1
|
Otarbayeva S, Berillo D. Poly(Vinyl Alcohol) Drug and PVA-Drug-Surfactant Complex Organogel with Dimethyl Sulfoxide as a Drug Delivery System. Gels 2024; 10:753. [PMID: 39590109 PMCID: PMC11593573 DOI: 10.3390/gels10110753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
The relevance of active research lies in the need to develop new technologies to improve drug delivery methods for the effective treatment of wound healing. Additionally, the potential application of organogels in other areas of biomedicine, such as creating medical patches with controlled drug delivery, indicates a wide range of possibilities for using this technology. This study focuses on developing controlled drug delivery systems using organogels as carriers for ceftriaxone and ofloxacin. By selecting optimal formulations, organogels were created to immobilize the drugs, facilitating their effective and sustained release. The swelling behavior of the hydrogels was studied, showing a swelling coefficient between 16 and 32%, indicating their ability to absorb liquid relative to their weight. Drug release studies demonstrated that ceftriaxone was released 1.8 times slower than ofloxacin, ensuring a more controlled delivery. Microbiological tests confirmed that the organogels containing ofloxacin exhibited antimicrobial activity against Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. However, it was a challenge to estimate activity for the model antibiotic ceftriaxone due to bacterial resistance to it. Organogel poly(vinyl alcohol) (PVA)-DMSO-alginate modifications with surfactant cetylpyridinium bromide led to the formation of a polyelectrolyte complex on the interphase, allowing further enhanced the prolonged release of the drugs. The research identified that the optimal compositions for sustained drug release were organogels with compositions PVA (10%)-PVP (1%) DMSO (50%) and PVA (10%)-DMSO (50%) formulations, illustrating the transparent nature of these organogels making them suitable for ophthalmological application. Various organogels compositions (PVA-DMSO, PVA-poly(vinylpyrrolidone)-DMSO, PVA-DMSO-alginate, PVA-DMSO-PLGA, PVA-DMSO-drug-surfactant) loaded with ceftriaxone, ofloxacin, and surfactant were prepared and characterized, highlighting their potential use in antibiotic patches for wound healing. These organogels illustrate promising results for localized treatment of infections in wounds, cuts, burns, and other skin lesions.
Collapse
Affiliation(s)
- Sabina Otarbayeva
- Department of Chemistry and Biochemical Engineering, Satbayev University, Almaty 050013, Kazakhstan
| | - Dmitriy Berillo
- Department of Chemistry and Biochemical Engineering, Satbayev University, Almaty 050013, Kazakhstan
- Department of Biochemistry, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| |
Collapse
|
2
|
Jogdeo CM, Panja S, Kumari N, Tang W, Kapoor E, Siddhanta K, Das A, Boesen EI, Foster KW, Oupický D. Inulin-based nanoparticles for targeted siRNA delivery in acute kidney injury. J Control Release 2024; 376:577-592. [PMID: 39419450 DOI: 10.1016/j.jconrel.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
RNA interference has emerged as a promising therapeutic strategy to tackle acute kidney injury (AKI). Development of targeted delivery systems is highly desired for selective renal delivery of RNA and improved therapeutic outcomes in AKI. Inulin is a plant polysaccharide traditionally employed to measure glomerular filtration rate. Here, we describe the synthesis of inulin modified with α-cyclam-p-toluic acid (CPTA) to form a novel renal-targeted polymer, Inulin-CPTA (IC), which is capable of selective siRNA delivery to the injured kidneys. We show that conjugating CPTA to inulin imparts IC with targeting properties for cells that overexpress the C-X-C chemokine receptor 4 (CXCR4). Self-assembled IC/siRNA nanoparticles (polyplexes) demonstrated rapid accumulation in the injured kidneys with selective uptake and prolonged retention in injured renal tubules overexpressing the CXCR4 receptor. Tumor-suppressor protein p53 contributes significantly to the pathogenesis of AKI. siRNA-induced silencing of p53 has shown therapeutic potential in several preclinical studies, making it an important target in the treatment of AKI. Systemically administered nanoparticles formulated using IC and siRNA against p53 selectively accumulated in the injured kidneys and potently silenced p53 expression. Selective p53 knockdown led to positive therapeutic outcomes in mice with cisplatin-induced AKI, as seen by reduced tubular cell death, renal injury, inflammation, and overall improved renal function. These findings indicate that IC is a promising new carrier for renal-targeted delivery of RNA for the treatment of AKI.
Collapse
Affiliation(s)
- Chinmay M Jogdeo
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sudipta Panja
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Neha Kumari
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ekta Kapoor
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kasturi Siddhanta
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ashish Das
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Erika I Boesen
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kirk W Foster
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
3
|
Jangid AK, Noh KM, Kim S, Kim K. Engineered inulin-based hybrid biomaterials for augmented immunomodulatory responses. Carbohydr Polym 2024; 340:122311. [PMID: 38858027 DOI: 10.1016/j.carbpol.2024.122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024]
Abstract
Modified biopolymers that are based on prebiotics have been found to significantly contribute to immunomodulatory events. In recent years, there has been a growing use of modified biomaterials and polymer-functionalized nanomaterials in the treatment of various tumors by activating immune cells. However, the effectiveness of immune cells against tumors is hindered by several biological barriers, which highlights the importance of harnessing prebiotic-based biopolymers to enhance host defenses against cancer, thus advancing cancer prevention strategies. Inulin, in particular, plays a crucial role in activating immune cells and promoting the secretion of cytokines. Therefore, this mini-review aims to emphasize the importance of inulin in immunomodulatory responses, the development of inulin-based hybrid biopolymers, and the role of inulin in enhancing immunity and modifying cell surfaces. Furthermore, we discuss the various approaches of chemical modification for inulin and their potential use in cancer treatment, particularly in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyung Mu Noh
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
4
|
Gong T, Liu X, Wang X, Lu Y, Wang X. Applications of polysaccharides in enzyme-triggered oral colon-specific drug delivery systems: A review. Int J Biol Macromol 2024; 275:133623. [PMID: 38969037 DOI: 10.1016/j.ijbiomac.2024.133623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Enzyme-triggered oral colon-specific drug delivery system (EtOCDDS1) can withstand the harsh stomach and small intestine environments, releasing encapsulated drugs selectively in the colon in response to colonic microflora, exerting local or systematic therapeutic effects. EtOCDDS boasts high colon targetability, enhanced drug bioavailability, and reduced systemic side effects. Polysaccharides are extensively used in enzyme-triggered oral colon-specific drug delivery systems, and its colon targetability has been widely confirmed, as their properties meet the demand of EtOCDDS. Polysaccharides, known for their high safety and excellent biocompatibility, feature modifiable structures. Some remain undigested in the stomach and small intestine, whether in their natural state or after modifications, and are exclusively broken down by colon-resident microbiota. Such characteristics make them ideal materials for EtOCDDS. This article reviews the design principles of EtOCDDS as well as commonly used polysaccharides and their characteristics, modifications, applications and specific mechanism for colon targeting. The article concludes by summarizing the limitations and potential of ETOCDDS to stimulate the development of innovative design approaches.
Collapse
Affiliation(s)
- Tingting Gong
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xinxin Liu
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xi Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Yunqian Lu
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
5
|
Liang X, Lin D, Zhang W, Chen S, Ding H, Zhong HJ. Progress in the Preparation and Application of Inulin-Based Hydrogels. Polymers (Basel) 2024; 16:1492. [PMID: 38891439 PMCID: PMC11174702 DOI: 10.3390/polym16111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Inulin, a natural polysaccharide, has emerged as a promising precursor for the preparation of hydrogels due to its biocompatibility, biodegradability, and structural versatility. This review provides a comprehensive overview of the recent progress in the preparation, characterization, and diverse applications of inulin-based hydrogels. Different synthesis strategies, including physical methods (thermal induction and non-thermal induction), chemical methods (free-radical polymerization and chemical crosslinking), and enzymatic approaches, are discussed in detail. The unique properties of inulin-based hydrogels, such as stimuli-responsiveness, antibacterial activity, and their potential as fat replacers, are highlighted. Special emphasis is given to their promising applications in drug delivery systems, especially for colon-targeted delivery, due to the selective degradation of inulin via colonic microflora. The ability to incorporate both hydrophilic and hydrophobic drugs further expands their therapeutic potential. In addition, the applications of inulin-based hydrogels in responsive materials, the food industry, wound dressings, and tissue engineering are discussed. While significant progress has been achieved, challenges and prospects in optimizing synthesis, improving mechanical properties, and exploring new functionalities are discussed. Overall, this review highlights the remarkable properties of inulin-based hydrogels as a promising class of biomaterials with immense potential in the biomedical, pharmaceutical, and materials science fields.
Collapse
Affiliation(s)
- Xiaoxu Liang
- Foundation Department, Guangzhou Maritime University, Guangzhou 510725, China;
| | - Danlei Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; (D.L.); (W.Z.); (S.C.)
| | - Wen Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; (D.L.); (W.Z.); (S.C.)
| | - Shiji Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; (D.L.); (W.Z.); (S.C.)
| | - Hongyao Ding
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Hai-Jing Zhong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; (D.L.); (W.Z.); (S.C.)
| |
Collapse
|
6
|
Kass LE, Nguyen J. Nanocarrier-hydrogel composite delivery systems for precision drug release. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1756. [PMID: 34532989 PMCID: PMC9811486 DOI: 10.1002/wnan.1756] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 01/07/2023]
Abstract
Hydrogels are a class of biomaterials widely implemented in medical applications due to their biocompatibility and biodegradability. Despite the many successes of hydrogel-based delivery systems, there remain challenges to hydrogel drug delivery such as a burst release at the time of administration, a limited ability to encapsulate certain types of drugs (i.e., hydrophobic drugs, proteins, antibodies, and nucleic acids), and poor tunability of geometry and shape for controlled drug release. This review discusses two main important advances in hydrogel fabrication for precision drug release: first, the incorporation of nanocarriers to diversify their drug loading capability, and second, the design of hydrogels using 3D printing to precisely control drug dosing and release kinetics via high-resolution structures and geometries. We also outline ongoing challenges and discuss opportunities to further optimize drug release from hydrogels for personalized medicine. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
| | - Juliane Nguyen
- Corresponding author: Juliane Nguyen, Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA,
| |
Collapse
|
7
|
Inverse Poly-High Internal Phase Emulsions Poly(HIPEs) Materials from Natural and Biocompatible Polysaccharides. MATERIALS 2020; 13:ma13235499. [PMID: 33276681 PMCID: PMC7729674 DOI: 10.3390/ma13235499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 11/28/2022]
Abstract
This paper shows one of the few examples in the literature on the feasibility of novel materials from natural and biocompatible polymers like inulin (INU) or glycol chitosan (GCS) templated by the formation of o/w (inverse) high internal phase emulsion (HIPE). To the best of our knowledge, this is the first example of inverse polyHIPEs obtained from glycol chitosan or inulin. The obtained polyHIPEs were specifically designed for possible wound dressing applications. The HIPE (pre-crosslinking emulsion) was obtained as inverse HIPE, i.e., by forming a cream-like 80:20 v/v o/w emulsion by using the isopropyl myristate in its oil phase, which is obtained from natural sources like palm oil or coconut oil. The surfactant amount was critical in obtaining the inverse HIPE and the pluronic F127 was effective in stabilizing the emulsion comprising up to 80% v/v as internal phase. The obtained inverse HIPEs were crosslinked by UV irradiation for methacrylated INU or by glutaraldehyde-crosslinking for GCS. In both cases, inverse poly-HIPEs were obtained, which were physicochemically characterized. This paper introduces a new concept in using hydrophilic, natural polymers for the formation of inverse poly-HIPEs.
Collapse
|
8
|
Catenacci L, Sorrenti M, Perteghella S, Mandracchia D, Torre ML, Trapani A, Milanese C, Tripodo G. Combination of inulin and β-cyclodextrin properties for colon delivery of hydrophobic drugs. Int J Pharm 2020; 589:119861. [PMID: 32911044 DOI: 10.1016/j.ijpharm.2020.119861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023]
Abstract
Colon drug delivery is aimed at the administration of selected drugs to act locally or even systematically. Corticosteroid drugs are often used exerting even pronounced side effects due to systemic absorption. Here a new drug delivery system (DDS) based on the chemical conjugation of β-cyclodextrin to inulin to form the INUCD bioconjugate is described. It was designed with the aim to provide this DDS with colon degradable portions (inulin) which degradation products have direct beneficial effects on the well-being of the colon and with a carrier that can solubilize hydrophobic drugs (β-cyclodextrin). This system was specifically designed to promote a local/topical activity with a significant reduction of the drug systemic absorption. The INUCD bioconjugate was obtained by a simple chemistry binding β-cyclodextrin to an inulin succinate previously synthesized. The bioconjugate was then characterized in terms of physicochemical properties by ATR-FTIR, 1H NMR, DSC and TGA, DLS and SEM. Furthermore phase-solubility test by using curcumin as a model drug were performed as well as biologic evaluations for cytocompatibility and drug transport across in vitro simulated physiological barriers. Moreover enzymatic degradation studies by inulinase were performed. From the gained results a predictable local drug release of the payload could be attained so allowing a local delivery of e.g. corticosteroids thus avoiding a systemic absorption especially in prolonged therapies.
Collapse
Affiliation(s)
- Laura Catenacci
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Sara Perteghella
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Delia Mandracchia
- University of Brescia, Department of Molecular and Translational Medicine, Viale Europa 11, 25121 Brescia, Italy
| | - Maria L Torre
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Adriana Trapani
- University of Bari "Aldo Moro", Department of Pharmacy, Via Orabona 4, 70125 Bari, Italy
| | - Chiara Milanese
- University of Pavia, Department of Chemistry, Viale Taramelli 12, 27100 Pavia, Italy
| | - Giuseppe Tripodo
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
9
|
Sánchez-Moreno VE, Sandoval-Pauker C, Aldas M, Ciobotă V, Luna M, Vargas Jentzsch P, Muñoz Bisesti F. Synthesis of inulin hydrogels by electron beam irradiation: physical, vibrational spectroscopic and thermal characterization and arsenic removal as a possible application. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02159-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Jun J, Millican RC, Sherwood JA, Tucker BS, Vijayan VM, Alexander GC, Thomas V, Brott BC, Hwang PTJ. Evaluation of Viscoelastic Properties, Blood Coagulation, and Cellular Responses of a Temperature-Sensitive Gel for Hemostatic Application. ACS APPLIED BIO MATERIALS 2020; 3:3137-3144. [DOI: 10.1021/acsabm.0c00160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joseph Jun
- Neuroscience, College of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Reid C. Millican
- Endomimetics, LLC, 1500 First Avenue North, Birmingham, Alabama 35203, United States
| | - Jennifer A. Sherwood
- Endomimetics, LLC, 1500 First Avenue North, Birmingham, Alabama 35203, United States
| | - Bernabe S. Tucker
- Department of Material Science and Engineering, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Vineeth M. Vijayan
- Department of Material Science and Engineering, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Center for Nanoscale Materials and Biointegration, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Grant C. Alexander
- Endomimetics, LLC, 1500 First Avenue North, Birmingham, Alabama 35203, United States
| | - Vinoy Thomas
- Department of Material Science and Engineering, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Center for Nanoscale Materials and Biointegration, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Brigitta C. Brott
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Patrick T. J. Hwang
- Endomimetics, LLC, 1500 First Avenue North, Birmingham, Alabama 35203, United States
| |
Collapse
|
11
|
Tripodo G, Mandracchia D. Inulin as a multifaceted (active) substance and its chemical functionalization: From plant extraction to applications in pharmacy, cosmetics and food. Eur J Pharm Biopharm 2019; 141:21-36. [PMID: 31102649 DOI: 10.1016/j.ejpb.2019.05.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 01/09/2023]
Abstract
This review is aimed at critically discussing a collection of research papers on Inulin (INU) in different scientific fields. The first part of this work gives an overview on the main characteristics of native INU, including production, applications in food or cosmetics industries, its benefits on human health as well as its main nutraceutical properties. A particular focus is dedicated to the extraction techniques and to the specific effects of INU on intestinal microbiota. Other than in food industry, the number of INU applications increases dramatically in the pharmaceutical field especially due to its simple chemical functionalization. Thus, aim of this review is also to give practical examples of chemical functionalization performed on INU also by including critical comments based on the direct experience of the Authors. With this aim, a full paragraph is dedicated to practical chemical experiences useful to reduce the efforts when establishing new experimental conditions. Moreover, the pharmaceutical technology is also taken in special consideration by underlining the aspects leading at the preparation of formulations based on INU. At the end of the review, a critical paragraph is intended to feed the scientists' curiosity on this versatile polysaccharide.
Collapse
Affiliation(s)
- Giuseppe Tripodo
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Delia Mandracchia
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
12
|
Tripodo G, Perteghella S, Grisoli P, Trapani A, Torre ML, Mandracchia D. Drug delivery of rifampicin by natural micelles based on inulin: Physicochemical properties, antibacterial activity and human macrophages uptake. Eur J Pharm Biopharm 2019; 136:250-258. [DOI: 10.1016/j.ejpb.2019.01.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 12/31/2022]
|
13
|
Xu D, Xu T, Gao G, Xiao Y, Wang Z, Chen J, Zhou Y, Wang R, Yin J, Fu J. Effect of solvent-matrix interactions on structures and mechanical properties of micelle-crosslinked gels. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/polb.24805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dan Xu
- School of Materials Science and Engineering; Shanghai University, 99 Shangda Road; Shanghai 200444 China
- Polymers and Composites Division; Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road; Ningbo 315201 China
| | - Ting Xu
- Polymers and Composites Division; Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road; Ningbo 315201 China
| | - Guorong Gao
- Polymers and Composites Division; Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road; Ningbo 315201 China
| | - Ying Xiao
- Polymers and Composites Division; Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road; Ningbo 315201 China
| | - Zongbao Wang
- School of Materials Science and Engineering; Ningbo University, 18 Fenghua Road; Ningbo 315201 China
| | - Jing Chen
- Polymers and Composites Division; Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road; Ningbo 315201 China
| | - Yang Zhou
- Polymers and Composites Division; Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road; Ningbo 315201 China
| | - Rong Wang
- Polymers and Composites Division; Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road; Ningbo 315201 China
| | - Jingbo Yin
- School of Materials Science and Engineering; Shanghai University, 99 Shangda Road; Shanghai 200444 China
| | - Jun Fu
- Polymers and Composites Division; Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road; Ningbo 315201 China
| |
Collapse
|