 1.29 nm and a negative surface charge of -24.21 ± 3.45 mV were obtained. Chl-SMEDDS could remain stable at 25 °C and 4 °C for at least 6 months. The dispersion test showed that Chl-SMEDDS dispersed spontaneously to form microemulsion after disintegration of capsule shell and 90% drug dispersed in just 30 min in pH 1.2 HCl without any drug precipitation during the test period. In vivo intestinal perfusion experiment revealed that the main absorption site for Chl-SMEDDS was duodenum. CONCLUSIONS This study indicates that SMEDDS formulation could be an effective strategy for the oral administration of Chl.
Collapse
Affiliation(s)
- Ling Lin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Sajid Asghar
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Lin Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Ziyi Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Qineng Ping
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Zhipeng Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China.,Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Shao
- Phase I Clinical Trial Unit, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanyu Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
9
|
Sethi S, Bhatia S, Kamboj S, Rana V. Exploring the feasibility of carbamoylethyl pullulan-g-palmitic acid polymeric micelles for the effective targeting of raloxifene to breast tumor: Optimization and preclinical evaluation. Int J Pharm 2021; 603:120720. [PMID: 34019973 DOI: 10.1016/j.ijpharm.2021.120720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/16/2022]
Abstract
Carbamoylethyl pullulan-grafted palmitic acid (CP-g-PA), a novel self-assembled polymer was synthesized and examined for its efficacy in delivering the raloxifene (RA) to mammary carcinoma. The synthesized CP-g-PA was confirmed by evaluating through various spectral and morphological attributes. Further, the central composite design-response surface methodology with two factors at three levels was utilized to obtain the optimized and stable polymeric micelles. The optimized formulation was subjected to in vitro and in vivo evaluation. RA loaded polymeric micelles (RA-PMs) were spherical in shape with particle size less than 100 nm and high entrapment efficiency (77.02%). The developed formulation exhibited pH-dependent release profile of RA when loaded in polymeric micelles and provides substantial compatibility to erythrocytes. In vivo pharmacokinetic study demonstrates that RA-PMs offers higher mean residence time and volume of distribution as compared to pure RA. Besides, the biodistribution study manifested enhanced drug concentration in tumor and decreased concentration in other tissue as compared to pure drug. The treatment with RA-PMs also increases the median survival time, tumor inhibition rate and % increase in life span of the tumor bearing rats. Overall, the results pointed towards the overwhelming response of RA when loaded into micelles made from CP-g-PA.
Collapse
Affiliation(s)
- Sheshank Sethi
- Pharmaceutics Division, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Sachin Bhatia
- Pharmaceutics Division, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | | | - Vikas Rana
- Pharmaceutics Division, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India.
| |
Collapse
|
10
|
Supersaturable self-microemulsifying delivery systems: an approach to enhance oral bioavailability of benzimidazole anticancer drugs. Drug Deliv Transl Res 2021; 11:675-691. [PMID: 33738676 DOI: 10.1007/s13346-021-00904-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 12/14/2022]
Abstract
This study explored the design of supersaturable self-microemulsifying drug delivery systems (S-SMEDDS) to address poor solubility and oral bioavailability of a novel benzimidazole derivative anticancer drug (BI). Firstly, self-microemulsifying drug delivery systems SMEDDS made of Miglyol® 812, Kolliphor® RH40, Transcutol® HP, and ethanol were prepared and loaded with the BI drug. Upon dispersion, the systems formed neutrally charged droplets of around 20 nm. However, drug precipitation was observed following incubation with simulated gastric fluid (pH 1.2). Aiming at reducing this precipitation and enhancing drug payload, supersaturable systems were then prepared by adding 1% hydroxypropyl cellulose as precipitation inhibitor. Supersaturable systems maintained a higher amount of drug in a supersaturated state in gastric medium compared with conventional formulations and were stable in simulated intestinal medium (pH 6.8). In vitro cell studies using Caco-2 cell line showed that these formulations reduced in a transient manner the transepithelial electrical resistance of the monolayers without toxicity. Accordingly, confocal images revealed that the systems accumulated at tight junctions after a 2 h exposure. In vivo pharmacokinetic studies carried out following oral administration of BI-loaded S-SMEDDS, SMEDDS, and free drug to healthy mice showed that supersaturable systems promoted drug absorption compared with the other formulations. Overall, these data highlight the potential of using the supersaturable approach as an alternative to conventional SMEDDS for improving oral systemic absorption of lipophilic drugs.
Collapse
|
11
|
Verma R, Kaushik A, Almeer R, Rahman MH, Abdel-Daim MM, Kaushik D. Improved Pharmacodynamic Potential of Rosuvastatin by Self-Nanoemulsifying Drug Delivery System: An in vitro and in vivo Evaluation. Int J Nanomedicine 2021; 16:905-924. [PMID: 33603359 PMCID: PMC7881784 DOI: 10.2147/ijn.s287665] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/31/2020] [Indexed: 01/16/2023] Open
Abstract
PURPOSE The purpose of this proposed research was to investigate a nano-formulation developed using self-nanoemulsifying drug delivery system (SNEDDS) to improve the pharmacodynamic potential of rosuvastatin by assisting its transportation through lymphatic circulation. METHODS The utilized lipids, surfactants, and co-surfactants for SNEDDS were selected on the basis of solubility studies. The SNEDDS formulation was optimized by implementing a D-optimal mixture design, wherein the effect of concentration of Capmul MCM EP (X1), Tween 20 (X2) and Transcutol P (X3) as independent variables was studied on droplet size (Y1), % cumulative drug release (Y2) and self-emulsification time (Y3) as dependent variables. The optimized formulation was evaluated via in vitro parameters and in vivo pharmacodynamic potential in Wistar rats. RESULTS The D-optimal mixture design and subsequent ANOVA application resulted in the assortment of the optimized SNEDDS formulation that exhibited a droplet size of nano range (14.91nm), in vitro drug release of >90% within 30 minutes, and self-emulsification time of 16 seconds. The in vivo pharmacodynamic study carried out using Wistar rats confirmed the better antihyperlipidemic potential of developed formulation in normalizing the lipidic level of serum in contrast to pure drug and marketed tablets. CONCLUSION This research reports the application of D-optimal mixture design for successful and systematic development of rosuvastatin-loaded SNEDDS with distinctly enhanced in vitro and in vivo performance in comparison to marketed formulation. Eventually, improved anti-hyperlipidemic efficacy was envisaged which might be attributed to increased drug solubility and absorption. Overall, this study shows the utility of SNEDDS for improving the dissolution rate and bioavailability of poor aqueous-soluble drugs. The present SNEDDS formulation could be a promising approach and alternative to conventional dosage form.
Collapse
Affiliation(s)
- Ravinder Verma
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Division of Sciences, Arts, & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805-8531, USA
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| |
Collapse
|
12
|
Verma R, Kaushik D. Design and optimization of candesartan loaded self-nanoemulsifying drug delivery system for improving its dissolution rate and pharmacodynamic potential. Drug Deliv 2020; 27:756-771. [PMID: 32397771 PMCID: PMC7269045 DOI: 10.1080/10717544.2020.1760961] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
During the last decades, much attention has been focused on SNEDDS approach to resolve concerns of BCS II class drugs with accentuation on upgrading the solubility and bioavailability. The present hypothesis confirms the theory that SNEDDS can reduce the impact of food on Candesartan solubilization, thereby offering the potential for improved oral delivery without co-administration with meals. The present studies describe quality-by-design-based development and characterization of Candesartan loaded SNEDDS for improving its pharmacodynamic potential. D-optimal mixture design was used for systematic optimization of SNEDDS, which showed globule size of 13.91 nm, more rapid drug release rate of >90% in 30 min and 16 s for self-emulsification. The optimized formulations were extensively evaluated, where an in vitro drug release study indicated up to 1.99- and 1.10-fold enhancement in dissolution rate from SNEDDS over pure drug and marketed tablet. In vivo pharmacodynamic investigation also showed superior antihypertensive potential of SNEDDS in normalizing serum lipid levels as compared to pure drug and marketed tablet that was executed on male Wistar rats. Overall, this paper reports successful systematic development of candesartan-loaded SNEDDS with distinctly improved biopharmaceutical performance. This research work interpreted a major role of SNEDDS for enhancing the rate of dissolution and bioavailability of poorly water soluble drugs.
Collapse
Affiliation(s)
- Ravinder Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand
University, Rohtak, Haryana, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand
University, Rohtak, Haryana, India
| |
Collapse
|
13
|
Chemical Compound Chemical Treatment in Animal Husbandry. J CHEM-NY 2020. [DOI: 10.1155/2020/4263124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The acidulant is widely used in the production of animal husbandry, and its use is affected by many factors, including environmental factors, dosage, diet composition, and animal’s own factors, so only the correct use of the acidulant can bring good results in animal production and financial income. This article takes acidifier as an example to study the application of compound chemical treatment in livestock farms. In this paper, the effect of using acidulant in the first 1 to 3 weeks after early weaning of piglets is obvious through this experimental study. The effect gradually decreases after 3 weeks and basically has no effect after 4 weeks. Experimental studies have found that the combination of organic acids, antibiotics, and high copper is the most effective. These three have different functions and have complementary or additive effects. Under harsh feeding conditions, especially when the environmental sanitation and environmental conditions are relatively poor, the effect of acidulants is better than good feeding conditions. Experimental data show that fulvic acid depletes milk’s somatic cells in a short period of time and then quickly activates immune function, which is indicated by the increase in lymphocytes in the blood. When a large number of somatic cells migrate to the breast, the somatic cells in milk will also increase, thereby improving the immunity mediated by human cells. The experimental results show that the BFA formula added 1% to the cattle feed. After the research control of this experiment, the milk output increased by 9–17%, and the quality milk output increased by 19.12%, so the use of acidulant increased feed compensation and reduces gastrointestinal diseases and the reproduction of microorganisms in the rumen of dairy cows.
Collapse
|
14
|
Gahlawat N, Verma R, Kaushik D. Application of D-optimal Mixture Design for Development and Optimization of Olmesartan Medoxomil Loaded SMEDDS. CURRENT DRUG THERAPY 2020. [DOI: 10.2174/1574885515666200212094039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Olmesartan medoxomil is an angiotensin II receptor blocker
antihypertensive drug, which has low oral bioavailability because of poor aqueous solubility.
Objective:
The objective of the present research is the development and optimization of Olmesartan
medoxomil loaded self-micro emulsifying drug delivery system by D-optimal mixture design to
improve its dissolution rate.
Methods:
Solubility of Olmesartan medoxomil was determined in different oils, surfactants and cosurfactants.
The pseudo ternary diagram was constructed for the identification of self-micro
emulsification region. The D-optimal mixture design was employed for the optimization of SMEDDS
formulations wherein the factors optimized were the concentration of oil (X1), surfactant (X2), and
co-surfactant (X3) and the response was globule size (Y1) and dissolution rate (Y2). Developed selfmicroemulsifying
drug delivery system was further assessed for self-emulsification time, drug
loading capacity, transparency, globule size, in vitro dissolution and comparative in vitro dissolution
testing of optimized formulation with pure medicament and commercially available product.
Results:
The application of D-optimal mixture design resulted in 14 batches out of which F-5 was
found to be the optimized batch which contained Olmesartan medoxomil (20 mg), Capmul MCM
EP (23% v/v), Kolliphore EL (49% v/v) and Transcutol P (28% v/v) having globule size of 105 nm,
94.7% dissolution within 30 minutes. In vitro dissolution rate of the drug from SMEDDS was
appreciably higher than that of pure drug and marketed products.
Conclusion:
Olmesartan medoxomil self-microemulsifying drug delivery system was successfully
developed and this approach could prove to be suitable for the improvement of the dissolution rate
of BCS II class drugs.
Collapse
Affiliation(s)
- Navdeep Gahlawat
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, India
| | - Ravinder Verma
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, India
| |
Collapse
|
15
|
Park H, Ha ES, Kim MS. Current Status of Supersaturable Self-Emulsifying Drug Delivery Systems. Pharmaceutics 2020; 12:pharmaceutics12040365. [PMID: 32316199 PMCID: PMC7238279 DOI: 10.3390/pharmaceutics12040365] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Self-emulsifying drug delivery systems (SEDDSs) are a vital strategy to enhance the bioavailability (BA) of formulations of poorly water-soluble compounds. However, these formulations have certain limitations, including in vivo drug precipitation, poor in vitro in vivo correlation due to a lack of predictive in vitro tests, issues in handling of liquid formulation, and physico-chemical instability of drug and/or vehicle components. To overcome these limitations, which restrict the potential usage of such systems, the supersaturable SEDDSs (su-SEDDSs) have gained attention based on the fact that the inclusion of precipitation inhibitors (PIs) within SEDDSs helps maintain drug supersaturation after dispersion and digestion in the gastrointestinal tract. This improves the BA of drugs and reduces the variability of exposure. In addition, the formulation of solid su-SEDDSs has helped to overcome disadvantages of liquid or capsule dosage form. This review article discusses, in detail, the current status of su-SEDDSs that overcome the limitations of conventional SEDDSs. It discusses the definition and range of su-SEDDSs, the principle mechanisms underlying precipitation inhibition and enhanced in vivo absorption, drug application cases, biorelevance in vitro digestion models, and the development of liquid su-SEDDSs to solid dosage forms. This review also describes the effects of various physiological factors and the potential interactions between PIs and lipid, lipase or lipid digested products on the in vivo performance of su-SEDDSs. In particular, several considerations relating to the properties of PIs are discussed from various perspectives.
Collapse
|
16
|
Yan B, Wang Y, Ma Y, Zhao J, Liu Y, Wang L. In vitro and in vivo evaluation of poly (acrylic acid) modified mesoporous silica nanoparticles as pH response carrier for β-elemene self-micro emulsifying. Int J Pharm 2019; 572:118768. [PMID: 31669556 DOI: 10.1016/j.ijpharm.2019.118768] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/02/2019] [Accepted: 10/05/2019] [Indexed: 12/21/2022]
Abstract
The strategy of formulating poorly soluble actives as liquid self-micro emulsifying drug delivery system (SMEDDS) has been explored in more than a thousand research papers. However, there have been a limited number of reports on pH sensitive solid SMEDDS. This study explored the feasibility of using poly (acrylic acid) modified mesoporous silica nanoparticles (MSNs-PAA) as a pH-mediated solid SMEDDS carrier for β-elemene. This SMEDDS was optimized using a central composite design-response surface methodology, pseudo ternary phase diagrams, and studies of the preliminary stability. MSNs-PAA was synthesized and used for loading β-elemene SMEDDS. Ele/MSNs-PAA was capable of pH-sensitive release of β-elemene. In addition to structural analyses, the morphological and stability of this SMEDDS was also investigated. In comparison of the β-elemene solution and the SMEDDS, the Ele/MSNs-PAA demonstrated improved Cmax, AUC and MRT after oral administration. These results suggested that the MSNs-PAA could be further developed as a promising approach for the pH sensitive release of β-elemene SMEDDS with enhanced oral bioavailability.
Collapse
Affiliation(s)
- Beibei Yan
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yancai Wang
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yingying Ma
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Juan Zhao
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yangyang Liu
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Lulu Wang
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
17
|
Sawatdee S, Atipairin A, Sae Yoon A, Srichana T, Changsan N, Suwandecha T. Formulation Development of Albendazole-Loaded Self-Microemulsifying Chewable Tablets to Enhance Dissolution and Bioavailability. Pharmaceutics 2019; 11:E134. [PMID: 30897738 PMCID: PMC6471907 DOI: 10.3390/pharmaceutics11030134] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 01/02/2023] Open
Abstract
Albendazole is an anthelmintic agent with poor solubility and absorption. We developed a chewable tablet (200 mg drug equivalent), containing a self-microemulsifying drug delivery system (SMEDDS), with oral disintegrating properties. The emulsion was developed using sesame and soybean oils along with surfactant/co-surfactants, and the tablets were prepared by wet granulation using superdisintegrants and adsorbents. Infra-red (IR) spectral studies revealed no interaction between the drug and excipients, and all physical and chemical parameters were within acceptable limits. Stability studies for the formulation indicated no significant change over time. An in vitro release study indicated 100% drug release within 30 min, and in vivo plasma concentrations indicated that the area under the curve (AUC) of albendazole in rats administered SMEDDS chewable tablets was significantly higher than in those administered commercial tablets or powder (p-value < 0.05). The systemic bioavailability of albendazole achieved through the SMEDDS tablets was 1.3 times higher than that achieved by the administration of comparable quantities of albendazole commercial tablets. This was due to the higher dissolution of albendazole SMEDDS in the chewable tablets. We conclude that the SMEDDS chewable formulation can be used to improve the dissolution and systemic availability of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Somchai Sawatdee
- Drug and Cosmetics Excellence Center, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand.
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand.
| | - Apichart Atipairin
- Drug and Cosmetics Excellence Center, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand.
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand.
| | - Attawadee Sae Yoon
- Drug and Cosmetics Excellence Center, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand.
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand.
| | - Teerapol Srichana
- Drug Delivery System Excellence Center and Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| | - Narumon Changsan
- Faculty of Pharmacy, Rangsit University, Pathumtani 12000, Thailand.
| | - Tan Suwandecha
- Department of Pharmacology, Faculty of Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|