1
|
Kapoor DU, Vaishnav DJ, Garg R, Saini PK, Prajapati BG, Castro GR, Suttiruengwong S, Limmatvapirat S, Sriamornsak P. Exploring the impact of material selection on the efficacy of hot-melt extrusion. Int J Pharm 2025; 668:124966. [PMID: 39561905 DOI: 10.1016/j.ijpharm.2024.124966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/15/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
Hot-melt extrusion (HME) has emerged as a versatile and efficient technique in pharmaceutical formulation development, particularly for enhancing the solubility and bioavailability of poorly water-soluble drugs. This review delves into the fundamental principles of HME, exploring its application in drug delivery systems. A comprehensive analysis of polymers utilized in HME, such as hydroxypropyl methylcellulose, ethyl cellulose, hydroxypropyl cellulose, and polyvinylpyrrolidone, is presented, highlighting their roles in achieving controlled drug release and improved stability. The incorporation of plasticizers, such as triacetin, poly(propylene glycol), glycerol, and sorbitol, is critical in reducing the glass transition temperature (Tg) of polymer blends, thereby enhancing the processability of HME formulations. A comparison of Tg values for various polymer-plasticizer combinations is discussed using different predictive models. For researchers and industry professionals looking to optimize drug formulation strategies, this article offers valuable insights into the mechanisms through which HME enhances drug solubility and bioavailability two critical factors in oral drug delivery. Furthermore, by reviewing recent patents and marketed formulations, the article serves as a comprehensive resource for understanding both the technical advancements and commercial applications of HME. Readers will gain a deep understanding of the role of polymers and additives in HME, alongside future perspectives on how emerging materials and techniques could further revolutionize pharmaceutical development. This review is essential for those aiming to stay at the forefront of pharmaceutical extrusion technologies and their potential to improve therapeutic outcomes. The review concludes that meticulous material selection is vital for advancing pharmaceutical manufacturing processes and ensuring optimal outcomes in HME applications, thereby enhancing the overall efficacy of drug delivery systems.
Collapse
Affiliation(s)
- Devesh U Kapoor
- Dr. Dayaram Patel Pharmacy College, Bardoli 394601, Gujarat, India
| | - Devendra J Vaishnav
- CK Pithawala Institute of Pharmaceutical Education and Research, Surat 395007, Gujarat, India
| | - Rahul Garg
- Asian College of Pharmacy, Udaipur 313001, Rajasthan, India
| | - Pushpendra Kumar Saini
- Department of Pharmaceutics, Sri Balaji College of Pharmacy, Jaipur 302026, Rajasthan, India
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, Gujarat, India.
| | - Guillermo R Castro
- Nanomedicine Research Unit, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Sao Paulo 09210-580, Brazil
| | - Supakij Suttiruengwong
- Sustainable Materials Laboratory, Department of Materials Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Sontaya Limmatvapirat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Pornsak Sriamornsak
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand; Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India.
| |
Collapse
|
2
|
Raza MA, Sharma MK, Nagori K, Jain P, Ghosh V, Gupta U, Ajazuddin. Recent trends on polycaprolactone as sustainable polymer-based drug delivery system in the treatment of cancer: Biomedical applications and nanomedicine. Int J Pharm 2024; 666:124734. [PMID: 39343332 DOI: 10.1016/j.ijpharm.2024.124734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
The unique properties-such as biocompatibility, biodegradability, bio-absorbability, low cost, easy fabrication, and high versatility-have made polycaprolactone (PCL) the center of attraction for researchers. The derived introduction in this manuscript gives a pretty detailed overview of PCL, so you can first brush up on it. Discussion on the various PCL-based derivatives involves, but is not limited to, poly(ε-caprolactone-co-lactide) (PCL-co-LA), PCL-g-PEG, PCL-g-PMMA, PCL-g-chitosan, PCL-b-PEO, and PCL-g-PU specific properties and their probable applications in biomedicine. This paper has considered examining the differences in the diverse disease subtypes and the therapeutic value of using PCL. Advanced strategies for PCL in delivery systems are also considered. In addition, this review discusses recently patented products to provide a snapshot of recent updates in this field. Furthermore, the text probes into recent advances in PCL-based DDS, for example, nanoparticles, liposomes, hydrogels, and microparticles, while giving special attention to comparing the esters in the delivery of bioactive compounds such as anticancer drugs. Finally, we review future perspectives on using PCL in biomedical applications and the hurdles of PCL-based drug delivery, including fine-tuning mechanical strength/degradation rate, biocompatibility, and long-term effects in living systems.
Collapse
Affiliation(s)
- Mohammad Adnan Raza
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Mukesh Kumar Sharma
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Kushagra Nagori
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Parag Jain
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Vijayalakshmi Ghosh
- Department of Biotechnology, GD Rungta College of Science & Technology, Bhilai 490024, Chhattisgarh, India
| | - Umesh Gupta
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India; Rungta College of Engineering and Technology, Bhilai 490024, Chhattisgarh, India.
| |
Collapse
|
3
|
Triboandas H, Bezerra M, Almeida J, de Castro M, Santos BAMC, Schlindwein W. Optimizing extrusion processes and understanding conformational changes in itraconazole amorphous solid dispersions using in-line UV-Vis spectroscopy and QbD principles. Int J Pharm X 2024; 8:100308. [PMID: 39687500 PMCID: PMC11647160 DOI: 10.1016/j.ijpx.2024.100308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
This paper presents a comprehensive investigation of the manufacturing of itraconazole (ITZ) amorphous solid dispersions (ASDs) with Kolllidon® VA64 (KVA64) using hot-melt extrusion (HME) and in-line process monitoring, employing a Quality by Design (QbD) approach. A sequential Design of Experiments (DoE) strategy was utilized to optimize the manufacturing process, with in-line UV-Vis spectroscopy providing real-time monitoring. The first DoE used a fractional factorial screening design to evaluate critical process parameters (CPPs), revealing that ITZ concentration had the most significant impact on the product quality attributes. The second DoE, employing a central composite design, explored the interactions between feed rate and screw speed, using torque and absorbance at 370 nm as responses to develop a design space. Validation studies confirmed process robustness across multiple days, with stable in-line UV-Vis spectra and consistent product quality using 30 % ITZ, 300 rpm, 150 °C and 7 g/min as the optimized process conditions. Theoretical and experimental analyses indicated that shifts in UV-Vis spectra at different ITZ concentrations were due to conformational changes in ITZ, which were confirmed through density functional theory (DFT) calculations and infrared spectroscopy. This work offers novel insights into the production and monitoring of ITZ-KVA64-ASDs, demonstrating that in-line UV-Vis spectroscopy is a powerful tool for real-time process monitoring and/or control.
Collapse
Affiliation(s)
- Hetvi Triboandas
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Mariana Bezerra
- GlaxoSmithKline, David Jack Centre, Harris Lane, Ware, Hertfordshire SG12 0GX, UK
| | | | - Matheus de Castro
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | | | | |
Collapse
|
4
|
Domsta V, Boralewski T, Ulbricht M, Schick P, Krause J, Seidlitz A. Stability of Dexamethasone during Hot-Melt Extrusion of Filaments based on Eudragit® RS, Ethyl Cellulose and Polyethylene Oxide. Int J Pharm X 2024; 8:100263. [PMID: 39040516 PMCID: PMC11260382 DOI: 10.1016/j.ijpx.2024.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Hot-melt extrusion (HME) potentially coupled with 3D printing is a promising technique for the manufacturing of dosage forms such as drug-eluting implants which might even be individually adapted to patient-specific anatomy. However, these manufacturing methods involve the risk of thermal degradation of incorporated drugs during processing. In this work, the stability of the anti-inflammatory drug dexamethasone (DEX) was studied during HME using the polymers Eudragit® RS, ethyl cellulose and polyethylene oxide. The extrusion process was performed at different temperatures. Furthermore, the influence of accelerated screw speed, the addition of the plasticizers triethyl citrate and polyethylene glycol 6000 or the addition of the antioxidants butylated hydroxytoluene and tocopherol in two concentrations were studied. The DEX recovery was analyzed by a high performance liquid chromatography method suitable for the detection of thermal degradation products. The strongest impact on the drug stability was found for the processing temperature, which was found to reduce the DEX recovery to <20% for certain processing conditions. In addition, differences between tested polymers were observed, whereas the use of additives did not result in remarkable changes in drug stability. In conclusion, suitable extrusion parameters were identified for the processing of DEX with high drug recovery rates for the tested polymers. Moreover, the importance of a suitable analysis method for drug stability during HME that is influenced by several parameters was highlighted.
Collapse
Affiliation(s)
- Vanessa Domsta
- University of Greifswald, Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Tessa Boralewski
- University of Greifswald, Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Martin Ulbricht
- University of Greifswald, Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Philipp Schick
- University of Greifswald, Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Julius Krause
- University of Greifswald, Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Anne Seidlitz
- University of Greifswald, Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Munir N, de Lima T, Nugent M, McAfee M. In-line NIR coupled with machine learning to predict mechanical properties and dissolution profile of PLA-Aspirin. FUNCTIONAL COMPOSITE MATERIALS 2024; 5:14. [PMID: 39391170 PMCID: PMC11461551 DOI: 10.1186/s42252-024-00063-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
In the production of polymeric drug delivery devices, dissolution profile and mechanical properties of the drug loaded polymeric matrix are considered important Critical Quality Attributes (CQA) for quality assurance. However, currently the industry relies on offline testing methods which are destructive, slow, labour intensive, and costly. In this work, a real-time method for predicting these CQAs in a Hot Melt Extrusion (HME) process is explored using in-line NIR and temperature sensors together with Machine Learning (ML) algorithms. The mechanical and drug dissolution properties were found to vary significantly with changes in processing conditions, highlighting that real-time methods to accurately predict product properties are highly desirable for process monitoring and optimisation. Nonlinear ML methods including Random Forest (RF), K-Nearest Neighbours (KNN) and Recursive Feature Elimination with RF (RFE-RF) outperformed commonly used linear machine learning methods. For the prediction of tensile strength RFE-RF and KNN achieved R 2 values 98% and 99%, respectively. For the prediction of drug dissolution, two time points were considered with drug release at t = 6 h as a measure of the extent of burst release, and t = 96 h as a measure of sustained release. KNN and RFE-RF achieved R 2 values of 97% and 96%, respectively in predicting the drug release at t = 96 h. This work for the first time reports the prediction of drug dissolution and mechanical properties of drug loaded polymer product from in-line data collected during the HME process. Supplementary Information The online version contains supplementary material available at 10.1186/s42252-024-00063-5.
Collapse
Affiliation(s)
- Nimra Munir
- Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University, ATU Sligo, Ash Lane, Co. Sligo F91 YW50 Ireland
- Centre for Precision Engineering, Materials and Manufacturing (PEM Centre), Atlantic Technological University, ATU Sligo, Ash Lane, Co. Sligo F91 YW50 Ireland
| | - Tielidy de Lima
- Materials Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone, N37HD68 Ireland
| | - Michael Nugent
- Materials Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone, N37HD68 Ireland
| | - Marion McAfee
- Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University, ATU Sligo, Ash Lane, Co. Sligo F91 YW50 Ireland
- Centre for Precision Engineering, Materials and Manufacturing (PEM Centre), Atlantic Technological University, ATU Sligo, Ash Lane, Co. Sligo F91 YW50 Ireland
| |
Collapse
|
6
|
Zupan N, Yous I, Danede F, Verin J, Kouach M, Foulon C, Dudognon E, Florin Muschert S. Impact of Hot-Melt Extrusion on Glibenclamide's Physical and Chemical States and Dissolution Behavior: Case Studies with Three Polymer Blend Matrices. Pharmaceutics 2024; 16:1071. [PMID: 39204416 PMCID: PMC11360095 DOI: 10.3390/pharmaceutics16081071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
This research work dives into the complexity of hot-melt extrusion (HME) and its influence on drug stability, focusing on solid dispersions containing 30% of glibenclamide and three 50:50 polymer blends. The polymers used in the study are Ethocel Standard 10 Premium, Kollidon SR and Affinisol HPMC HME 4M. Glibenclamide solid dispersions are characterized using thermal analyses (thermogravimetric analysis (TGA) and differential scanning calorimetry), X-ray diffraction and scanning electron microscopy. This study reveals the transformation of glibenclamide into impurity A during the HME process using mass spectrometry and TGA. Thus, it enables the quantification of the extent of degradation. Furthermore, this work shows how polymer-polymer blend matrices exert an impact on process parameters, the active pharmaceutical ingredient's physical state, and drug release behavior. In vitro dissolution studies show that the polymeric matrices investigated provide extended drug release (over 24 h), mainly dictated by the polymer's chemical nature. This paper highlights how glibenclamide is degraded during HME and how polymer selection crucially affects the sustained release dynamics.
Collapse
Affiliation(s)
- Nina Zupan
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France; (N.Z.)
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET, F-59000 Lille, France (E.D.)
| | - Ines Yous
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France; (N.Z.)
| | - Florence Danede
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET, F-59000 Lille, France (E.D.)
| | - Jeremy Verin
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France; (N.Z.)
| | - Mostafa Kouach
- Univ. Lille, CHU Lille, ULR 7365-GRITA, F-59000 Lille, France
| | | | - Emeline Dudognon
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET, F-59000 Lille, France (E.D.)
| | | |
Collapse
|
7
|
Mora-Castaño G, Millán-Jiménez M, Niederquell A, Schönenberger M, Shojaie F, Kuentz M, Caraballo I. Amorphous solid dispersion of a binary formulation with felodipine and HPMC for 3D printed floating tablets. Int J Pharm 2024; 658:124215. [PMID: 38740104 DOI: 10.1016/j.ijpharm.2024.124215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
This study focuses on the combination of three-dimensional printing (3DP) and amorphous solid dispersion (ASD) technologies for the manufacturing of gastroretentive floating tablets. Employing hot melt extrusion (HME) and fused deposition modeling (FDM), the study investigates the development of drug-loaded filaments and 3D printed (3DP) tablets containing felodipine as model drug and hydroxypropyl methylcellulose (HPMC) as the polymeric carrier. Prior to fabrication, solubility parameter estimation and molecular dynamics simulations were applied to predict drug-polymer interactions, which are crucial for ASD formation. Physical bulk and surface characterization complemented the quality control of both drug-loaded filaments and 3DP tablets. The analysis confirmed a successful amorphous dispersion of felodipine within the polymeric matrix. Furthermore, the low infill percentage and enclosed design of the 3DP tablet allowed for obtaining low-density systems. This structure resulted in buoyancy during the entire drug release process until a complete dissolution of the 3DP tablets (more than 8 h) was attained. The particular design made it possible for a single polymer to achieve a zero-order controlled release of the drug, which is considered the ideal kinetics for a gastroretentive system. Accordingly, this study can be seen as an advancement in ASD formulation for 3DP technology within pharmaceutics.
Collapse
Affiliation(s)
- Gloria Mora-Castaño
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| | - Mónica Millán-Jiménez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Andreas Niederquell
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, CH 4132 Muttenz, Switzerland
| | - Monica Schönenberger
- University of Basel, Swiss Nanoscience Institute, Nano Imaging Lab, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Fatemeh Shojaie
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| | - Martin Kuentz
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, CH 4132 Muttenz, Switzerland
| | - Isidoro Caraballo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
8
|
Gupta A, Dahima R, Panda SK, Gupta A, Singh GD, Wani TA, Hussain A, Rathore D. QbD-Based Development and Evaluation of Pazopanib Hydrochloride Extrudates Prepared by Hot-Melt Extrusion Technique: In Vitro and In Vivo Evaluation. Pharmaceutics 2024; 16:764. [PMID: 38931886 PMCID: PMC11206766 DOI: 10.3390/pharmaceutics16060764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Pazopanib hydrochloride (PZB) is a protein kinase inhibitor approved by the United States Food and Drug Administration and European agencies for the treatment of renal cell carcinoma and other renal malignancies. However, it exhibits poor aqueous solubility and inconsistent oral drug absorption. In this regard, the current research work entails the development and evaluation of the extrudates of pazopanib hydrochloride by the hot-melt extrusion (HME) technique for solubility enhancement and augmenting oral bioavailability. RESULTS Solid dispersion of the drug was prepared using polymers such as Kollidon VA64, hydroxypropylmethylcellulose (HPMC), Eudragit EPO, and Affinisol 15LV in a 1:2 ratio by the HME process through a lab-scale 18 mm extruder. Systematic optimization of the formulation variables was carried out with the help of custom screening design (JMP Software by SAS, Version 14.0) to study the impact of polymer type and plasticizer level on the quality of extrudate processability by measuring the torque value, appearance, and disintegration time as the responses. The polymer blends containing Kollidon VA64 and Affinisol 15LV resulted in respective clear transparent extrudates, while Eudragit EPO and HPMC extrudates were found to be opaque white and brownish, respectively. Furthermore, evaluation of the impact of process parameters such as screw rpm and barrel temperature was measured using a definitive screening design on the extrude appearance, torque, disintegration time, and dissolution profile. Based on the statistical outcomes, it can be concluded that barrel temperature has a significant impact on torque, disintegration time, and dissolution at 30 min, while screw speed has an insignificant impact on the response variables. Affinisol extrudates showed less moisture uptake and faster dissolution in comparison to Kollidon VA64 extrudates. Affinisol extrudates were evaluated for polymorphic stability up to a 3-month accelerated condition and found no recrystallization. PZB-Extrudates using the Affinisol polymer (Test formulation A) revealed significantly higher bioavailability (AUC) in comparison to the free Pazopanib drug and marketed formulation.
Collapse
Affiliation(s)
- Amit Gupta
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshashila Campus, Ring Road, Indore 452001, India; (R.D.); (D.R.)
| | - Rashmi Dahima
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshashila Campus, Ring Road, Indore 452001, India; (R.D.); (D.R.)
| | - Sunil K. Panda
- Research & Development, GM Pharmaceutical Inc., 0114 Tbilisi, Georgia;
| | - Annie Gupta
- Amity Institute of Pharmacy, Amity University, Sector 125, Noida 201303, India
| | - Gaurav Deep Singh
- Department of Chemistry, Radha Govind University, Ramgarh 829122, India
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Devashish Rathore
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshashila Campus, Ring Road, Indore 452001, India; (R.D.); (D.R.)
| |
Collapse
|
9
|
Wdowiak K, Tajber L, Miklaszewski A, Cielecka-Piontek J. Sweeteners Show a Plasticizing Effect on PVP K30-A Solution for the Hot-Melt Extrusion of Fixed-Dose Amorphous Curcumin-Hesperetin Solid Dispersions. Pharmaceutics 2024; 16:659. [PMID: 38794322 PMCID: PMC11124940 DOI: 10.3390/pharmaceutics16050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The co-administration of curcumin and hesperetin might be beneficial in terms of neuroprotective activity; therefore, in this study, we attempted to develop a fixed-dose formulation comprising these two compounds in an amorphous state. The aim of obtaining an amorphous state was to overcome the limitations of the low solubility of the active compounds. First, we assessed the possibility of using popular sweeteners (erythritol, xylitol, and sorbitol) as plasticizers to reduce the glass transition temperature of PVP K30 to prepare the polymer-excipient blends, which allowed the preparation of amorphous solid dispersions via hot-melt extrusion at a temperature below the original glass transition of PVP K30. Erythritol proved to be the superior plasticizer. Then, we focused on the development of fixed-dose amorphous solid dispersions of curcumin and hesperetin. Powder X-ray diffraction and thermal analysis confirmed the amorphous character of dispersions, whereas infrared spectroscopy helped to assess the presence of intermolecular interactions. The amorphous state of the produced dispersions was maintained for 6 months, as shown in a stability study. Pharmaceutical parameters such as dissolution rate, solubility, and in vitro permeability through artificial membranes were evaluated. The best improvement in these features was noted for the dispersion, which contained 15% of the total content of the active compounds with erythritol used as the plasticizer.
Collapse
Affiliation(s)
- Kamil Wdowiak
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| | - Lidia Tajber
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin, D02 PN40 Dublin, Ireland;
| | - Andrzej Miklaszewski
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| |
Collapse
|
10
|
Peng H, Han B, Tong T, Jin X, Peng Y, Guo M, Li B, Ding J, Kong Q, Wang Q. 3D printing processes in precise drug delivery for personalized medicine. Biofabrication 2024; 16:10.1088/1758-5090/ad3a14. [PMID: 38569493 PMCID: PMC11164598 DOI: 10.1088/1758-5090/ad3a14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
With the advent of personalized medicine, the drug delivery system will be changed significantly. The development of personalized medicine needs the support of many technologies, among which three-dimensional printing (3DP) technology is a novel formulation-preparing process that creates 3D objects by depositing printing materials layer-by-layer based on the computer-aided design method. Compared with traditional pharmaceutical processes, 3DP produces complex drug combinations, personalized dosage, and flexible shape and structure of dosage forms (DFs) on demand. In the future, personalized 3DP drugs may supplement and even replace their traditional counterpart. We systematically introduce the applications of 3DP technologies in the pharmaceutical industry and summarize the virtues and shortcomings of each technique. The release behaviors and control mechanisms of the pharmaceutical DFs with desired structures are also analyzed. Finally, the benefits, challenges, and prospects of 3DP technology to the pharmaceutical industry are discussed.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
- These authors contributed equally
| | - Bo Han
- Department of Pharmacy, Daqing Branch, Harbin Medical University, Daqing, People’s Republic of China
- These authors contributed equally
| | - Tianjian Tong
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| | - Xin Jin
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Yanbo Peng
- Department of Pharmaceutical Engineering, China Pharmaceutical University, 639 Longmian Rd, Nanjing 211198, People’s Republic of China
| | - Meitong Guo
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Bian Li
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Jiaxin Ding
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, People’s Republic of China
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| |
Collapse
|
11
|
Zhang P, Li J, Ashour EA, Chung S, Wang H, Vemula SK, Repka MA. Development of multiple structured extended release tablets via hot melt extrusion and dual-nozzle fused deposition modeling 3D printing. Int J Pharm 2024; 653:123905. [PMID: 38355075 DOI: 10.1016/j.ijpharm.2024.123905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
The study aims to fabricate extended release (ER) tablets using a dual-nozzle fused deposition modeling (FDM) three-dimensional (3D) printing technology based on hot melt extrusion (HME), using caffeine as the model compound. Three different ER tablets were developed, which obtained "delayed-release", "rapid-sustained release", and "release-lag-release" properties. Each type of tablet was printed with two different formulations. A novel printing method was employed in this study, which is to push the HME filament from behind with polylactic acid (PLA) to prevent sample damage by gears during the printing process. Powder X-ray diffractometry (PXRD) and differential scanning calorimetry (DSC) results showed that caffeine was predominately amorphous in the final tablets. The dissolution of 3D printed tablets was assessed using a USP-II dissolution apparatus. ER tablets containing PVA dissolved faster than those developed with Kollicoat IR. Overall, this study revealed that ER tablets were successfully manufactured through HME paired with dual-nozzle FDM 3D printing and demonstrated the power of 3D printing in developing multi-layer tablets with complex structures.
Collapse
Affiliation(s)
- Peilun Zhang
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Jinghan Li
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eman A Ashour
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Sooyeon Chung
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Honghe Wang
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Pii Center for Pharmaceutical Technology, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
12
|
Chamberlain R, Breitkreutz J, Fischer B. Drug content determination of low-dosed hot-melt extruded filaments using Raman spectroscopy. Pharm Dev Technol 2024; 29:258-264. [PMID: 38407128 DOI: 10.1080/10837450.2024.2323622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
The aim of this study was to evaluate the suitability of a non-disruptive Raman spectroscopic method to quantify drug concentrations below 5 w% within a polymer matrix produced by hot-melt extrusion (HME). For calibration, praziquantel (PZQ)-polyvinylpyrrolidone-vinylacetat-copolymer (PVP-VA) mixtures were extruded. By focusing the laser light of the Raman probe to a diameter of 1 mm and implementing a self-constructed filament holder, the signal-to-noise (S/N) ratio could be reduced considerably. The obtained Raman spectra show quite high fluorescence, which is likely to be caused by dissolved pharmaceutical active ingredient (API) in the polymer matrix. For content determination, HPLC analysis was conducted as a reference method using the same filament segments. A partial least squares (PLS) model, regressing the PZQ concentrations from HPLC method analysis versus the off-line collected Raman spectra, was developed. The linear correlation for a suitable extrusion run for the production of low-dosed filaments (extrusion 1, two kneading zones) is acceptable (R2 = 0.9915) while the correlation for a extrusion set-up with low miscibility (extrusion 2; without kneading zone) is unacceptable (R2 = 0.5349). The predictive performance of the calibration model from extrusion 1 is rated by the root mean square error of estimation (RMSEE), which was 0.08%. This calibration can now be used to validate the content of low-dosed filaments during HME.
Collapse
Affiliation(s)
- Rebecca Chamberlain
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Düsseldorf, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Düsseldorf, Germany
| | - Björn Fischer
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
13
|
Pluntze A, Beecher S, Anderson M, Wright D, Mudie D. Material-Sparing Feasibility Screening for Hot Melt Extrusion. Pharmaceutics 2024; 16:76. [PMID: 38258087 PMCID: PMC10819182 DOI: 10.3390/pharmaceutics16010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Hot melt extrusion (HME) offers a high-throughput process to manufacture amorphous solid dispersions. A variety of experimental and model-based approaches exist to predict API solubility in polymer melts, but these methods are typically aimed at determining the thermodynamic solubility and do not take into account kinetics of dissolution or the associated degradation of the API during thermal processing, both of which are critical considerations in generating a successful amorphous solid dispersion by HME. This work aims to develop a material-sparing approach for screening manufacturability of a given pharmaceutical API by HME using physically relevant time, temperature, and shear. Piroxicam, ritonavir, and phenytoin were used as model APIs with PVP VA64 as the dispersion polymer. We present a screening flowchart, aided by a simple custom device, that allows rapid formulation screening to predict both achievable API loadings and expected degradation from an HME process. This method has good correlation to processing with a micro compounder, a common HME screening industry standard, but only requires 200 mg of API or less.
Collapse
Affiliation(s)
- Amanda Pluntze
- Global Research and Development, Small Molecules, Lonza, 64550 Research Road, Bend, OR 97703, USA (D.M.)
| | | | | | | | | |
Collapse
|
14
|
Huzjak T, Jakasanovski O, Berginc K, Puž V, Zajc-Kreft K, Jeraj Ž, Janković B. Overcoming drug impurity challenges in amorphous solid dispersion with rational development of biorelevant dissolution-permeation method. Eur J Pharm Sci 2024; 192:106655. [PMID: 38016626 DOI: 10.1016/j.ejps.2023.106655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/26/2023] [Accepted: 11/25/2023] [Indexed: 11/30/2023]
Abstract
Hot-melt extrusion is often used to prepare amorphous solid dispersion to overcome low drug solubility and enhance bio-performance of the formulation. Due to the uniqueness of each drug - polymer combination and its physico-chemical properties, setting the appropriate HME barrel temperature, feed rate and screw speed ensures drug amorphization, absence of residual crystallinity, absence of water, and a suitable drug release profile. In this research, samples with BCS II/IV model drug and PVP/VA polymer were prepared to evaluate the impact of HME process parameters, incoming drug form (anhydrous vs. hydrate), and drug supplier (i.e., impurity profile), on biorelevant drug release. This study provides a relationship between observed in vitro supersaturation and precipitation behavior of amorphous solid dispersion formulation with in vivo results, on patients, by using the acceptor profile of side-by-side dissolution-permeation apparatus. An in vitro dissolution method, in small volumes, in an apparatus with paddles and dissolution-permeation side-by-side method was developed on the MicroFlux™ apparatus to assess if the differences observed in vitro bears relevance to the bioequivalence outcome in vivo. The former was used to guide the generic drug product development due to high discriminatory strength, while the latter was biorelevant, due to the inclusion of the second compartment assuring absorptive environment to capture the impact of supersaturation and subsequent precipitation on bioavailability. Bio-relevancy of the in vitro method was confirmed with the in vivo dog study and clinical study on patients, and an in vitro - in vivo correlation was established. For the investigated BCS II/IV drug, this research highlights the importance of considering supersaturation and formation of colloidal species during amorphous solid dispersion release testing to assure product quality, safety and efficacy.
Collapse
Affiliation(s)
- T Huzjak
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana 1000, Slovenia; Product Development, Lek Pharmaceuticals d.d., Verovškova 57, Ljubljana 1526, Slovenia.
| | - O Jakasanovski
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, Ljubljana 1526, Slovenia
| | - K Berginc
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, Ljubljana 1526, Slovenia
| | - V Puž
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, Ljubljana 1526, Slovenia
| | - K Zajc-Kreft
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, Ljubljana 1526, Slovenia
| | - Ž Jeraj
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, Ljubljana 1526, Slovenia
| | - B Janković
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, Ljubljana 1526, Slovenia
| |
Collapse
|
15
|
Lee SK, Ha ES, Park H, Kang KT, Jeong JS, Kim JS, Baek IH, Kim MS. Preparation of Hot-Melt-Extruded Solid Dispersion Based on Pre-Formulation Strategies and Its Enhanced Therapeutic Efficacy. Pharmaceutics 2023; 15:2704. [PMID: 38140045 PMCID: PMC10747747 DOI: 10.3390/pharmaceutics15122704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, an amorphous solid dispersion containing the poorly water-soluble drug, bisacodyl, was prepared by hot-melt extrusion to enhance its therapeutic efficacy. First, the miscibility and interaction between the drug and polymer were investigated as pre-formulation strategies using various analytical approaches to obtain information for selecting a suitable polymer. Based on the calculation of the Hansen solubility parameter and the identification of the single glass transition temperature (Tg), the miscibility between bisacodyl and all the investigated polymers was confirmed. Additionally, the drug-polymer molecular interaction was identified based on the comprehensive results of dynamic vapor sorption (DVS), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, and a comparison of the predicted and experimental values of Tg. In particular, the hydroxypropyl methylcellulose (HPMC)-based solid dispersions, which exhibited large deviation between the calculated and experimental values of Tg and superior physical stability after DVS experiments, were selected as the most appropriate solubilized bisacodyl formulations due to the excellent inhibitory effects on precipitation based on the results of the non-sink dissolution test. Furthermore, it was shown that the enteric-coated tablets containing HPMC-bisacodyl at a 1:4 ratio (w/w) had significantly improved in vivo therapeutic laxative efficacy compared to preparations containing un-solubilized raw bisacodyl in constipation-induced rabbits. Therefore, it was concluded that the pre-formulation strategy, using several analyses and approaches, was successfully applied in this study to investigate the miscibility and interaction of drug-polymer systems, hence resulting in the manufacture of favorable solid dispersions with favorable in vitro and in vivo performances using hot-melt extrusion processes.
Collapse
Affiliation(s)
- Seon-Kwang Lee
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea; (S.-K.L.); (E.-S.H.); (J.-S.J.)
| | - Eun-Sol Ha
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea; (S.-K.L.); (E.-S.H.); (J.-S.J.)
| | - Heejun Park
- College of Pharmacy, Duksung Women’s University, 33, Samyangro 144-gil, Dobong-gu, Seoul 01369, Republic of Korea; (H.P.); (K.-T.K.)
| | - Kyu-Tae Kang
- College of Pharmacy, Duksung Women’s University, 33, Samyangro 144-gil, Dobong-gu, Seoul 01369, Republic of Korea; (H.P.); (K.-T.K.)
| | - Ji-Su Jeong
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea; (S.-K.L.); (E.-S.H.); (J.-S.J.)
| | - Jeong-Soo Kim
- Dong-A ST Co., Ltd., Giheung-gu, Yongin 17073, Republic of Korea
| | - In-hwan Baek
- College of Pharmacy, Kyungsung University, 309, Suyeong-ro, Nam-gu, Busan 48434, Republic of Korea;
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea; (S.-K.L.); (E.-S.H.); (J.-S.J.)
| |
Collapse
|
16
|
Al-Japairai K, Hamed Almurisi S, Mahmood S, Madheswaran T, Chatterjee B, Sri P, Azra Binti Ahmad Mazlan N, Al Hagbani T, Alheibshy F. Strategies to improve the stability of amorphous solid dispersions in view of the hot melt extrusion (HME) method. Int J Pharm 2023; 647:123536. [PMID: 37865133 DOI: 10.1016/j.ijpharm.2023.123536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/24/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Oral administration of drugs is preferred over other routes for several reasons: it is non-invasive, easy to administer, and easy to store. However, drug formulation for oral administration is often hindered by the drug's poor solubility, which limits its bioavailability and reduces its commercial value. As a solution, amorphous solid dispersion (ASD) was introduced as a drug formulation method that improves drug solubility by changing the molecular structure of the drugs from crystalline to amorphous. The hot melt extrusion (HME) method is emerging in the pharmaceutical industry as an alternative to manufacture ASD. However, despite solving solubility issues, ASD also exposes the drug to a high risk of crystallisation, either during processing or storage. Formulating a successful oral administration drug using ASD requires optimisation of the formulation, polymers, and HME manufacturing processes applied. This review presents some important considerations in ASD formulation, including strategies to improve the stability of the final product using HME to allow more new drugs to be formulated using this method.
Collapse
Affiliation(s)
- Khater Al-Japairai
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang 26300, Malaysia.
| | - Samah Hamed Almurisi
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia.
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia.
| | - Bappaditya Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V.L.Mehta Road, Mumbai 400055, India.
| | - Prasanthi Sri
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia.
| | | | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia.
| | - Fawaz Alheibshy
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia; Department of Pharmaceutics, College of Pharmacy, Aden University, Aden 6075, Yemen.
| |
Collapse
|
17
|
Khalid GM, Billa N. Drug-Eluting Sutures by Hot-Melt Extrusion: Current Trends and Future Potentials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7245. [PMID: 38005174 PMCID: PMC10672932 DOI: 10.3390/ma16227245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Surgical site infections (SSIs) may result from surgical procedures requiring a secondary administration of drugs at site or systemically in treating the infection. Drug-eluting sutures containing antimicrobial agents symbolise a latent strategy that precludes a secondary drug administration. It also offers the possibility of delivering a myriad of therapeutic agents to a localised wound site to effect analgesia, anti-inflammation, or the deployment of proteins useful for wound healing. Further, the use of biodegradable drug-eluting sutures eliminates the need for implanting foreign material into the wound, which needs to be removed after healing. In this review, we expound on recent trends in the manufacture of drug-eluting sutures with a focus on the hot-melt extrusion (HME) technique. HME provides a solvent-free, continuous one-step manufacturing conduit for drug-eluting sutures, hence, there is no drying step, which can be detrimental to the drug or suture threads and, thus, environmentally friendly. There is the possibility of combining the technology with additive manufacturing platforms to generate personalised drug-loaded implantable devices through prototyping and scalability. The review also highlights key material requirements for fabricating drug-eluting sutures by HME, as well as quality attributes. Finally, a preview of emerging drug-eluting sutures and advocacy for harmonisation of quality assurance by regulatory authorities that permits quality evaluation of novelty sutures is presented.
Collapse
Affiliation(s)
- Garba M. Khalid
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
- FabRx Ltd., Henwood House, Henwood, Asford TN24 8DH, UK
| | - Nashiru Billa
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
18
|
Budiman A, Handini AL, Muslimah MN, Nurani NV, Laelasari E, Kurniawansyah IS, Aulifa DL. Amorphous Solid Dispersion as Drug Delivery Vehicles in Cancer. Polymers (Basel) 2023; 15:3380. [PMID: 37631436 PMCID: PMC10457821 DOI: 10.3390/polym15163380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer treatment has improved over the past decades, but a major challenge lies in drug formulation, specifically for oral administration. Most anticancer drugs have poor water solubility which can affect their bioavailability. This causes suboptimal pharmacokinetic performance, resulting in limited efficacy and safety when administered orally. As a result, it is essential to develop a strategy to modify the solubility of anticancer drugs in oral formulations to improve their efficacy and safety. A promising approach that can be implemented is amorphous solid dispersion (ASD) which can enhance the aqueous solubility and bioavailability of poorly water-soluble drugs. The addition of a polymer can cause stability in the formulations and maintain a high supersaturation in bulk medium. Therefore, this study aimed to summarize and elucidate the mechanisms and impact of an amorphous solid dispersion system on cancer therapy. To gather relevant information, a comprehensive search was conducted using keywords such as "anticancer drug" and "amorphous solid dispersion" in the PubMed, Scopus, and Google Scholar databases. The review provides an overview and discussion of the issues related to the ASD system used to improve the bioavailability of anticancer drugs based on molecular pharmaceutics. A thorough understanding of anticancer drugs in this system at a molecular level is imperative for the rational design of the products.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Annisa Luthfiyah Handini
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Mutia Nur Muslimah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Neng Vera Nurani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Eli Laelasari
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Insan Sunan Kurniawansyah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia;
| |
Collapse
|
19
|
Budiman A, Lailasari E, Nurani NV, Yunita EN, Anastasya G, Aulia RN, Lestari IN, Subra L, Aulifa DL. Ternary Solid Dispersions: A Review of the Preparation, Characterization, Mechanism of Drug Release, and Physical Stability. Pharmaceutics 2023; 15:2116. [PMID: 37631330 PMCID: PMC10459848 DOI: 10.3390/pharmaceutics15082116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
The prevalence of active pharmaceutical ingredients (APIs) with low water solubility has experienced a significant increase in recent years. These APIs present challenges in formulation, particularly for oral dosage forms, despite their considerable therapeutic potential. Therefore, the improvement of solubility has become a major concern for pharmaceutical enterprises to increase the bioavailability of APIs. A promising formulation approach that can effectively improve the dissolution profile and the bioavailability of poorly water-soluble drugs is the utilization of amorphous systems. Numerous formulation methods have been developed to enhance poorly water-soluble drugs through amorphization systems, including co-amorphous formulations, amorphous solid dispersions (ASDs), and the use of mesoporous silica as a carrier. Furthermore, the successful enhancement of certain drugs with poor aqueous solubility through amorphization has led to their incorporation into various commercially available preparations, such as ASDs, where the crystalline structure of APIs is transformed into an amorphous state within a hydrophilic matrix. A novel approach, known as ternary solid dispersions (TSDs), has emerged to address the solubility and bioavailability challenges associated with amorphous drugs. Meanwhile, the introduction of a third component in the ASD and co-amorphous systems has demonstrated the potential to improve performance in terms of solubility, physical stability, and processability. This comprehensive review discusses the preparation and characterization of poorly water-soluble drugs in ternary solid dispersions and their mechanisms of drug release and physical stability.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Eli Lailasari
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Neng Vera Nurani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Ellen Nathania Yunita
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Gracia Anastasya
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Rizqa Nurul Aulia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Ira Novianty Lestari
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (I.N.L.); (D.L.A.)
| | - Laila Subra
- Faculty of Bioeconomic and Health Sciences, Geomatika University College, Kuala Lumpur 54200, Malaysia;
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (I.N.L.); (D.L.A.)
| |
Collapse
|
20
|
Lalge R, Kumar NSK, Suryanarayanan R. Understanding the Effect of Nucleation in Amorphous Solid Dispersions through Time-Temperature Transformation. Mol Pharm 2023; 20:4196-4209. [PMID: 37358932 DOI: 10.1021/acs.molpharmaceut.3c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
In an earlier investigation, the critical cooling rate to prevent drug crystallization (CRcrit) during the preparation of nifedipine (NIF) amorphous solid dispersions (ASDs) was determined through a time-temperature transformation (TTT) diagram (Lalge et al. Mol. Pharmaceutics 2023, 20 (3), 1806-1817). The current study aims to use the TTT diagram to determine the critical cooling rate to prevent drug nucleation (CRcrit N) during the preparation of ASDs. ASDs were prepared with each polyvinylpyrrolidone (PVP) and hydroxypropyl methylcellulose acetate succinate (HPMCAS). The dispersions were first stored under conditions promoting nucleation and then heated to the temperature that favors crystallization. The crystallization onset time (tC) was determined by differential scanning calorimetry and synchrotron X-ray diffractometry. TTT diagrams for nucleation were generated, which provided the critical nucleation temperature (50 °C) and the critical cooling rate to avoid nucleation (CRcrit N). The strength of the drug-polymer interactions as well as the polymer concentration affected the CRcrit N, with PVP having a stronger interaction than HPMCAS. The CRcrit of amorphous NIF was ∼17.5 °C/min. The addition of a 20% w/w polymer resulted in CRcrit of ∼0.05 and 0.2 °C/min and CRcrit N of ∼4.1 and 8.1 °C/min for the dispersions prepared with PVP and HPMCAS, respectively.
Collapse
Affiliation(s)
- Rahul Lalge
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-177 WDH, 308 Harvard Street S.E., Minneapolis, Minnesota 55455, United States
| | - N S Krishna Kumar
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-177 WDH, 308 Harvard Street S.E., Minneapolis, Minnesota 55455, United States
| | - Raj Suryanarayanan
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-177 WDH, 308 Harvard Street S.E., Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Al-Litani K, Ali T, Robles Martinez P, Buanz A. 3D printed implantable drug delivery devices for women's health: Formulation challenges and regulatory perspective. Adv Drug Deliv Rev 2023; 198:114859. [PMID: 37149039 DOI: 10.1016/j.addr.2023.114859] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/03/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
Modern pharmaceutical interventions are shifting from traditional "one-size-fits-all" approaches toward tailored therapies. Following the regulatory approval of Spritam®, the first marketed drug manufactured using three-dimensional printing (3DP) technologies, there is a precedence set for the use of 3DP in the manufacture of pharmaceutical products. The involvement of 3DP technologies in pharmaceutical research has demonstrated its capabilities in enabling the customisation of characteristics such as drug dosing, release characteristics and product designs on an individualised basis. Nonetheless, research into 3DP implantable drug delivery devices lags behind that for oral devices, cell-based therapies and tissue engineering applications. The recent efforts and initiatives to address the disparity in women's health is overdue but should provide a drive for more research into this area, especially using new and emerging technologies as 3DP. Therefore, the focus of this review has been placed on the unique opportunity of formulating personalised implantable drug delivery systems using 3DP for women's health applications, particularly passive implants. An evaluation of the current landscape and key formulation challenges for achieving this is provided supplemented with critical insight into the current global regulatory status and its outlook.
Collapse
Affiliation(s)
- Karen Al-Litani
- UCL School of Pharmacy, University College London, WC1N 1AX, London, UK
| | - Tariq Ali
- UCL School of Pharmacy, University College London, WC1N 1AX, London, UK; Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | | | - Asma Buanz
- UCL School of Pharmacy, University College London, WC1N 1AX, London, UK; School of Science, Faculty of Engineering and Science, University of Greenwich, ME4 4TB, UK.
| |
Collapse
|
22
|
Wdowiak K, Pietrzak R, Tykarska E, Cielecka-Piontek J. Hot-Melt Extrusion as an Effective Technique for Obtaining an Amorphous System of Curcumin and Piperine with Improved Properties Essential for Their Better Biological Activities. Molecules 2023; 28:molecules28093848. [PMID: 37175257 PMCID: PMC10180276 DOI: 10.3390/molecules28093848] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Poor bioavailability hampers the use of curcumin and piperine as biologically active agents. It can be improved by enhancing the solubility as well as by using bioenhancers to inhibit metabolic transformation processes. Obtaining an amorphous system of curcumin and piperine can lead to the overcoming of these limitations. Hot-melt extrusion successfully produced their amorphous systems, as shown by XRPD and DSC analyses. Additionally, the presence of intermolecular interactions between the components of the systems was investigated using the FT-IR/ATR technique. The systems were able to produce a supersaturation state as well as improve the apparent solubilities of curcumin and piperine by 9496- and 161-fold, respectively. The permeabilities of curcumin in the GIT and BBB PAMPA models increased by 12578- and 3069-fold, respectively, whereas piperine's were raised by 343- and 164-fold, respectively. Improved solubility had a positive effect on both antioxidant and anti-butyrylcholinesterase activities. The best system suppressed 96.97 ± 1.32% of DPPH radicals, and butyrylcholinesterase activity was inhibited by 98.52 ± 0.87%. In conclusion, amorphization remarkably increased the dissolution rate, apparent solubility, permeability, and biological activities of curcumin and piperine.
Collapse
Affiliation(s)
- Kamil Wdowiak
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Robert Pietrzak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| | - Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
23
|
Macedo J, Vanhoorne V, Vervaet C, Pinto JF. Influence of formulation variables on the processability and properties of tablets manufactured by fused deposition modelling. Int J Pharm 2023; 637:122854. [PMID: 36948473 DOI: 10.1016/j.ijpharm.2023.122854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/24/2023]
Abstract
The present work studied the influence of different formulation variables (defined also as factors), namely, different polymers (HPC EF, PVA and HPMC-AS LG), drugs with different water solubilities (paracetamol, hydrochlorothiazide and celecoxib) and drug loads (10 or 30 %) on their processability by HME and FDM. Both filaments and tablets were characterized for physic and chemical properties (DSC, XRPD, FTIR) and performance properties (drug content, in vitro drug release). Experiments were designed to highlight relationships between the 3 factors selected and the mechanical properties of filaments, tablet mass and dissolution profiles of the model drugs from printed tablets. While the combination of hydrochlorothiazide and HPMC-AS LG could not be extruded, the combination of paracetamol with HPC EF turned the filaments too ductile and not stiff enough hampering the process of printing. All other polymer and drug combinations could be successfully extruded and printed. Models reflected the influence of the solubility of the drug considered but not the drug load in formulations. The ranking of the drug release rates was in good agreement with their solubilities. Furthermore, PVA presenting the fastest swelling rate, promoted the fastest drugs' releases in comparison with the other polymers studied. Overall, the study enabled the identification of the key factors affecting the properties of printed tablets, with the proposal of a model that has valued the relative contribution of each factor to the overall performance of tablets.
Collapse
Affiliation(s)
- Joana Macedo
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Valérie Vanhoorne
- Laboratory of Pharmaceutical Technology, Ghent University, Ghent, Belgium
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Ghent University, Ghent, Belgium
| | - João F Pinto
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
24
|
Lalge R, Kumar NSK, Suryanarayanan R. Implications of Drug-Polymer Interactions on Time-Temperature-Transformation: A Tool to Assess the Crystallization Propensity in Amorphous Solid Dispersions. Mol Pharm 2023; 20:1806-1817. [PMID: 36744878 DOI: 10.1021/acs.molpharmaceut.2c01004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The critical cooling rate (CRcrit) to prevent drug crystallization during the preparation of nifedipine amorphous solid dispersions (ASDs) was determined through the time-temperature-transformation (TTT) diagram. ASDs were prepared with polyvinylpyrrolidone, hydroxypropylmethyl cellulose acetate succinate, and poly(acrylic acid). ASDs were subjected to isothermal crystallization over a wide temperature range, and the time and temperature dependence of nifedipine crystallization onset time (tC) was determined by differential scanning calorimetry (DSC) and synchrotron X-ray diffractometry. TTT diagrams were generated for ASDs, which provided the CRcrit for the dispersions prepared with each polymer. The observed differences in CRcrit could be explained in terms of differences in the strength of interactions. Stronger drug-polymer interactions led to longer tC and decreased CRcrit. The effect of polymer concentrations (4-20% w/w) was also influenced by the strength of the interaction. The CRcrit of amorphous NIF was ∼17.5 °C/min. Addition of 20% w/w polymer resulted in a CRcrit of ∼0.05, 0.2, and 11 °C/min for the dispersions prepared with PVP, HPMCAS, and PAA, respectively.
Collapse
Affiliation(s)
- Rahul Lalge
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-177 WDH, 308 Harvard Street S.E., Minneapolis, Minnesota55455, United States
| | - N S Krishna Kumar
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-177 WDH, 308 Harvard Street S.E., Minneapolis, Minnesota55455, United States
| | - Raj Suryanarayanan
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-177 WDH, 308 Harvard Street S.E., Minneapolis, Minnesota55455, United States
| |
Collapse
|
25
|
Hot Melt Extruded Posaconazole-Based Amorphous Solid Dispersions—The Effect of Different Types of Polymers. Pharmaceutics 2023; 15:pharmaceutics15030799. [PMID: 36986660 PMCID: PMC10056184 DOI: 10.3390/pharmaceutics15030799] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Four model polymers, representing (i) amorphous homopolymers (Kollidon K30, K30), (ii) amorphous heteropolymers (Kollidon VA64, KVA), (iii) semi-crystalline homopolymers (Parteck MXP, PXP), and (iv) semi-crystalline heteropolymers (Kollicoat IR, KIR), were examined for their effectiveness in creating posaconazole-based amorphous solid dispersions (ASDs). Posaconazole (POS) is a triazole antifungal drug that has activity against Candida and Aspergillus species, belonging to class II of the biopharmaceutics classification system (BCS). This means that this active pharmaceutical ingredient (API) is characterized by solubility-limited bioavailability. Thus, one of the aims of its formulation as an ASD was to improve its aqueous solubility. Investigations were performed into how polymers affected the following characteristics: melting point depression of the API, miscibility and homogeneity with POS, improvement of the amorphous API’s physical stability, melt viscosity (and associated with it, drug loading), extrudability, API content in the extrudate, long term physical stability of the amorphous POS in the binary drug–polymer system (in the form of the extrudate), solubility, and dissolution rate of hot melt extrusion (HME) systems. The obtained results led us to conclude that the physical stability of the POS-based system increases with the increasing amorphousness of the employed excipient. Copolymers, compared to homopolymers, display greater homogeneity of the investigated composition. However, the enhancement in aqueous solubility was significantly higher after utilizing the homopolymeric, compared to the copolymeric, excipients. Considering all of the investigated parameters, the most effective additive in the formation of a POS-based ASD is an amorphous homopolymer—K30.
Collapse
|
26
|
Hybrid Manufacturing of Oral Solid Dosage Forms via Overprinting of Injection-Molded Tablet Substrates. Pharmaceutics 2023; 15:pharmaceutics15020507. [PMID: 36839829 PMCID: PMC9965482 DOI: 10.3390/pharmaceutics15020507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Since 3D printing allows for patient-specific dosage forms, it has become a major focus in pharmaceutical research. However, it is difficult to scale up drug product manufacturing. Injection molding has been used in conjunction with hot-melt extrusion to mass produce drug products, but making tailored solid dosage forms with this technology is neither cost-effective nor simple. This study explored the use of a combination of fused filament fabrication and injection molding to create patient-specific solid dosage forms. A tablet fixation and location template was used to overprint directly on injection-molded tablet bases, and theophylline was combined with polycaprolactone and Kollidon® VA64 via hot-melt extrusion to produce the filament. Dynamic mechanical analysis was used to evaluate the brittleness of the filament, and differential scanning calorimetry was used to analyze the thermal results. The results showed that theophylline had a flow promoting effect on the polymer blend and that overprinted tablets were manufactured faster than 3D-printed tablets. Drug release studies also showed that overprinted tablets released faster than injection-molded tablets. This method demonstrates the potential of hybrid manufacturing for the pharmaceutical industry as a means of bridging the gap between personalized dosage forms and mass production.
Collapse
|
27
|
Development of multifunctional drug delivery system via hot-melt extrusion paired with fused deposition modeling 3D printing techniques. Eur J Pharm Biopharm 2023; 183:102-111. [PMID: 36632906 DOI: 10.1016/j.ejpb.2023.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
The model of core-shell structured tablets is gaining increased interest due to its advantages in controlled-release and combinational drug delivery. Through the encapsulation of the drug by the outer shell, this model exhibits huge potential for reduced administration frequency, improved taste-masking, and personalized medication strategy. Although different types of core-shell tablets have been recently developed, most of them focused on the embedding of the solid tablets. Therefore there is still a need to investigate an optimized model in which multiple dosage forms can be loaded. This work uses hot-melt extrusion and fused deposition modeling 3D printing (FDM 3DP) techniques to develop a multifunctional core-shell model for controlled drug delivery. Acetaminophen (APAP) was used as the model drug. Hydroxypropyl cellulose (HPC) and hydroxypropyl methylcellulose (HPMC) was used as the matrix materials. Polyethylene oxide (PEO) and Eudragit RS PO (E RSPO) were used to adjust the printability while the E RSPO was expected to act as an extended-release agent due to its hydrophobicity. Liquid, semi-solid and solid dosage forms could be successfully loaded into the produced shells. The formulations were characterized by scanning electron microscopy, three point-bend tests, differential scanning calorimetry, and dissolution studies. The dissolution results suggested the modified-release character of the designed model. Overall, the designed core-shell model could be successfully produced via hot-melt extrusion paired with FDM 3DP techniques and could be utilized for the delivery of distinct dosage forms which improve the on-demand formulation development for patient-centered medication.
Collapse
|
28
|
Mogan J, Harun WSW, Kadirgama K, Ramasamy D, Foudzi FM, Sulong AB, Tarlochan F, Ahmad F. Fused Deposition Modelling of Polymer Composite: A Progress. Polymers (Basel) 2022; 15:polym15010028. [PMID: 36616377 PMCID: PMC9823360 DOI: 10.3390/polym15010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
Additive manufacturing (AM) highlights developing complex and efficient parts for various uses. Fused deposition modelling (FDM) is the most frequent fabrication procedure used to make polymer products. Although it is widely used, due to its low characteristics, such as weak mechanical properties and poor surface, the types of polymer material that may be produced are limited, affecting the structural applications of FDM. Therefore, the FDM process utilises the polymer composition to produce a better physical product. The review's objective is to systematically document all critical information on FDMed-polymer composite processing, specifically for part fabrication. The review covers the published works on the FDMed-polymer composite from 2011 to 2021 based on our systematic literature review of more than 150 high-impact related research articles. The base and filler material used, and the process parameters including layer height, nozzle temperature, bed temperature, and screw type are also discussed in this review. FDM is utilised in various biomedical, automotive, and other manufacturing industries. This study is expected to be one of the essential pit-stops for future related works in the FDMed-polymeric composite study.
Collapse
Affiliation(s)
- J Mogan
- Institute of Postgraduate Studies, Universiti Malaysia Pahang, Gambang, Kuantan 26300, Pahang, Malaysia
| | - W. S. W. Harun
- Department of Mechanical Engineering, College of Engineering, Universiti Malaysia Pahang, Gambang, Kuantan 26300, Pahang, Malaysia
- Correspondence:
| | - K. Kadirgama
- Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang, Gambang, Kuantan 26300, Pahang, Malaysia
| | - D. Ramasamy
- Department of Mechanical Engineering, College of Engineering, Universiti Malaysia Pahang, Gambang, Kuantan 26300, Pahang, Malaysia
| | - F. M. Foudzi
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - A. B. Sulong
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - F. Tarlochan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar
| | - F. Ahmad
- Department of Mechanical Engineering, Universiti Teknologi Petronas, Seri Iskandar 32610, Perak, Malaysia
| |
Collapse
|
29
|
Remiro PDFR, Nagahara MHT, Azoubel RA, Franz-Montan M, d’Ávila MA, Moraes ÂM. Polymeric Biomaterials for Topical Drug Delivery in the Oral Cavity: Advances on Devices and Manufacturing Technologies. Pharmaceutics 2022; 15:12. [PMID: 36678640 PMCID: PMC9864928 DOI: 10.3390/pharmaceutics15010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
There are several routes of drug administration, and each one has advantages and limitations. In the case of the topical application in the oral cavity, comprising the buccal, sublingual, palatal, and gingival regions, the advantage is that it is painless, non-invasive, allows easy application of the formulation, and it is capable of avoiding the need of drug swallowing by the patient, a matter of relevance for children and the elderly. Another advantage is the high permeability of the oral mucosa, which may deliver very high amounts of medication rapidly to the bloodstream without significant damage to the stomach. This route also allows the local treatment of lesions that affect the oral cavity, as an alternative to systemic approaches involving injection-based methods and oral medications that require drug swallowing. Thus, this drug delivery route has been arousing great interest in the pharmaceutical industry. This review aims to condense information on the types of biomaterials and polymers used for this functionality, as well as on production methods and market perspectives of this topical drug delivery route.
Collapse
Affiliation(s)
- Paula de Freitas Rosa Remiro
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
| | - Mariana Harue Taniguchi Nagahara
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
| | - Rafael Abboud Azoubel
- Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, University of Campinas, Campinas 13083-860, SP, Brazil
| | - Michelle Franz-Montan
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, SP, Brazil
| | - Marcos Akira d’Ávila
- Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, University of Campinas, Campinas 13083-860, SP, Brazil
| | - Ângela Maria Moraes
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
| |
Collapse
|
30
|
Fernandes G, Pusuluri SLA, Nikam AN, Birangal S, Shenoy GG, Mutalik S. Solvent Free Twin Screw Processed Silybin Nanophytophospholipid: In Silico, In Vitro and In Vivo Insights. Pharmaceutics 2022; 14:pharmaceutics14122729. [PMID: 36559222 PMCID: PMC9782009 DOI: 10.3390/pharmaceutics14122729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Silybin (SIL) is a polyphenolic phytoconstituent that is commonly used to treat liver disorders. It is difficult to fabricate an orally delivered SIL product due to its low oral bioavailability (0.95%). Therefore, the current research focusses on the development of a novel composition of a phospholipid complex, termed as nanophytophospholipid, of SIL by employing a unique, solvent-free Twin Screw Process (TSP), with the goal of augmenting the solubility and bioavailability of SIL. The optimised SIL-nanophytophospholipid (H6-SNP) was subjected to physicochemical interactions by spectrometry, thermal, X-ray and electron microscopy. The mechanism of drug and phospholipid interaction was confirmed by molecular docking and dynamics studies. Saturation solubility, in vitro dissolution, ex vivo permeation and preclinical pharmacokinetic studies were also conducted. H6-SNP showed good complexation efficiency, with a high practical yield (80%). The low particle size (334.7 ± 3.0 nm) and positively charged zeta potential (30.21 ± 0.3 mV) indicated the immediate dispersive nature of H6-SNP into nanometric dimensions, with good physical stability. Further high solubility and high drug release from the H6-SNP was also observed. The superiority of the H6-SNP was demonstrated in the ex vivo and preclinical pharmacokinetic studies, displaying enhanced apparent permeability (2.45-fold) and enhanced bioavailability (1.28-fold). Overall, these findings indicate that not only can phospholipid complexes be formed using solvent-free TSP, but also that nanophytophospholipids can be formed by using a specific quantity of lipid, drug, surfactant, superdisintegrant and diluent. This amalgamation of technology and unique composition can improve the oral bioavailability of poorly soluble and permeable phytoconstituents or drugs.
Collapse
Affiliation(s)
- Gasper Fernandes
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sai Lalitha Alekhya Pusuluri
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Ajinkya Nitin Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sumit Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Gautham G. Shenoy
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
- Scires Technologies Private Limited, Manipal-Government of Karnataka Bioincubator, Advanced Research Centre, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
- Correspondence:
| |
Collapse
|
31
|
Ayyoubi S, van Kampen EEM, Kocabas LI, Parulski C, Lechanteur A, Evrard B, De Jager K, Muller E, Wilms EW, Meulenhoff PWC, Ruijgrok EJ. 3D printed, personalized sustained release cortisol for patients with adrenal insufficiency. Int J Pharm 2022; 630:122466. [PMID: 36493969 DOI: 10.1016/j.ijpharm.2022.122466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The standard of care for patients with Adrenal Insufficiency (AI) is suboptimal. Administration of hydrocortisone three times a day produces plasma cortisol fluctuations associated with negative health outcomes. Furthermore, there is a high inter-individual variability in cortisol need, necessitating a personalized approach. It is hypothesized that a personalized, sustained release formulation would enhance the pharmacotherapy by mimicking the physiological cortisol plasma concentration at a higher level. Therefore, a novel 24 h sustained release 3D printed (3DP) hydrocortisone formulation has been developed (M3DICORT) by coupling hot-melt extrusion with fused deposition modeling. A uniform drug distribution in the 3DP tablets is demonstrated by a content of 101.66 ± 1.60 % with an acceptance value of 4.01. Furthermore, tablets had a stable 24 h dissolution profile where the intra-batch standard deviation was ± 2.8 % and the inter-batch standard deviation was ± 6.8 %. Tablet height and hydrocortisone content were correlated (R2 = 0.996), providing a tool for easy dose personalization. Tablets maintained critical quality attributes, such as dissolution profile (f2 > 60) and content uniformity after process transfer from a single-screw extruder to a twin-screw extruder. Impurities were observed in the final product which should be mitigated before clinical assessment. To our knowledge, M3DICORT is the first 3DP hydrocortisone formulation specifically developed for AI.
Collapse
Affiliation(s)
- S Ayyoubi
- Department of Hospital Pharmacy, Erasmus University Medical Center, Dr Molewaterplein 40, 3015 GD Rotterdam, the Netherlands.
| | - E E M van Kampen
- Department of Hospital Pharmacy, Erasmus University Medical Center, Dr Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - L I Kocabas
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, the Netherlands
| | - C Parulski
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium
| | - A Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium
| | - B Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium
| | - K De Jager
- Department of Hospital Pharmacy, Erasmus University Medical Center, Dr Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - E Muller
- Department of Pharmaceutical Quality Control, The Hague Hospital Pharmacy, Charlotte Jacobslaan 70, 2545 AB The Hague, the Netherlands
| | - E W Wilms
- Department of Pharmaceutical Quality Control, The Hague Hospital Pharmacy, Charlotte Jacobslaan 70, 2545 AB The Hague, the Netherlands
| | - P W C Meulenhoff
- Tridi Pharma B.V. M.H. Trompstraat 7, 3572 XS Utrecht, the Netherlands
| | - E J Ruijgrok
- Department of Hospital Pharmacy, Erasmus University Medical Center, Dr Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| |
Collapse
|
32
|
Samaro A, Vergaelen M, Purino M, Tigrine A, de la Rosa VR, Goudarzi NM, Boone MN, Vanhoorne V, Hoogenboom R, Vervaet C. Poly(2-alkyl-2-oxazoline)s: A polymer platform to sustain the release from tablets with a high drug loading. Mater Today Bio 2022; 16:100414. [PMID: 36133793 PMCID: PMC9483731 DOI: 10.1016/j.mtbio.2022.100414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022] Open
Abstract
Sustaining the release of highly dosed APIs from a matrix tablet is challenging. To address this challenge, this study evaluated the performance of thermoplastic poly (2-alkyl-2-oxazoline)s (PAOx) as matrix excipient to produce sustained-release tablets via three processing routes: (a) hot-melt extrusion (HME) combined with injection molding (IM), (b) HME combined with milling and compression and (c) direct compression (DC). Different PAOx (co-)polymers and polymer mixtures were processed with several active pharmaceutical ingredients having different aqueous solubilities and melting temperatures (metoprolol tartrate (MPT), metformin hydrochloride (MTF) and theophylline anhydrous (THA)). Different PAOx grades were synthesized and purified by the Supramolecular Chemistry Group, and the effect of PAOx grade and processing technique on the in vitro release kinetics was evaluated. Using the hydrophobic poly (2-n-propyl-2-oxazoline) (PnPrOx) as a matrix excipient allowed to sustain the release of different APIs, even at a 70% (w/w) drug load. Whereas complete THA release was not achieved from the PnPrOx matrix over 24 h regardless of the processing technique, adding 7.5% w/w of the hydrophilic poly (2-ethyl-2-oxazoline) to the hydrophobic PnPrOx matrix significantly increased THA release, highlighting the relevance of mixing different PAOx grades. In addition, it was demonstrated that the release of THA was similar from co-polymer and polymer mixtures with the same polymer ratios. On the other hand, as the release of MTF from a PnPrOx matrix was fast, the more hydrophobic poly (2-sec-butyl-2-oxazoline) (PsecBuOx) was used to retard MTF release. In addition, a mixture between the hydrophilic PEtOx and the hydrophobic PsecBuOx allowed accurate tuning of the release of MTF formulations. Finally, it was demonstrated that PAOx also showed a high ability to tune the in vivo release. IM tablets containing 70% MTF and 30% PsecBuOx showed a lower in vivo bioavailability compared to IM tablets containing a low PEtOx concentration (7.5%, w/w) in combination with PsecBuOx (22.5%, w/w). Importantly, the in vivo MTF blood level from the sustained release tablets correlated well with the in vitro release profiles. In general, this work demonstrates that PAOx polymers offer a versatile formulation platform to adjust the release rate of different APIs, enabling sustained release from tablets with up to 70% w/w drug loading.
Collapse
Affiliation(s)
- Aseel Samaro
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg, 460 9000, Ghent, Belgium
| | - Maarten Vergaelen
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Krijgslaan 281-S4 9000 Ghent University, Ghent, Belgium
| | - Martin Purino
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Krijgslaan 281-S4 9000 Ghent University, Ghent, Belgium
| | - Ali Tigrine
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Krijgslaan 281-S4 9000 Ghent University, Ghent, Belgium
| | - Victor R de la Rosa
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Krijgslaan 281-S4 9000 Ghent University, Ghent, Belgium.,Avroxa BV., Technologiepark-Zwijnaarde, Ghent, Belgium
| | - Niloofar Moazami Goudarzi
- Radiation Physics Research Group, Department of Physics and Astronomy, Ghent University, Belgium.,Center for X-ray Tomography (UGCT), Ghent University, Ghent, Belgium
| | - Matthieu N Boone
- Radiation Physics Research Group, Department of Physics and Astronomy, Ghent University, Belgium.,Center for X-ray Tomography (UGCT), Ghent University, Ghent, Belgium
| | - Valérie Vanhoorne
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg, 460 9000, Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Krijgslaan 281-S4 9000 Ghent University, Ghent, Belgium
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg, 460 9000, Ghent, Belgium
| |
Collapse
|
33
|
Kim HB, Ryu S, Baek JS. The Effect of Hot-Melt Extrusion of Mulberry Leaf on the Number of Active Compounds and Antioxidant Activity. PLANTS (BASEL, SWITZERLAND) 2022; 11:3019. [PMID: 36432749 PMCID: PMC9697546 DOI: 10.3390/plants11223019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study is to compare the functions of the physiologically active compounds of three types of mulberry leaf by cultivar, and to confirm the changes using hot-melt extrusion (HME-ML). The active components of mulberry leaf were analyzed using the HPLC system, and total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity were measured. Among the three varieties, the highest contents of rutin and isoquercetin were detected in Cheongil, of TPC in Cheongol, and of TFC in Cheongil. It was confirmed that this bio-accessibility was increased in HME-ML compared with the control. The DPPH radical scavenging activity of Cheongol showed greater antioxidant properties, and HME showed improvement in the antioxidant properties of all mulberry leaves. These results suggest that the application of HME technology can improve the biological activities of mulberry leaf.
Collapse
Affiliation(s)
- Hyun-Bok Kim
- National Institute of Agricultural Sciences, RDA, Wanju 55365, Korea
| | - Suji Ryu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea
| | - Jong-Suep Baek
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea
- Department of Herbal Medicine Resource, Kangwon National University, Samcheok 25949, Korea
- BeNatureBioLab, Cuncheon 24206, Korea
| |
Collapse
|
34
|
Triboandas H, Pitt K, Bezerra M, Ach-Hubert D, Schlindwein W. Itraconazole Amorphous Solid Dispersion Tablets: Formulation and Compaction Process Optimization Using Quality by Design Principles and Tools. Pharmaceutics 2022; 14:pharmaceutics14112398. [PMID: 36365216 PMCID: PMC9693276 DOI: 10.3390/pharmaceutics14112398] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
BCS Class II drugs, such as itraconazole (ITZ), exhibit poor solubility (1–4 ng/mL) and so require solubility enhancement. Therefore, ITZ and Kollidon® VA64 (KOL) amorphous solid dispersions (ASDs) were produced using hot-melt extrusion (HME) to improve ITZ’s poor solubility. A novel strategy for tablet formulations using five inorganic salts was investigated (KCl, NaCl, KBr, KHCO3 and KH2PO4). These kosmotopric salts are thought to compete for water hydration near the polymer chain, hence, preventing polymer gelation and, therefore, facilitating disintegration and dissolution. Out of all the formulations, the KCl containing one demonstrated acceptable tensile strength (above 1.7 MPa), whilst providing a quick disintegration time (less than 15 min) and so was selected for further formulation development through a design of the experiment approach. Seven ITZ-KOL-ASD formulations with KCl were compacted using round and oblong punches. Round tablets were found to disintegrate under 20 min, whereas oblong tablets disintegrated within 10 min. The round tablets achieved over 80% ITZ release within 15 min, with six out of seven formulations achieving 100% ITZ release by 30 min. It was found that tablets comprising high levels of Avicel® pH 102 (30%) and low levels of KCl (5%) tend to fail the disintegration target due to the strong bonding capacity of Avicel® pH 102. The disintegration time and tensile strength responses were modeled to obtain design spaces (DSs) relevant to both round and oblong tablets. Within the DS, several formulations can be chosen, which meet the Quality Target Product Profile (QTPP) requirements for immediate-release round and oblong tablets and allow for flexibility to compact in different tablet shape to accommodate patients’ needs. It was concluded that the use of inorganic salts, such as KCl, is the key to producing tablets of ITZ ASDs with fast disintegration and enhanced dissolution. Overall, ITZ-KOL-ASD tablet formulations, which meet the QTPP, were achieved in this study with the aid of Quality by Design (QbD) principles for formulation and compaction process development and optimization.
Collapse
Affiliation(s)
- Hetvi Triboandas
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Kendal Pitt
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Mariana Bezerra
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Delphine Ach-Hubert
- Medelpharm, 615 rue du Chat Botté, ZAC des Malettes, F-01700 Beynost, France
| | - Walkiria Schlindwein
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
- Correspondence:
| |
Collapse
|
35
|
Kukkonen J, Ervasti T, Laitinen R. Production and characterization of glibenclamide incorporated PLA filaments for 3D printing by fused deposition modeling. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Riccio BVF, Silvestre ALP, Meneguin AB, Ribeiro TDC, Klosowski AB, Ferrari PC, Chorilli M. Exploiting Polymeric Films as a Multipurpose Drug Delivery System: a Review. AAPS PharmSciTech 2022; 23:269. [PMID: 36171494 DOI: 10.1208/s12249-022-02414-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Polymeric films are drug delivery systems that maintain contact with the delivery tissue and sustain a controlled release of therapeutic molecules. These systems allow a longer time of drug contact with the target site in the case of topical treatments and allow the controlled administration of drugs. They can be manufactured by various methods such as solvent casting, hot melt extrusion, electrospinning, and 3D bioprinting. Furthermore, they can employ various polymers, for example PVP, PVA, cellulose derivatives, chitosan, gelling gum, pectin, and alginate. Its versatility is also applicable to different routes of administration, as it can be administered to the skin, oral mucosa, vaginal canal, and eyeballs. All these factors allow numerous combinations to obtain a better treatment. This review focuses on exploring some possible ways to develop them and some particularities and advantages/disadvantages in each case. It also aims to show the versatility of these systems and the advantages and disadvantages in each case, as they bring the opportunity to develop different medicines to facilitate therapies for the most diverse purposes .
Collapse
Affiliation(s)
- Bruno Vincenzo Fiod Riccio
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, Brazil.
| | - Amanda Letícia Polli Silvestre
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Andreia Bagliotti Meneguin
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Tais de Cassia Ribeiro
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Ana Beatriz Klosowski
- Department of Pharmaceutical Sciences, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil
| | | | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, Brazil
| |
Collapse
|
37
|
Melt Fusion Techniques for Solubility Enhancement: A Comparison of Hot Melt Extrusion and KinetiSol® Technologies. Sci Pharm 2022. [DOI: 10.3390/scipharm90030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A successful candidate for oral drug delivery needs to possess adequate solubility and dissolution rate to elicit its therapeutic action. Extensive research is being carried out to enhance the solubility of poorly soluble drugs through a number of techniques involving polymeric and non-polymeric approaches. Non-polymeric approaches such as micronization and nanocrystals are successful in improving the apparent solubility of drugs, but the sustenance of solubility is not always possible. Amorphous solid dispersions (ASDs) lead to solubility enhancement as well as the maintenance of solubility with the assistance of polymers, thereby improving bioavailability. Spray drying, hot melt extrusion (HME), and KinetiSol® technologies are some of the techniques capable of manufacturing ASDs. Each of these techniques has its own advantages and disadvantages in terms of processing challenges and applicability in preparing ASDs. The latter two technologies are similar in being fusion and non-solvent techniques to improve solubility. This review compares both HME and KinetiSol® techniques regarding mechanism, equipment design, formulation, and process parameters involved and scalability.
Collapse
|
38
|
González K, Larraza I, Berra G, Eceiza A, Gabilondo N. 3D printing of customized all-starch tablets with combined release kinetics. Int J Pharm 2022; 622:121872. [DOI: 10.1016/j.ijpharm.2022.121872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
|
39
|
El-Ashmawy AA, Abdelfattah FM, Emara LH. Novel Glyceryl Monostearate- and Polyethylene Glycol 6000-Based Ibuprofen Pellets Prepared by Hot-Melt Extrusion: Evaluation and Stability Assessment. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09647-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Purpose
To prepare stable sustained-release (SR) pellets, containing high ibuprofen (IBU) loading, by hot-melt extrusion (HME) technique using polyethylene glycol 6000 (PEG 6000) and glyceryl monostearate (GMS).
Methods
HME pellets (60% w/w IBU) were prepared using PEG 6000, GMS, and mixture of both polymers (1:1). Stability studies were performed under stress conditions (40 °C and relative humidity “RH” of 75%) for 6 months and at room temperature for 12 months. Fresh and stored IBU pellets were evaluated by drug content (HPLC), release rate study (USP apparatus IV), DSC, and XRD.
Results
HME succeeded to produce SR-IBU pellets with high drug loading. PEG 6000 gave higher IBU release rate and relatively unstable formula after storage. PEG 6000/GMS mixture gave prolonged IBU release up to 4 h with stable formula for 12 months at room temperature. While, IBU/GMS pellets gave SR profile up to 6 h and a stable formula under both testing conditions. These advantages of IBU/GMS pellets could be an excellent candidate for SR-IBU product. DSC and XRD analysis data (enthalpy and counts) for IBU and polymers gave a mirror image for IBU release profiles of the studied HME pellets, for both fresh and stored samples.
Conclusion
Stable SR-IBU/GMS HME pellets with high IBU loading (60% w/w) were successfully produced, for the first time, without any other excipients.
Collapse
|
40
|
Solid Dispersion Formulations by FDM 3D Printing-A Review. Pharmaceutics 2022; 14:pharmaceutics14040690. [PMID: 35456524 PMCID: PMC9032529 DOI: 10.3390/pharmaceutics14040690] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 01/06/2023] Open
Abstract
Additive manufacturing (AM) is revolutionizing the way medicines are designed, manufactured, and utilized. Perhaps, AM appears to be ideal for the fit-for-purpose manufacturing of medicines in contrast to the several disadvantages associated with the conventional fit-for-all mass production that accounts for less than 50% of pharmacotherapeutic treatment/management of diseases especially among children and elderly patients, as well as patients with special needs. In this review, we discuss the current trends in the application of additive manufacturing to prepare personalized dosage forms on-demand focusing the attention on the relevance of coupling solid dispersion with FDM 3D printing. Combining the two technologies could offer many advantages such as to improve the solubility, dissolution, and oral bioavailability of poorly soluble drugs in tandem with the concept of precision medicine and personalized dosing and to address the dilemma of commercial availability of FDM filaments loaded with Class II and/or Class IV drugs. However, thermal treatment especially for heat-sensitive drugs, regulatory, and ethical obligations in terms of quality control and quality assurance remain points of concern. Hence, a concerted effort is needed between the scientific community, the pharmaceutical industries, the regulatory agencies, the clinicians and clinical pharmacists, and the end-users to address these concerns.
Collapse
|
41
|
Agrawal S, Fernandes J, Shaikh F, Patel V. Quality aspects in the development of pelletized dosage forms. Heliyon 2022; 8:e08956. [PMID: 35243077 PMCID: PMC8873546 DOI: 10.1016/j.heliyon.2022.e08956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 12/03/2022] Open
Abstract
The aim of this work was to identify and collate the major common challenges that arise during pellet development. These challenges focus on aspects right from raw material properties until the final drying process of the pelletization. The challenges associated with the particle size of drug and excipients, physicochemical properties, drug excipient interaction and the effect of type/grade and amount of raw material on the pellet properties are covered in this review. Technological and process related challenges within the commonly used pelletization techniques such as extrusion-spheronization, hot-melt extrusion and layering techniques are also emphasized. The paper likewise gives an insight to the possible ways of addressing the quality of pellets during development.
Collapse
|
42
|
Bertoni S, Hasa D, Albertini B, Perissutti B, Grassi M, Voinovich D, Passerini N. Better and greener: sustainable pharmaceutical manufacturing technologies for highly bioavailable solid dosage forms. Drug Deliv Transl Res 2022; 12:1843-1858. [PMID: 34988827 DOI: 10.1007/s13346-021-01101-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 11/03/2022]
Abstract
In the last decades, Green Chemistry has been gaining widespread attention within the pharmaceutical field. It is thus very important to bring more sustainable approaches into the design and manufacture of effective oral drug delivery systems. This review focuses on spray congealing and mechanochemical activation, two technologies endorsing different principles of green chemistry, and at the same time, addressing some of the challenges related to the transformation of poorly water-soluble drugs in highly bioavailable solid dosage forms. We therefore present an overview of the basic principles, equipment, and application of these particle-engineering technologies, with specific attention to case studies carried out by the groups working in Italian Universities.
Collapse
Affiliation(s)
- Serena Bertoni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127, Bologna, Italy
| | - Dritan Hasa
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Beatrice Albertini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127, Bologna, Italy
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/1, 34127, Trieste, Italy
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Nadia Passerini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127, Bologna, Italy.
| |
Collapse
|
43
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1450-1466. [DOI: 10.1093/jpp/rgab176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/26/2022] [Indexed: 11/12/2022]
|
44
|
Salave S, Prayag K, Rana D, Amate P, Pardhe R, Jadhav A, Jindal AB, Benival D. Recent Progress in Hot Melt Extrusion Technology in Pharmaceutical Dosage Form Design. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:170-191. [PMID: 35986528 DOI: 10.2174/2667387816666220819124605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The Hot Melt Extrusion (HME) technique has shown tremendous potential in transforming highly hydrophobic crystalline drug substances into amorphous solids without using solvents. This review explores in detail the general considerations involved in the process of HME, its applications and advances. OBJECTIVE The present review examines the physicochemical properties of polymers pertinent to the HME process. Theoretical approaches for the screening of polymers are highlighted as a part of successful HME processed drug products. The critical quality attributes associated with the process of HME are also discussed in this review. HME plays a significant role in the dosage form design, and the same has been mentioned with suitable examples. The role of HME in developing several sustained release formulations, films, and implants is described along with the research carried out in a similar domain. METHODS The method includes the collection of data from different search engines like PubMed, ScienceDirect, and SciFinder to get coverage of relevant literature for accumulating appropriate information regarding HME, its importance in pharmaceutical product development, and advanced applications. RESULTS HME is known to have advanced pharmaceutical applications in the domains related to 3D printing, nanotechnology, and PAT technology. HME-based technologies explored using Design-of- Experiments also lead to the systematic development of pharmaceutical formulations. CONCLUSION HME remains an adaptable and differentiated technique for overall formulation development.
Collapse
Affiliation(s)
- Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Kedar Prayag
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS PILANI), Pilani, Rajasthan, India
| | - Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Prakash Amate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Rupali Pardhe
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Ajinkya Jadhav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS PILANI), Pilani, Rajasthan, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| |
Collapse
|
45
|
Bailey LF, Vavolil Prabhakaran J, Vishwapathi VK, Kulkarni CV. Electroformation of Particulate Emulsions Using Lamellar and Nonlamellar Lipid Self-Assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14527-14539. [PMID: 34855404 DOI: 10.1021/acs.langmuir.1c02721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report on the development of an electroformation technique for the preparation of particulate (particle-based) emulsions. These oil-in-water (here, lipid phase acts as an "oil") emulsions were prepared using nonlamellar lipid phases. Such emulsion particles offer high hydrophobic volumes compared to conventional lipid particles based on lamellar phases (vesicles/liposomes). In addition, the tortuous internal nanostructure contributes through greater surface area per volume of lipid particles allowing an enhanced loading of payloads. The electroformation method makes use of a capacitor formed from two indium tin oxide coated conductive glass surfaces separated by a dielectric aqueous medium. This capacitor setup is enclosed in a custom-designed 3D-printed unit. Lipid molecules, deposited on conductive surfaces, self-assemble into a nanostructure in the presence of an aqueous medium, which when subjected to an alternating current electric field forms nano- and/or microparticles. Optical microscopy, dynamic light scattering, and small-angle X-ray scattering techniques were employed for micro- and nanostructural analyses of electroformed particles. With this method, it is possible to produce particulate emulsions at a very low (e.g., 0.0005 wt % or 0.5 mg/mL) lipid concentration. We demonstrate an applicability of the electroformation method for drug delivery by preparing lipid particles with curcumin, which is a highly important but water-insoluble medicinal compound. As the method employs gentle conditions, it is potentially noninvasive for the delivery of delicate biomolecules and certain drugs, which are prone to decomposition or denaturation due to the high thermomechanical energy input and/or nonaqueous solvents required for existing methods.
Collapse
Affiliation(s)
| | - Jayachandran Vavolil Prabhakaran
- Applied Biology Section, Department of Applied Sciences, University of Technology and Applied Sciences, P. O. Box 74, Al-Khuwair, 133 Muscat, Sultanate of Oman
| | | | | |
Collapse
|
46
|
Enhanced Supersaturation via Fusion-Assisted Amorphization during FDM 3D Printing of Crystalline Poorly Soluble Drug Loaded Filaments. Pharmaceutics 2021; 13:pharmaceutics13111857. [PMID: 34834272 PMCID: PMC8618474 DOI: 10.3390/pharmaceutics13111857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Filaments loaded with griseofulvin (GF), a model poorly water-soluble drug, were prepared and used for 3D printing via fused deposition modeling (FDM). GF was selected due to its high melting temperature, enabling lower temperature hot-melt extrusion (HME) keeping GF largely crystalline in the filaments, which could help mitigate the disadvantages of high HME processing temperatures such as filament quality, important for printability and the adverse effects of GF recrystallization on tablet properties. Novel aspects include single-step fusion-assisted ASDs generation during FDM 3D printing and examining the impact of tablet surface areas (SA) through printing multi-mini and square-pattern perforated tablets to further enhance drug supersaturation during dissolution. Kollicoat protect and hydroxypropyl cellulose were selected due to their low miscibility with GF, necessary to produce crystalline filaments. The drug solid-state was assessed via XRPD, DSC and FT-IR. At 165 °C HME processing temperature, the filaments containing ~80% crystalline GF were printable. Fusion-assisted 3D printing led to GF supersaturation of ~153% for cylindrical tablets and ~293% with the square-pattern perforated tablets, indicating strong monotonous impact of tablet SA. Dissolution kinetics of drug release profiles indicated Fickian transport for tablets with higher SA, demonstrating greater SA-induced drug supersaturation for well-designed 3D printed tablets.
Collapse
|
47
|
Mateo-Ortiz D, Villanueva-Lopez V, Muddu SV, Doddridge GD, Alhasson D, Dennis MC. Dry Powder Mixing Is Feasible in Continuous Twin Screw Extruder: Towards Lean Extrusion Process for Oral Solid Dosage Manufacturing. AAPS PharmSciTech 2021; 22:249. [PMID: 34648107 DOI: 10.1208/s12249-021-02148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
Using discrete element method (DEM) modeling and near-infrared (NIR) spectroscopy, the feasibility of powder mixing in the initial pre-melting zones of a twin screw extruder using two independent feeders was studied. Previous work in the pharmaceutical and food industry has focused on mixing when materials are melted or on material homogeneity at the extruder's output. Depending on the formulation, ensuring a fully blended formulation prior to melting may be desired. Experiments were conducted using a Coperion ZSK-18 extruder to evaluate if blend uniformity can be achieved by exploring screw configuration, screw speed, and powder feed rate. As powder exited the extruder and deposited on a conveyor belt, an in-line NIR spectrophotometer measured spectra of material. Chemometric-based models predicted unknown concentrations to evaluate if blend uniformity was achieved. Using the EDEM software, Hertz-Mindlin contact model, and dimensions of the extruder, DEM simulations complemented the experimental work. The DEM computational models provided understanding of mixing patterns inside the extruder at particle scale and helped select the screw configuration before doing experimentation. The simulations showed good axial mixing for all the screw configurations studied, while good cross (radial) mixing was only observed for the screw configuration with 90-degree kneading elements. Therefore, the screw configuration with two 90-degree kneading elements was chosen for the experimental study. The RTD profiles when using a screw configuration with only conveying screw elements are comparable to a plug flow reactor (PFR), while the profiles when using kneading elements are more comparable to an ideal continuous stirred tank reactor (CSTR). For the screw configuration with 90 degrees kneading elements, the mean residence time (MRT) decreases with an increase in the screw speed. Experimental NIR spectra showed that concentrations can be predicted with an error of 2%. It was demonstrated that the twin screw extruder can provide proper dry powder mixing of two powder feed streams based on a unit dose scale, enabling continuous powder mixing prior to the melting zone in the extruder for the formulation studied with a cohesive API. This setup may also work for other types of formulations. These studies can help in developing lean hot melt as well as wet extrusion/granulation processes using twin screw extruders for the continuous manufacturing of oral solid dosage products.
Collapse
|
48
|
Jiang X, Zhao Y, Guan Q, Xiao S, Dong W, Lian S, Zhang H, Liu M, Wang Z, Han J. Amorphous solid dispersions of cyclosporine A with improved bioavailability prepared via hot melt extrusion: Formulation, physicochemical characterization, and in vivo evaluation. Eur J Pharm Sci 2021; 168:106036. [PMID: 34637896 DOI: 10.1016/j.ejps.2021.106036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/08/2021] [Accepted: 09/02/2021] [Indexed: 02/05/2023]
Abstract
In this study, the amorphous solid dispersions of cyclosporine A (CsA-ASDs) were prepared by hot melt extrusion (HME) with PVP K12 as carrier to improve the oral bioavailability of CsA. The polymers were screened by solubilization and recrystallization inhibition experiments, then the CsA-ASDs were prepared with optimized technological parameters and characterized on thermodynamics and morphology. The results showed that CsA was dispersed among PVP K12 as amorphous form in CsA-ASDs, and the infrared spectrum testified that there was possible hydrogen bond interaction between CsA and PVP K12. The in vivo pharmacokinetics of CsA formulations in rats were analyzed via LC-MS. The AUC of CsA-ASD tablets increased by 7.3 times compared to CsA bulk powder and 3.1 times in contrast to CsA-PM tablets, respectively. The experiment proved that CsA-ASD tablets significantly improved the dissolution and absorption of the drug. This study had a reference value for the bioavailability improvement of oral CsA preparations.
Collapse
Affiliation(s)
- Xinxin Jiang
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng, Shandong 252059, People's Republic of China
| | - Yanna Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng, Shandong 252059, People's Republic of China.
| | - Qingran Guan
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng, Shandong 252059, People's Republic of China
| | - Shanshan Xiao
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng, Shandong 252059, People's Republic of China
| | - Weimiao Dong
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng, Shandong 252059, People's Republic of China
| | - Shipeng Lian
- Shandong Weifang Rainbow Chemical Co., Ltd, Weifang, Shandong 261100, People's Republic of China
| | - Huaizhen Zhang
- School of Environment and Planning, Liaocheng University, Hunan Road, Liaocheng, Shandong 252059, People's Republic of China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng, Shandong 252059, People's Republic of China; School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Zhengping Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng, Shandong 252059, People's Republic of China; Liaocheng High-Tech Biotechnology Co. Ltd, Liaocheng, Shandong 252059, People's Republic of China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng, Shandong 252059, People's Republic of China; Liaocheng High-Tech Biotechnology Co. Ltd, Liaocheng, Shandong 252059, People's Republic of China.
| |
Collapse
|
49
|
Thanawuth K, Sutthapitaksakul L, Konthong S, Suttiruengwong S, Huanbutta K, Dass CR, Sriamornsak P. Impact of Drug Loading Method on Drug Release from 3D-Printed Tablets Made from Filaments Fabricated by Hot-Melt Extrusion and Impregnation Processes. Pharmaceutics 2021; 13:pharmaceutics13101607. [PMID: 34683900 PMCID: PMC8538863 DOI: 10.3390/pharmaceutics13101607] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to investigate the impact of the drug loading method on drug release from 3D-printed tablets. Filaments comprising a poorly water-soluble model drug, indomethacin (IND), and a polymer, polyvinyl alcohol (PVA), were prepared by hot-melt extrusion (HME) and compared with IND-loaded filaments prepared with an impregnation (IMP) process. The 3D-printed tablets were fabricated using a fused deposition modeling 3D printer. The filaments and 3D printed tablets were evaluated for their physicochemical properties, swelling and matrix erosion behaviors, drug content, and drug release. Physicochemical investigations revealed no drug–excipient interaction or degradation. IND-loaded PVA filaments produced by IMP had a low drug content and a rapid drug release. Filaments produced by HME with a lower drug content released the drug faster than those with a higher drug content. The drug content and drug release of 3D-printed tablets containing IND were similar to those of the filament results. Particularly, drug release was faster in 3D-printed tablets produced with filaments with lower drug content (both by IMP and HME). The drug release of 3D-printed tablets produced from HME filaments with higher drug content was extended to 24 h due to a swelling-erosion process. This study confirmed that the drug loading method has a substantial influence on drug content, which in turn has a significant effect on drug release. The results suggest that increasing the drug content in filaments might delay drug release from 3D-printed tablets, which may be used for developing dosage forms suited for personalized medicine.
Collapse
Affiliation(s)
- Kasitpong Thanawuth
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (K.T.); (L.S.)
- Pharmaceutical Biopolymer Group (PBiG), Silpakorn University, Nakhon Pathom 73000, Thailand; (S.K.); (K.H.)
| | - Lalinthip Sutthapitaksakul
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (K.T.); (L.S.)
- Pharmaceutical Biopolymer Group (PBiG), Silpakorn University, Nakhon Pathom 73000, Thailand; (S.K.); (K.H.)
| | - Srisuda Konthong
- Pharmaceutical Biopolymer Group (PBiG), Silpakorn University, Nakhon Pathom 73000, Thailand; (S.K.); (K.H.)
| | - Supakij Suttiruengwong
- Department of Materials Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand;
| | - Kampanart Huanbutta
- Pharmaceutical Biopolymer Group (PBiG), Silpakorn University, Nakhon Pathom 73000, Thailand; (S.K.); (K.H.)
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand
| | - Crispin R. Dass
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth 6845, Australia;
- Curtin Health Innovation Research Institute, Bentley 6102, Australia
| | - Pornsak Sriamornsak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (K.T.); (L.S.)
- Pharmaceutical Biopolymer Group (PBiG), Silpakorn University, Nakhon Pathom 73000, Thailand; (S.K.); (K.H.)
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
- Correspondence:
| |
Collapse
|
50
|
Tsiaxerli A, Karagianni A, Ouranidis A, Kachrimanis K. Polyelectrolyte Matrices in the Modulation of Intermolecular Electrostatic Interactions for Amorphous Solid Dispersions: A Comprehensive Review. Pharmaceutics 2021; 13:pharmaceutics13091467. [PMID: 34575543 PMCID: PMC8468962 DOI: 10.3390/pharmaceutics13091467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 12/05/2022] Open
Abstract
Polyelectrolyte polymers have been widely used in the pharmaceutical field as excipients to facilitate various drug delivery systems. Polyelectrolytes have been used to modulate the electrostatic environment and enhance favorable interactions between the drug and the polymer in amorphous solid dispersions (ASDs) prepared mainly by hot-melt extrusion. Polyelectrolytes have been used alone, or in combination with nonionic polymers as interpolyelectrolyte complexes, or after the addition of small molecular additives. They were found to enhance physical stability by favoring stabilizing intermolecular interactions, as well as to exert an antiplasticizing effect. Moreover, they not only enhance drug dissolution, but they have also been used for maintaining supersaturation, especially in the case of weakly basic drugs that tend to precipitate in the intestine. Additional uses include controlled and/or targeted drug release with enhanced physical stability and ease of preparation via novel continuous processes. Polyelectrolyte matrices, used along with scalable manufacturing methods in accordance with green chemistry principles, emerge as an attractive viable alternative for the preparation of ASDs with improved physical stability and biopharmaceutic performance.
Collapse
Affiliation(s)
- Anastasia Tsiaxerli
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.K.); (A.O.)
| | - Anna Karagianni
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.K.); (A.O.)
| | - Andreas Ouranidis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.K.); (A.O.)
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Kyriakos Kachrimanis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.K.); (A.O.)
- Correspondence: ; Tel.: +30-2310-997666
| |
Collapse
|