1
|
Yan J, Siwakoti P, Shaw S, Bose S, Kokil G, Kumeria T. Porous silicon and silica carriers for delivery of peptide therapeutics. Drug Deliv Transl Res 2024; 14:3549-3567. [PMID: 38819767 PMCID: PMC11499345 DOI: 10.1007/s13346-024-01609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 06/01/2024]
Abstract
Peptides have gained tremendous popularity as biological therapeutic agents in recent years due to their favourable specificity, diversity of targets, well-established screening methods, ease of production, and lower cost. However, their poor physiological and storage stability, pharmacokinetics, and fast clearance have limited their clinical translation. Novel nanocarrier-based strategies have shown promise in overcoming these issues. In this direction, porous silicon (pSi) and mesoporous silica nanoparticles (MSNs) have been widely explored as potential carriers for the delivery of peptide therapeutics. These materials possess several advantages, including large surface areas, tunable pore sizes, and adjustable pore architectures, which make them attractive carriers for peptide delivery systems. In this review, we cover pSi and MSNs as drug carriers focusing on their use in peptide delivery. The review provides a brief overview of their fabrication, surface modification, and interesting properties that make them ideal peptide drug carriers. The review provides a systematic account of various studies that have utilised these unique porous carriers for peptide delivery describing significant in vitro and in vivo results. We have also provided a critical comparison of the two carriers in terms of their physicochemical properties and short-term and long-term biocompatibility. Lastly, we have concluded the review with our opinion of this field and identified key areas for future research for clinical translation of pSi and MSN-based peptide therapeutic formulations.
Collapse
Affiliation(s)
- Jiachen Yan
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Prakriti Siwakoti
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Siuli Shaw
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201301, India
| | - Sudeep Bose
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201301, India
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, 201301, India
| | - Ganesh Kokil
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
- Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Tushar Kumeria
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
- Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW, 2052, Australia.
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
2
|
Yapa P, Munaweera I, Weerasekera MM, Weerasinghe L. Synergistic antimicrobial nanofiber membranes based on metal incorporated silica nanoparticles as advanced antimicrobial layers. RSC Adv 2024; 14:33919-33940. [PMID: 39463479 PMCID: PMC11503530 DOI: 10.1039/d4ra05052e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
In this post-new-normal era, the public prioritizes preventive measures over curing, which is a constructive approach to staying healthy. In this study, an innovative antimicrobial membrane material has been developed, showcasing the promising potential for various applications. The metal-doped silica nanoparticles (Ag, Cu, and Co) were incorporated into a cellulose acetate (CA) polymer-based nanofiber membrane using the electrospinning technique. The metal nanoparticles were doped into a silanol network of silica nanoparticles. The fabricated membranes underwent detailed characterization using a wide range of techniques including PXRD, FTIR, Raman, SEM, TEM, TGA, and tensile testing. These analyses provided compelling evidence confirming the successful incorporation of metal-doped silica nanoparticles (Ag, Cu, and Co) into cellulose-based nanofibers. The band gap energies of the fabricated CA mats lie below 3.00 eV, confirming that they are visible light active. The trimetallic silica nanohybrid exhibited the lowest band gap energy of 2.84 eV, proving the self-sterilizing ability of the CA mats. The DPPH assay further confirmed the best radical scavenging activity by the trimetallic silica nanohybrid incorporated nanofiber mat (91.77 ± 0.88%). The antimicrobial activity was assessed by using the bacterial ATCC strains of Staphylococcus aureus, Streptococcus pneumoniae, MRSA (Methicillin-resistant Staphylococcus aureus), Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa and fungal strains; quality control samples of Trichophyton rubrum, Microsporum gypsium, and Aspergillus niger, as well as the ATCC strain of Candida albicans. The trimetallic silica nanohybrid-incorporated CA membranes demonstrated the most significant inhibition zones. The reported findings substantiate the self-sterilizing mat's viability, affordability, efficacy against a broad spectrum of microbial strains, cost-effectiveness, and biodegradability. Furthermore, the mat serves as a dual-purpose physical and biological barrier against microbes, affirming its potential impact.
Collapse
Affiliation(s)
- Piumika Yapa
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura Nugegoda 10250 Sri Lanka +94 772943738
| | - Imalka Munaweera
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura Nugegoda 10250 Sri Lanka +94 772943738
| | - Manjula M Weerasekera
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura Nugegoda 10250 Sri Lanka
| | - Laksiri Weerasinghe
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura Nugegoda 10250 Sri Lanka +94 772943738
| |
Collapse
|
3
|
Bhattacharjee M, Ghosh A, Das S, Sarker S, Bhattacharya S, Das A, Ghosh S, Chattopadhyay S, Ghosh S, Adhikary A. Systemic Codelivery of Thymoquinone and Doxorubicin by Targeted Mesoporous Silica Nanoparticle Sensitizes Doxorubicin-Resistant Breast Cancer by Interfering between the MDR1/P-gp and miR 298 Crosstalk. ACS Biomater Sci Eng 2024; 10:6314-6331. [PMID: 39285678 DOI: 10.1021/acsbiomaterials.4c01081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Multi drug resistance (MDR) in breast carcinoma still poses a significant impairment to successful chemotherapy. As the arsenal of anticancer agents increases with improved preclinical methods, the growth of therapeutic drug combinations is now unprecedented. The malignancies addressed by mono drugs often fail to limit cancer progression, resulting in resistant cancer, thereby offering combinatorial therapies a terrific edge over monodrug regimes. However, the selection of drug combinations required enough preliminary evidence for their synergistic effect. The fundamental mechanisms of MDR to chemotherapeutics are associated with the overexpression of membrane efflux pumps, alternations in drug targets, and increased drug metabolism. Unfortunately, it is very difficult for drugs to overcome resistance produced on their own or by another different drug action. In this context, herein, we report a simple delivery system for coencapsulation and intracellular codelivery of dual-drug thymoquinone (TQ) and doxorubicin (DOX) to resensitize DOX-resistant MDA MB231 cell line (231 R). The 231 R cell line developed in our lab showed an enhanced expression of the ATP-binding cassette (ABC) transporters P-gp1/MDR-1 and a declined miR-298 expression. The present delivery system is based on amine-functionalized mesoporous silica nanoparticles (MSNs), in which the side chain amine functional group was used to react with the carbonyl group of TQ, which acts as a pro-drug system (TQ-MSN) to release TQ and DOX simultaneously. DOX was encapsulated later into the above TQ-MSN by a simple diffusion method. The drugs containing MSNs were further coated with a hyaluronic acid-conjugated PEG-PLGA polymer (HA@TQ-DOX-MSN). This simple nanostrategy interferes with the MDR-1/miR-298 cross-talk, thereby allowing a significant reduction in drug efflux from the cell and highlighting a promising nanotechnology-based combinatorial delivery approach in managing breast cancer chemoresistance.
Collapse
Affiliation(s)
- Mousumi Bhattacharjee
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, West Bengal 700106, India
| | - Avijit Ghosh
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, West Bengal 700106, India
| | - Shaswati Das
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, West Bengal 700106, India
| | - Sushmita Sarker
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, West Bengal 700106, India
| | - Saurav Bhattacharya
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, West Bengal 700106, India
| | - Ankur Das
- Department of Physiology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata, West Bengal 700009, India
| | - Subhajit Ghosh
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal 700032, India
| | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata, West Bengal 700009, India
| | - Swatilekha Ghosh
- Amity Institute of Biotechnology, Amity University, Rajarhat, New Town, Kolkata, West Bengal 700135, India
| | - Arghya Adhikary
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal 700032, India
| |
Collapse
|
4
|
Bashir S, Amn Zia M, Shoukat M, Kaleem I, Bashir S. Nanoparticles as a novel key driver for the isolation and detection of circulating tumour cells. Sci Rep 2024; 14:22580. [PMID: 39343959 PMCID: PMC11439955 DOI: 10.1038/s41598-024-67221-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/09/2024] [Indexed: 10/01/2024] Open
Abstract
Circulating tumour cells (CTCs), derived from primary tumours, play a pivotal role in cancer metastasis by migrating into the peripheral bloodstream. These cells are paramount in clinical research, serving as early diagnostic markers for metastatic cancer. Analysing CTC counts and their biomarker characteristics can provide invaluable insights into tumour identification, profiling, and metastatic capabilities. However, the rarity and diverse nature of CTCs in the bloodstream present significant challenges to their isolation and detection, especially in the initial stages of metastasis. Recent advancements in nanotechnology have led to the development of innovative CTC separation and detection methods. This review focuses on applying nanoparticles, nanomaterials, and microfluidic platforms to simplify the isolation and detection of CTCs. The infusion of nanotechnology in this field marks a crucial turning point, enabling the necessary progress to advance CTC research.
Collapse
Affiliation(s)
- Shahab Bashir
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Amn Zia
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Madiha Shoukat
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Imdad Kaleem
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, 45550, Pakistan.
| | - Shahid Bashir
- Neuroscience Centre, King Fahad Specialist Hospital, Dammam, KSA, Saudi Arabia
| |
Collapse
|
5
|
Bhat SA, Chandramohan S, Subramanian S, Pajaniradje S, Yadav N, Rajagopalan R. Deciphering the cytotoxic potential of acamprosate and acamprosate loaded mesoporous silica nanoparticles in hepatocellular carcinoma: an in vitro and in silico approach. Drug Dev Ind Pharm 2024:1-20. [PMID: 39226131 DOI: 10.1080/03639045.2024.2400202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/04/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024]
Abstract
Hepatocellular carcinoma (HCC) is a healthcare concern that causes most cancer-linked deaths around the world. This work was aimed at unraveling the anticancer potential of acamprosate and development of mesoporous silica nanoparticle (MSN) drug delivery system to increase the therapeutic efficacy of acamprosate. For this purpose, the MSNs were synthesized and encapsulated with acamprosate (MSN-Acamp). The MSN and MSN-Acamp were characterized by DLS, Zeta potential, UV spectroscopy, SEM, FTIR, XRD, DFT, and XPS. Biological effects were evaluated by MTT and lactate dehydrogenase assays. The apoptotic mode of cell death was evaluated by fluorescence imaging and DNA fragmentation assay. Cell cycle assessment and Annexin V-FITC/PI staining were performed to depict the phase of cell arrest and stage of apoptotic cells respectively. The acamprosate was found to exhibit cytotoxic effect and MSN-Acamp exhibited an increased cytotoxicity. Apoptotic mode of cell death was revealed by fluorescence imaging as nuclear fragmentation, production of reactive oxygen species (ROS), loss of membrane potential in mitochondria, and chromatin condensation/fragmentation were found. The docking results revealed that acamprosate had a considerable binding affinity with Bcl-2, Mcl-1, EGFR, and mTOR proteins. Overall, our results indicated that acamprosate and MSN-Acamp had a potent apoptotic effect and MSNs are propitious drug carriers to increase therapeutic effect in HCC.
Collapse
Affiliation(s)
- Suhail Ahmad Bhat
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Sathyapriya Chandramohan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Srividya Subramanian
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Sankar Pajaniradje
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Neena Yadav
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Rukkumani Rajagopalan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
6
|
Mohanan S, Guan X, Liang M, Karakoti A, Vinu A. Stimuli-Responsive Silica Silanol Conjugates: Strategic Nanoarchitectonics in Targeted Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301113. [PMID: 36967548 DOI: 10.1002/smll.202301113] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The design of novel drug delivery systems is exceptionally critical in disease treatments. Among the existing drug delivery systems, mesoporous silica nanoparticles (MSNs) have shown profuse promise owing to their structural stability, tunable morphologies/sizes, and ability to load different payload chemistry. Significantly, the presence of surface silanol groups enables functionalization with relevant drugs, imaging, and targeting agents, promoting their utility and popularity among researchers. Stimuli-responsive silanol conjugates have been developed as a novel, more effective way to conjugate, deliver, and release therapeutic drugs on demand and precisely to the selected location. Therefore, it is urgent to summarize the current understanding and the surface silanols' role in making MSN a versatile drug delivery platform. This review provides an analytical understanding of the surface silanols, chemistry, identification methods, and their property-performance correlation. The chemistry involved in converting surface silanols to a stimuli-responsive silica delivery system by endogenous/exogenous stimuli, including pH, redox potential, temperature, and hypoxia, is discussed in depth. Different chemistries for converting surface silanols to stimuli-responsive bonds are discussed in the context of drug delivery. The critical discussion is culminated by outlining the challenges in identifying silanols' role and overcoming the limitations in synthesizing stimuli-responsive mesoporous silica-based drug delivery systems.
Collapse
Affiliation(s)
- Shan Mohanan
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Mingtao Liang
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, 2308, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| |
Collapse
|
7
|
Al-Thani AN, Jan AG, Abbas M, Geetha M, Sadasivuni KK. Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review. Life Sci 2024; 352:122899. [PMID: 38992574 DOI: 10.1016/j.lfs.2024.122899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
This comprehensive review provides an in-depth analysis of how nanotechnology has revolutionized cancer theragnostic, which combines diagnostic and therapeutic methods to customize cancer treatment. The study examines the unique attributes, uses, and difficulties linked to different types of nanoparticles, including gold, iron oxide, silica, Quantum dots, Carbon nanotubes, and liposomes, in the context of cancer treatment. In addition, the paper examines the progression of nanotheranostics, emphasizing its uses in precise medication administration, photothermal therapy, and sophisticated diagnostic methods such as MRI, CT, and fluorescence imaging. Moreover, the article highlights the capacity of nanoparticles to improve the effectiveness of drugs, reduce the overall toxicity in the body, and open up new possibilities for treating cancer by releasing drugs in a controlled manner and targeting specific areas. Furthermore, it tackles concerns regarding the compatibility of nanoparticles and their potential harmful effects, emphasizing the significance of continuous study to improve nanotherapeutic methods for use in medical treatments. The review finishes by outlining potential future applications of nanotechnology in predictive oncology and customized medicine.
Collapse
Affiliation(s)
- Alshayma N Al-Thani
- College of Arts and Sciences, Department of Biological and Environmental Science, Qatar
| | - Asma Ghafoor Jan
- College of Arts and Sciences, Department of Biological and Environmental Science, Qatar
| | - Mohamed Abbas
- Centre for Advanced Materials, Qatar University, Qatar.
| | - Mithra Geetha
- Centre for Advanced Materials, Qatar University, Qatar
| | - Kishor Kumar Sadasivuni
- Centre for Advanced Materials, Qatar University, Qatar; Centre for Advanced Materials, Qatar University, Qatar Department of Mechanical and Industrial Engineering, Qatar
| |
Collapse
|
8
|
Zheng B, Chen J, Xu Y, Wu W, Zhu Y, Cai W, Lin W, Shi C. Poly (β-amino esters)/Mobil Composition of Matter 41-mediated delivery of siIL-1β alleviates deep vein thrombosis in rat hind limbs. J Biomater Appl 2024:8853282241280376. [PMID: 39213651 DOI: 10.1177/08853282241280376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Introduction: Deep vein thrombosis (DVT) is a major cause of cardiovascular disease-related deaths worldwide and is considered a thrombotic inflammatory disorder. IL-1β, as a key promoter of venous thrombus inflammation, is a potential target for DVT treatment. Constructing a nanocarrier system for intracellular delivery of siIL-1β to silence IL-1β may be an effective strategy for alleviating DVT. Methods: ELISA was used to detect the expression levels of IL-1β and t-PA in the serum of DVT patients and healthy individuals. In vitro, HUVEC cells were treated with IL-1β, and changes in VWF and t-PA expression levels were assessed. PBAE/MCM-41@siIL-1β (PM@siIL-1β) nano-complexes were synthesized, the characterization and biocompatibility of PM@siIL-1β were evaluated. A rat hind limb DVT model was established, and PM@siIL-1β was used to treat DVT rats. Morphology of the inferior vena cava, endothelial cell count, IL-1β, vWF, and t-PA levels, as well as changes in the p38 MAPK and NF-κB pathways, were examined in the different groups. Results: IL-1β and t-PA were highly expressed in DVT patients, and IL-1β treatment induced a decrease in VWF levels and an increase in t-PA levels in HUVEC cells. The synthesized PM@siIL-1β exhibited spherical shape, good stability, high encapsulation efficiency, and high drug loading capacity, with excellent biocompatibility. In the DVT model rats, the inferior vena cava was filled with blood clots, endothelial cells increased, IL-1β and VWF levels significantly increased, while t-PA levels were significantly downregulated. Treatment with PM@siIL-1β resulted in reduced thrombus formation, decreased endothelial cell count, and reversal of IL-1β, VWF, and t-PA levels. Furthermore, PM@siIL-1β treatment significantly inhibited p38 phosphorylation and upregulation of NF-κB expression in the DVT model group. Conclusion: IL-1β can be considered a therapeutic target for suppressing DVT inflammation. The synthesized PM@siIL-1β achieved efficient delivery and gene silencing of siIL-1β, demonstrating good therapeutic effects on rat hind limb DVT, including anti-thrombotic and anti-inflammatory effects, potentially mediated through the p38 MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Bingru Zheng
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinjie Chen
- Department of Nephrology, Rui'an Third People's Hospital, Wenzhou, China
| | - Yizhou Xu
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wanrui Wu
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Zhu
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Cai
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weili Lin
- Department of Ultrasound Imaging, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Changsheng Shi
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Wu D, Chen M, Zheng N, Lu Y, Wang X, Jiang C, Xu H. The efficacy and safety of pH-responsive and photothermal-sensitive multifunctional nanoparticles loaded with cryptotanshinone for the treatment of gastric cancer. Mol Carcinog 2024. [PMID: 39185663 DOI: 10.1002/mc.23814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024]
Abstract
A multifunctional polydopamine/mesoporous silica nanoparticles loaded cryptotanshinone (PDA/MSN@CTS) was synthesized and subjected to investigating its physicochemical properties and anti-gastric cancer (GC) effects. Utilizing network pharmacology and molecular docking techniques, CTS was identified as our final research target. The structural morphology and physicochemical properties of PDA/MSN@CTS were examined. Near-infrared (NIR) laser was employed to evaluate the photothermal properties of the PDA/MSN@CTS, along with pH-responsive and NIR-triggered release assessments. In vitro experiments evaluated the impact of PDA/MSN@CTS on the malignant behavior of AGS gastric cells. A subcutaneous tumor model was further established to evaluate the in vivo safety of PDA/MSN@CTS. Furthermore, the in vivo photothermal efficacy of PDA/MSN@CTS, in addition to its combined effect with photothermal therapy (PTT), was investigated. Uniform and stable PDA/MSN@CTS had been successfully synthesized and demonstrated efficient release under tumor environment and NIR irradiation. Upon increasing NIR laser conditions, in vivo cytotoxicity, apoptosis rate, reactive oxygen species scavenging ability, and suppression of migration and invasion of AGS cells by PDA/MSN@CTS were significantly enhanced. In vivo assessments revealed excellent blood compatibility and biosafety of PDA/MSN@CTS, alongside robust tumor tissue targeting. Combining nanoparticles with PTT facilitated the anti-GC effects of PDA/MSN@CTS. Compared to free drugs, PDA/MSN@CTS exhibits higher selectivity towards cancer cells, demonstrating effective anticancer activity and biocompatibility both in vitro and in vivo. Furthermore, our nanomaterial possesses excellent photothermal properties, and under NIR conditions, PDA/MSN@CTS exhibits synergistic therapeutic effects.
Collapse
Affiliation(s)
- Dan Wu
- Department of Gastrointestinal Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - MingHang Chen
- College of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Nan Zheng
- College of Pharmacy, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Ying Lu
- College of Pharmacy, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Xiang Wang
- College of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Chuan Jiang
- Department of Gastrointestinal Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - HongTao Xu
- Department of Gastrointestinal Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| |
Collapse
|
10
|
Dubey N, Rahimnejad M, Swanson WB, Xu J, de Ruijter M, Malda J, Squarize CH, Castilho RM, Bottino MC. Integration of Melt Electrowritten Polymeric Scaffolds and Bioprinting for Epithelial Healing via Localized Periostin Delivery. ACS Macro Lett 2024; 13:959-965. [PMID: 39024469 DOI: 10.1021/acsmacrolett.4c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Management of skin injuries imposes a substantial financial burden on patients and hospitals, leading to diminished quality of life. Periostin (rhOSF), an extracellular matrix component, regulates cell function, including a proliferative healing phase, representing a key protein to promote wound healing. Despite its proven efficacy in vitro, there is a lack of scaffolds that facilitate the in situ delivery of rhOSF. In addition, there is a need for a scaffold to not only support cell growth, but also to resist the mechanical forces involved in wound healing. In this work, we synthesized rhOSF-loaded mesoporous nanoparticles (MSNs) and incorporated them into a cell-laden gelatin methacryloyl (GelMA) ink that was bioprinted into melt electrowritten poly(ε-caprolactone) (PCL) microfibrous (MF-PCL) meshes to develop mechanically competent constructs. Diffraction light scattering (DLS) analysis showed a narrow nanoparticle size distribution with an average size of 82.7 ± 13.2 nm. The rhOSF-loaded hydrogels showed a steady and controlled release of rhOSF over 16 days at a daily dose of ∼40 ng/mL. Compared with blank MSNs, the incorporation of rhOSF markedly augmented cell proliferation, underscoring its contribution to cellular performance. Our findings suggest a promising approach to address challenges such as prolonged healing, offering a potential solution for developing robust, biocompatible, and cell-laden grafts for burn wound healing applications.
Collapse
Affiliation(s)
- Nileshkumar Dubey
- Faculty of Dentistry, National University of Singapore, 119077 Singapore
| | - Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - W Benton Swanson
- Department of Biologic and Materials Science, Division of Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jinping Xu
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mylène de Ruijter
- Regenerative Medicine Center Utrecht, 3584 Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| | - Jos Malda
- Regenerative Medicine Center Utrecht, 3584 Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| | - Cristiane H Squarize
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan Ann Arbor, Michigan 48109, United States
| | - Rogerio M Castilho
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan Ann Arbor, Michigan 48109, United States
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
Karnopp JCF, Jorge J, da Silva JR, Boldo D, Del Pino Santos KF, Duarte AP, de Castro GR, de Azevedo RB, Prada AL, Amado JRR, Martines MAU. Synthesis, Characterization, and Cytotoxicity Evaluation of Chlorambucil-Functionalized Mesoporous Silica Nanoparticles. Pharmaceutics 2024; 16:1086. [PMID: 39204431 PMCID: PMC11359805 DOI: 10.3390/pharmaceutics16081086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
This study describes the synthesis and characterization of chlorambucil (CLB)-functionalized mesoporous silica nanoparticles (MSNs) for potential application in cancer therapy. The nanoparticles were designed with a diameter between 20 and 50 nm to optimize cellular uptake and avoid rapid clearance from the bloodstream. The synthesis method involved modifying a previously reported technique to reduce particle size. Successful functionalization with CLB was confirmed through various techniques, including Fourier transform infrared spectroscopy (FTIR) and elemental analysis. The cytotoxicity of the CLB-functionalized nanoparticles (MSN@NH2-CLB) was evaluated against human lung adenocarcinoma cells (A549) and colon carcinoma cells (CT26WT). The results suggest significantly higher cytotoxicity of MSN@NH2-CLB compared to unbound CLB, with improved selectivity towards cancer cells over normal cells. This suggests that MSN@NH2-CLB holds promise as a drug delivery system for targeted cancer therapy.
Collapse
Affiliation(s)
- Juliana Camila Fischer Karnopp
- Postgraduate Program in Chemistry, Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, MS, Brazil; (J.C.F.K.); (J.J.); (D.B.); (K.F.D.P.S.); (A.P.D.)
| | - Juliana Jorge
- Postgraduate Program in Chemistry, Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, MS, Brazil; (J.C.F.K.); (J.J.); (D.B.); (K.F.D.P.S.); (A.P.D.)
| | - Jaqueline Rodrigues da Silva
- Postgraduate Program in Nanoscience and Nanotechnology, Biological Science Institute, University of Brasilia, Brasilia 70910-900, DF, Brazil; (J.R.d.S.); (R.B.d.A.)
| | - Diego Boldo
- Postgraduate Program in Chemistry, Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, MS, Brazil; (J.C.F.K.); (J.J.); (D.B.); (K.F.D.P.S.); (A.P.D.)
| | - Kristiane Fanti Del Pino Santos
- Postgraduate Program in Chemistry, Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, MS, Brazil; (J.C.F.K.); (J.J.); (D.B.); (K.F.D.P.S.); (A.P.D.)
| | - Adriana Pereira Duarte
- Postgraduate Program in Chemistry, Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, MS, Brazil; (J.C.F.K.); (J.J.); (D.B.); (K.F.D.P.S.); (A.P.D.)
| | - Gustavo Rocha de Castro
- Postgraduate Program in Environmental Biotechnology, Bioscience Institute, Sao Paulo State University, Botucatu 18618-000, SP, Brazil;
| | - Ricardo Bentes de Azevedo
- Postgraduate Program in Nanoscience and Nanotechnology, Biological Science Institute, University of Brasilia, Brasilia 70910-900, DF, Brazil; (J.R.d.S.); (R.B.d.A.)
| | - Ariadna Lafourcade Prada
- Postgraduate Program in Biotechnology, Faculty of Pharmacy, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil;
| | - Jesús Rafael Rodríguez Amado
- Postgraduate Program in Health Sciences, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil;
| | - Marco Antonio Utrera Martines
- Postgraduate Program in Chemistry, Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, MS, Brazil; (J.C.F.K.); (J.J.); (D.B.); (K.F.D.P.S.); (A.P.D.)
| |
Collapse
|
12
|
Qiao M, Zeng C, Liu C, Lei Z, Liu B, Xie H. The advancement of siRNA-based nanomedicine for tumor therapy. Nanomedicine (Lond) 2024; 19:1841-1862. [PMID: 39145477 PMCID: PMC11418284 DOI: 10.1080/17435889.2024.2377062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/03/2024] [Indexed: 08/16/2024] Open
Abstract
Small interfering RNA (siRNA) has been proved to be able to effectively down-regulate gene expression through the RNAi mechanism. Thus, siRNA-based drugs have become one of the hottest research directions due to their high efficiency and specificity. However, challenges such as instability, off-target effects and immune activation hinder their clinical application. This review explores the mechanisms of siRNA and the challenges in siRNA-based tumor therapy. It highlights the use of various nanomaterials - including lipid nanoparticles, polymeric nanoparticles and inorganic nanoparticles - as carriers for siRNA delivery in different therapeutic modalities. The application strategies of siRNA-based nanomedicine in chemotherapy, phototherapy and immunotherapy are discussed in detail, along with recent clinical advancements. Aiming to provide insights for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Muchuan Qiao
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Chenlu Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Changqing Liu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Ziwei Lei
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Hailong Xie
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
13
|
Sharda D, Attri K, Choudhury D. Greener healing: sustainable nanotechnology for advanced wound care. DISCOVER NANO 2024; 19:127. [PMID: 39136798 PMCID: PMC11322481 DOI: 10.1186/s11671-024-04061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/29/2024] [Indexed: 08/16/2024]
Abstract
Wound healing involves a carefully regulated sequence of events, encompassing pro-inflammatory and anti-inflammatory stages, tissue regeneration, and remodeling. However, in individuals with diabetes, this process gets disrupted due to dysregulation caused by elevated glucose levels and pro-inflammatory cytokines in the bloodstream. Consequently, the pro-inflammatory stage is prolonged, while the anti-inflammatory phase is delayed, leading to impaired tissue regeneration and remodeling with extended healing time. Furthermore, the increased glucose levels in open wounds create an environment conducive to microbial growth and tissue sepsis, which can escalate to the point of limb amputation. Managing diabetic wounds requires meticulous care and monitoring due to the lack of widely available preventative and therapeutic measures. Existing clinical interventions have limitations, such as slow recovery rates, high costs, and inefficient drug delivery methods. Therefore, exploring alternative avenues to develop effective wound-healing treatments is essential. Nature offers a vast array of resources in the form of secondary metabolites, notably polyphenols, known for their antimicrobial, anti-inflammatory, antioxidant, glucose-regulating, and cell growth-promoting properties. Additionally, nanoparticles synthesized through environmentally friendly methods hold promise for wound healing applications in diabetic and non-diabetic conditions. This review provides a comprehensive discussion and summary of the potential wound-healing abilities of specific natural polyphenols and their nanoparticles. It explores the mechanisms of action underlying their efficacy and presents effective formulations for promoting wound-healing activity.
Collapse
Affiliation(s)
- Deepinder Sharda
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Komal Attri
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
- Thapar Institute of Engineering and Technology-Virginia Tech (USA) Centre of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Thapar Institute of Engineering and Technology-Virginia Tech (USA) Centre of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
14
|
Pavanello L, Cortês IT, de Carvalho RDP, Picolo MZD, Cavalli V, Silva LTS, Boaro LCC, Prokopovich P, Cogo-Müller K. Physicochemical and biological properties of dental materials and formulations with silica nanoparticles: A narrative review. Dent Mater 2024:S0109-5641(24)00229-X. [PMID: 39117500 DOI: 10.1016/j.dental.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE Silica nanoparticles (SNPs) have been extensively studied and used in different dental applications to promote improved physicochemical properties, high substance loading efficiency, in addition to sustained delivery of substances for therapeutic or preventive purposes. Therefore, this study aimed to review the SNPs applications in nanomaterials and nanoformulations in dentistry, discussing their effect on physicochemical properties, biocompatibility and ability to nanocarry bioactive substances. DATA RESOURCES Literature searches were conducted on PubMed, Web of Science, and Scopus databases to identify studies examining the physicochemical and biological properties of dental materials and formulations containing SNPs. Data extraction was performed by one reviewer and verified by another STUDY SELECTION: A total of 50 were reviewed. In vitro studies reveal that SNPs improved the general properties of dental materials and formulations, such as microhardness, fracture toughness, flexural strength, elastic modulus and surface roughness, in addition to acting as efficient nanocarriers of substances, such as antimicrobial, osteogenic and remineralizing substances, and showed biocompatibility CONCLUSIONS: SNPs are biocompatible, improve properties of dental materials and serve as effective carriers for bioactive substances CLINICAL SIGNIFICANCE: Overall, SNPs are a promising drug delivery system that can improve dental materials biological and physicochemical and aesthetic properties, increasing their longevity and clinical performance. However, more studies are needed to elucidate SNPs short- and long-term effects in the oral cavity, mainly on in vivo and clinical studies, to prove their effectiveness and safety.
Collapse
Affiliation(s)
- Larissa Pavanello
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, SP, Brazil.
| | - Iago Torres Cortês
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, SP, Brazil.
| | | | | | - Vanessa Cavalli
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, SP, Brazil.
| | | | | | - Polina Prokopovich
- School of Pharmacy and Pharmaceutical Science, Cardiff University, Cardiff, United Kingdom.
| | - Karina Cogo-Müller
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, SP, Brazil; Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| |
Collapse
|
15
|
Godakhindi V, Tarannum M, Dam SK, Vivero-Escoto JL. Mesoporous Silica Nanoparticles as an Ideal Platform for Cancer Immunotherapy: Recent Advances and Future Directions. Adv Healthc Mater 2024; 13:e2400323. [PMID: 38653190 PMCID: PMC11305940 DOI: 10.1002/adhm.202400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Cancer immunotherapy recently transforms the traditional approaches against various cancer malignancies. Immunotherapy includes systemic and local treatments to enhance immune responses against cancer and involves strategies such as immune checkpoints, cancer vaccines, immune modulatory agents, mimetic antigen-presenting cells, and adoptive cell therapy. Despite promising results, these approaches still suffer from several limitations including lack of precise delivery of immune-modulatory agents to the target cells and off-target toxicity, among others, that can be overcome using nanotechnology. Mesoporous silica nanoparticles (MSNs) are investigated to improve various aspects of cancer immunotherapy attributed to the advantageous structural features of this nanomaterial. MSNs can be engineered to alter their properties such as size, shape, porosity, surface functionality, and adjuvanticity. This review explores the immunological properties of MSNs and the use of MSNs as delivery vehicles for immune-adjuvants, vaccines, and mimetic antigen-presenting cells (APCs). The review also details the current strategies to remodel the tumor microenvironment to positively reciprocate toward the anti-tumor immune cells and the use of MSNs for immunotherapy in combination with other anti-tumor therapies including photodynamic/thermal therapies to enhance the therapeutic effect against cancer. Last, the present demands and future scenarios for the use of MSNs for cancer immunotherapy are discussed.
Collapse
Affiliation(s)
- Varsha Godakhindi
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Mubin Tarannum
- Division of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Sudip Kumar Dam
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Juan L Vivero-Escoto
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| |
Collapse
|
16
|
Zhang J, Zhou J, Tang L, Ma J, Wang Y, Yang H, Wang X, Fan W. Custom-Design of Multi-Stimuli-Responsive Degradable Silica Nanoparticles for Advanced Cancer-Specific Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400353. [PMID: 38651235 DOI: 10.1002/smll.202400353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/24/2024] [Indexed: 04/25/2024]
Abstract
Chemotherapy is crucial in oncology for combating malignant tumors but often encounters obatacles such as severe adverse effects, drug resistance, and biocompatibility issues. The advantages of degradable silica nanoparticles in tumor diagnosis and treatment lie in their ability to target drug delivery, minimizing toxicity to normal tissues while enhancing therapeutic efficacy. Moreover, their responsiveness to both endogenous and exogenous stimuli opens up new possibilities for integrating multiple treatment modalities. This review scrutinizes the burgeoning utility of degradable silica nanoparticles in combination with chemotherapy and other treatment modalities. Commencing the elucidation of degradable silica synthesis and degradation mechanisms, emphasis is placed on the responsiveness of these materials to endogenous (e.g., pH, redox reactions, hypoxia, and enzymes) and exogenous stimuli (e.g., light and high-intensity focused ultrasound). Moreover, this exploration delves into strategies harnessing degradable silica nanoparticles in chemotherapy alone, coupled with radiotherapy, photothermal therapy, photodynamic therapy, gas therapy, immunotherapy, starvation therapy, and chemodynamic therapy, elucidating multimodal synergies. Concluding with an assessment of advances, challenges, and constraints in oncology, despite hurdles, future investigations are anticipated to augment the role of degradable silica in cancer therapy. These insights can serve as a compass for devising more efficacious combined tumor treatment strategies.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Jiani Zhou
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | | | - Jiayi Ma
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Ying Wang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Hui Yang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Xiaoxiao Wang
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243032, P. R. China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, P. R. China
| |
Collapse
|
17
|
Janiszewska E, Pietrowski M, Zieliński M. Modification of Silica with Sucrose and Ammonium Fluoride Agents: A Facile Route to Prepare Supports of Iridium Catalysts for Hydrogenation Reaction. Molecules 2024; 29:3430. [PMID: 39065008 PMCID: PMC11279784 DOI: 10.3390/molecules29143430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Mesoporous silica materials were synthesized using inexpensive and environmentally friendly sucrose as a porogeneous agent. It was found that the presence of sucrose and the products of its chemical transformation during synthesis (e.g., furfural polymer) significantly affected the structure of the obtained porous silica. The influence of synthesis conditions (pH, temperature, time) on the textural properties of the final materials was determined. Samples obtained in an acidic medium, at pH = 1, and treated at room temperature, yielded products with a large surface area and a narrow pore size distribution in the range of 2-5 nm, while the synthesis at pH = 8 allowed for the formation of mesoporous systems with pores in the range of 14-20 nm. To generate acidity, the silicas were modified with an ammonium fluoride solution and then used as supports for iridium catalysts in a hydrogenation reaction, with toluene as a model hydrocarbon. The influence of parameters such as specific surface area, support acidity, and iridium dispersion on catalytic activity was determined. It was shown that modification with sucrose improved the porous structure, and NH4F modification generated acidity. These parameters favored better reducibility and dispersion of the active phase, resulting in higher activity of the catalysts in the studied hydrogenation reaction.
Collapse
Affiliation(s)
| | | | - Michał Zieliński
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (E.J.); (M.P.)
| |
Collapse
|
18
|
Nair A, Chandrashekhar H R, Day CM, Garg S, Nayak Y, Shenoy PA, Nayak UY. Polymeric functionalization of mesoporous silica nanoparticles: Biomedical insights. Int J Pharm 2024; 660:124314. [PMID: 38862066 DOI: 10.1016/j.ijpharm.2024.124314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Mesoporous silica nanoparticles (MSNs) endowed with polymer coatings present a versatile platform, offering notable advantages such as targeted, pH-controlled, and stimuli-responsive drug delivery. Surface functionalization, particularly through amine and carboxyl modification, enhances their suitability for polymerization, thereby augmenting their versatility and applicability. This review delves into the diverse therapeutic realms benefiting from polymer-coated MSNs, including photodynamic therapy (PDT), photothermal therapy (PTT), chemotherapy, RNA delivery, wound healing, tissue engineering, food packaging, and neurodegenerative disorder treatment. The multifaceted potential of polymer-coated MSNs underscores their significance as a focal point for future research endeavors and clinical applications. A comprehensive analysis of various polymers and biopolymers, such as polydopamine, chitosan, polyethylene glycol, polycaprolactone, alginate, gelatin, albumin, and others, is conducted to elucidate their advantages, benefits, and utilization across biomedical disciplines. Furthermore, this review extends its scope beyond polymerization and biomedical applications to encompass topics such as surface functionalization, chemical modification of MSNs, recent patents in the MSN domain, and the toxicity associated with MSN polymerization. Additionally, a brief discourse on green polymers is also included in review, highlighting their potential for fostering a sustainable future.
Collapse
Affiliation(s)
- Akhil Nair
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Raghu Chandrashekhar H
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Candace M Day
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Sanjay Garg
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Padmaja A Shenoy
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
19
|
Gao F, Ye S, Huang L, Gu Z. A nanoparticle-assisted signal-enhancement technique for lateral flow immunoassays. J Mater Chem B 2024; 12:6735-6756. [PMID: 38920348 DOI: 10.1039/d4tb00865k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Lateral flow immunoassay (LFIA), an affordable and rapid paper-based detection technology, is employed extensively in clinical diagnosis, environmental monitoring, and food safety analysis. The COVID-19 pandemic underscored the validity and adoption of LFIA in performing large-scale clinical and public health testing. The unprecedented demand for prompt diagnostic responses and advances in nanotechnology have fueled the rise of next-generation LFIA technologies. The utilization of nanoparticles to amplify signals represents an innovative approach aimed at augmenting LFIA sensitivity. This review probes the nanoparticle-assisted amplification strategies in LFIA applications to secure low detection limits and expedited response rates. Emphasis is placed on comprehending the correlation between the physicochemical properties of nanoparticles and LFIA performance. Lastly, we shed light on the challenges and opportunities in this prolific field.
Collapse
Affiliation(s)
- Fang Gao
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shaonian Ye
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhengying Gu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| |
Collapse
|
20
|
Shukla CA, Moghadam RP, Patwardhan SV, Ranade VV. Feasibility and Advantages of Continuous Synthesis of Bioinspired Silica Using CO 2 as an Acidifying Agent. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:10260-10268. [PMID: 38994544 PMCID: PMC11234356 DOI: 10.1021/acssuschemeng.4c03101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024]
Abstract
In this work, we present a method for the continuous synthesis of bioinspired porous silica (BIS) particles using carbon dioxide (CO2) as an acidifying agent. Typical BIS synthesis uses strong mineral acids (e.g., HCl) to initiate the hydrolysis and subsequent condensation reactions. The use of strong acids leads to challenges in controlling the reaction pH. The synthesis approach proposed in this work offers for the first time CO2 as an attractive alternative for the synthesis of BIS and demonstrates the continuous process. The developed method leverages the mild acidic and the self-buffering nature of the CO2 combined with additional options for controlling mass transfer rates to facilitate enhanced control of pH, which is crucial for controlling the properties of synthesized BIS. Proof of concept experiments conducted in continuous mode demonstrated a yield of over 70% and a surface area exceeding 500 m2/g. These results indicate the successful synthesis of BIS using CO2 with properties in the desired range. The enhanced pH control offered by this CO2-based process will facilitate the implementation of a sustainable and robust continuous process for BIS synthesis.
Collapse
Affiliation(s)
- Chinmay A Shukla
- Multiphase Reactors and Process Intensification Group, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Roja P Moghadam
- Multiphase Reactors and Process Intensification Group, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Siddharth V Patwardhan
- Green Nanomaterials Research Group, Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K
| | - Vivek V Ranade
- Multiphase Reactors and Process Intensification Group, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
21
|
Mladenović M, Jarić S, Mundžić M, Pavlović A, Bobrinetskiy I, Knežević NŽ. Biosensors for Cancer Biomarkers Based on Mesoporous Silica Nanoparticles. BIOSENSORS 2024; 14:326. [PMID: 39056602 PMCID: PMC11274377 DOI: 10.3390/bios14070326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Mesoporous silica nanoparticles (MSNs) exhibit highly beneficial characteristics for devising efficient biosensors for different analytes. Their unique properties, such as capabilities for stable covalent binding to recognition groups (e.g., antibodies or aptamers) and sensing surfaces, open a plethora of opportunities for biosensor construction. In addition, their structured porosity offers capabilities for entrapping signaling molecules (dyes or electroactive species), which could be released efficiently in response to a desired analyte for effective optical or electrochemical detection. This work offers an overview of recent research studies (in the last five years) that contain MSNs in their optical and electrochemical sensing platforms for the detection of cancer biomarkers, classified by cancer type. In addition, this study provides an overview of cancer biomarkers, as well as electrochemical and optical detection methods in general.
Collapse
Affiliation(s)
| | | | | | | | | | - Nikola Ž. Knežević
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (M.M.); (S.J.); (M.M.); (A.P.)
| |
Collapse
|
22
|
Goto K, Ueno T, Sakaue S. Induction of antigen-specific immunity by mesoporous silica nanoparticles incorporating antigen peptides. J Biosci Bioeng 2024:S1389-1723(24)00161-0. [PMID: 38890051 DOI: 10.1016/j.jbiosc.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
Mesoporous silica nanoparticles (MSNs) are physically and chemically stable inorganic nanomaterials that have been attracting much attention as carriers for drug delivery systems in the field of nanomedicine. In the present study, we investigated the potential of MSN vaccines that incorporate antigen peptides for use in cancer immunotherapy. In vitro experiments demonstrated that fluorescently labeled MSNs accumulated in a line of mouse dendritic cells (DC2.4 cells), where the particles localized to the cytosol. These observations could suggest that MSNs have potential for use in delivering the loaded molecules into antigen-presenting cells, thereby stimulating the host acquired immune system. In vivo experiments demonstrated prolonged survival in mice implanted with ovalbumin (OVA)-expressing lymphoma cells (E.G7-OVA cells) following subcutaneous inoculation with MSNs incorporating OVA antigen peptides. Furthermore, OVA-specific immunoglobulin G antibodies and cytotoxic T lymphocytes were detected in the serum and the spleen cells, respectively, of mice inoculated with an MSN-OVA vaccine, indicating the induction of antigen-specific responses in both the humoral and cellular immune systems. These results suggested that the MSN therapies incorporating antigen peptides may serve as novel vaccines for cancer immunotherapy.
Collapse
Affiliation(s)
- Koichi Goto
- Division of Applied Life Sciences, Graduate School of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan.
| | - Tomoya Ueno
- Division of Applied Life Sciences, Graduate School of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Saki Sakaue
- Division of Applied Life Sciences, Graduate School of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| |
Collapse
|
23
|
Nanda SS, Kim D, Yang H, An SSA, Yi DK. Synergistic Effect of SiO 2 and Fe 3O 4 Nanoparticles in Autophagy Modulation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1033. [PMID: 38921909 PMCID: PMC11207018 DOI: 10.3390/nano14121033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Rapid advancements in nanotechnology have expanded its applications and synergistic impact on modern nanosystems. The comprehensive assessment of nanomaterials' safety for human exposure has become crucial and heightened. In addition to the characterization of cell proliferation and apoptosis, probing the implication of autophagy is vital for understanding the ramification of nanomaterials. Hence, HEK-293 kidney cells were employed to understand the changes in induction and perturbation of autophagy in cells by iron oxide (Fe3O4) and silica (SiO2) nanoparticles. Interestingly, Fe3O4 worked as a potent modulator of the autophagy process through its catalytic performance, which can develop better than that of SiO2 nanoparticles mechanism, stressing their therapeutic implication in the understanding of cell behaviors. The quantification of reactive oxygen species (ROS) was measured along with the process of autophagy during cell growth. This modulated autophagy will help in cell fate determination in complementary therapy for disease treatment, provide a clinical strategy for future study.
Collapse
Affiliation(s)
| | - Danyeong Kim
- Department of Bionanotechnology, Gachon Medical Research Institute, Gachon University, Seongnam 13120, Republic of Korea; (D.K.); (H.Y.)
| | - Hyewon Yang
- Department of Bionanotechnology, Gachon Medical Research Institute, Gachon University, Seongnam 13120, Republic of Korea; (D.K.); (H.Y.)
| | - Seong Soo A. An
- Department of Bionanotechnology, Gachon Medical Research Institute, Gachon University, Seongnam 13120, Republic of Korea; (D.K.); (H.Y.)
| | - Dong Kee Yi
- Department of Chemistry, Myongji University, Yongin 17058, Republic of Korea;
| |
Collapse
|
24
|
Yuan W, Shi X, Lee LTO. RNA therapeutics in targeting G protein-coupled receptors: Recent advances and challenges. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102195. [PMID: 38741614 PMCID: PMC11089380 DOI: 10.1016/j.omtn.2024.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
G protein-coupled receptors (GPCRs) are the major targets of existing drugs for a plethora of human diseases and dominate the pharmaceutical market. However, over 50% of the GPCRs remain undruggable. To pursue a breakthrough and overcome this situation, there is significant clinical research for developing RNA-based drugs specifically targeting GPCRs, but none has been approved so far. RNA therapeutics represent a unique and promising approach to selectively targeting previously undruggable targets, including undruggable GPCRs. However, the development of RNA therapeutics faces significant challenges in areas of RNA stability and efficient in vivo delivery. This review presents an overview of the advances in RNA therapeutics and the diverse types of nanoparticle RNA delivery systems. It also describes the potential applications of GPCR-targeted RNA drugs for various human diseases.
Collapse
Affiliation(s)
- Wanjun Yuan
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Leo Tsz On Lee
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa 999078, Macau, China
| |
Collapse
|
25
|
Klara J, Onak S, Kowalczyk A, Wójcik K, Lewandowska-Łańcucka J. Photocrosslinked gelatin/chondroitin sulfate/chitosan-based composites with tunable multifunctionality for bone tissue regeneration. Int J Biol Macromol 2024; 271:132675. [PMID: 38845259 DOI: 10.1016/j.ijbiomac.2024.132675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024]
Abstract
Novel hydrogel-based multifunctional systems prepared utilizing photocrosslinking and freeze-drying processes (PhotoCross/Freeze-dried) dedicated for bone tissue regeneration are presented. Fabricated materials, composed of methacrylated gelatin, chitosan, and chondroitin sulfate, possess interesting features including bioactivity, biocompatibility, as well as antibacterial activity. Importantly, their degradation and swellability might be easily tuned by playing with the biopolymeric content in the photocrosllinked systems. To broaden the potential application and deliver the therapeutic features, mesoporous silica particles functionalized with methacrylate moieties decorated with hydroxyapatite and loaded with the antiosteoporotic drug, alendronate, (MSP-MA-HAp-ALN) were dispersed within the biopolymeric sol and photocrosslinked. It was demonstrated that the obtained composites are characterized by a significantly extended degradation time, ensuring optimal conditions for balancing hybrids removal with the deposition of fresh bone. We have shown that attachment of MSP-MA-HAp-ALN to the polymeric matrix minimizes the initial burst effect and provides a prolonged release of ALN (up to 22 days). Moreover, the biological evaluation in vitro suggested the capability of the resulted systems to promote bone remodeling. Developed materials might potentially serve as scaffolds that after implantation will fill up bone defects of various origin (osteoporosis, tumour resection, accidents) providing the favourable conditions for bone regeneration and supporting the infections' treatment.
Collapse
Affiliation(s)
- Joanna Klara
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Sylwia Onak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Andrzej Kowalczyk
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Kinga Wójcik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | | |
Collapse
|
26
|
Rahangdale M, Solanki S, Patil P, Bhavsar D, Sawant K. Fabrication and characterization of apremilast-loaded zinc oxide-mesoporous silica nanoparticles for psoriasis treatment. Ther Deliv 2024; 15:449-462. [PMID: 38888579 DOI: 10.1080/20415990.2024.2343646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/12/2024] [Indexed: 06/20/2024] Open
Abstract
Aim: The study was aimed to formulate and evaluate apremilast-loaded zinc oxide-mesoporous silica nanoparticles for treatment of psoriasis. Materials & methods: Mesoporous silica nanoparticles were prepared by using sol-gel method and evaluated for particle size, in vitro drug release, in vitro cytotoxicity study and in vivo pharmacodynamic study. Results: The synthesized mesoporous silica nanoparticles showed particle size of 319.9 ± 3.9 nm, with 24 ± 0.217% of loading capacity. In vitro cytotoxicity study on A-431 cell line showed increased anti-psoriatic activity of apremilast-loaded zinc oxide-mesoporous silica nanoparticles. In vivo pharmacodynamic study and histological studies showed improved efficacy of drug in imiquimod-induced psoriasis mice model. Conclusion: The apremilast-loaded zinc oxide-mesoporous silica nanoparticles showed improved therapeutic efficacy, suggesting that they are promising approach for topical treatment of psoriasis.
Collapse
Affiliation(s)
- Mrunal Rahangdale
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Kalabhavan Campus, Vadodara, 390001, Gujarat, India
| | - Shubham Solanki
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Kalabhavan Campus, Vadodara, 390001, Gujarat, India
| | - Pravin Patil
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Kalabhavan Campus, Vadodara, 390001, Gujarat, India
| | - Dhaval Bhavsar
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Kalabhavan Campus, Vadodara, 390001, Gujarat, India
| | - Krutika Sawant
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Kalabhavan Campus, Vadodara, 390001, Gujarat, India
| |
Collapse
|
27
|
Gupta A, Choudhury AM, Meena J, Bauri S, Maiti P. Ordered Mesoporous Silica Delivering siRNA as Cancer Nanotherapeutics: A Comprehensive Review. ACS Biomater Sci Eng 2024; 10:2636-2658. [PMID: 38606473 DOI: 10.1021/acsbiomaterials.3c01749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Nanosized mesoporous silica has emerged as a promising flexible platform delivering siRNA for cancer treatment. This ordered mesoporous nanosized silica provides attractive features of well-defined and tunable porosity, structure, high payload, and multiple functionalizations for targeted delivery and increasing biocompatibility over other polymeric nanocarriers. Moreover, it also overcomes the lacunae associated with traditional administration of drugs. Chemically modified porous silica matrix efficiently entraps siRNA molecules and prevents their enzymatic degradation and premature release. This Review discusses the synthesis of silica using the sol-gel approach and the advantages with different silica mesostructure. Herein, the factors affecting the synthesis of silica at nanometer scale, shape, porosity and nanoparticle surface modification are also highlighted to attain the desired nanostructured silica carriers. Additional emphasis is given to chemically modified silica delivering siRNA, where the silica nanoparticle surface was modified with different chemical moieties such as amine modified with (3-aminoropyl) triethoxysilane, polyethylenimine, chitosan, poly(ethylene glycol), and cyclodextrin polymer modification to attain high therapeutic loading, improved dispersibility and biocompatibility. Upon systemic administration, ordered mesoporous nanosized silica encounters blood cells, immune cells, and organs mainly of the reticuloendothelial system (RES). Thereby, biocompatibility and biodistribution of silica based nanocarriers are deliberated to design principles for smart and efficacious nanostructured silica-siRNA carriers and their clinical trial status. This Review further reports the future scopes and challenges for developing silica nanomaterial as a promising siRNA delivery vehicle demanding FDA approval.
Collapse
Affiliation(s)
- Anuradha Gupta
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Avishek Mallick Choudhury
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Jairam Meena
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Sudepta Bauri
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
28
|
Bashabsheh RH, AL-Fawares O, Natsheh I, Bdeir R, Al-Khreshieh RO, Bashabsheh HH. Staphylococcus aureus epidemiology, pathophysiology, clinical manifestations and application of nano-therapeutics as a promising approach to combat methicillin resistant Staphylococcus aureus. Pathog Glob Health 2024; 118:209-231. [PMID: 38006316 PMCID: PMC11221481 DOI: 10.1080/20477724.2023.2285187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive bacterium and one of the most prevalent infectious disease-related causes of morbidity and mortality in adults. This pathogen can trigger a broad spectrum of diseases, from sepsis and pneumonia to severe skin infections that can be fatal. In this review, we will provide an overview of S. aureus and discuss the extensive literature on epidemiology, transmission, genetic diversity, evolution and antibiotic resistance strains, particularly methicillin resistant S. aureus (MRSA). While many different virulence factors that S. aureus produces have been investigated as therapeutic targets, this review examines recent nanotechnology approaches, which employ materials with atomic or molecular dimensions and are being used to diagnose, treat, or eliminate the activity of S. aureus. Finally, having a deeper understanding and clearer grasp of the roles and contributions of S. aureus determinants, antibiotic resistance, and nanotechnology will aid us in developing anti-virulence strategies to combat the growing scarcity of effective antibiotics against S. aureus.
Collapse
Affiliation(s)
- Raghad H.F. Bashabsheh
- Department of Medical Laboratory Analysis, Faculty of Science, Al-Balqa Applied University, Al-salt, Jordan
| | - O’la AL-Fawares
- Department of Medical Laboratory Analysis, Faculty of Science, Al-Balqa Applied University, Al-salt, Jordan
| | - Iyad Natsheh
- Department of Allied Medical Sciences, Zarqa College, Al-Balqa Applied University, Zarqa, Jordan
| | - Roba Bdeir
- Department of Allied Health Sciences, Faculty of Nursing, Al-Balqa Applied University, Al-salt, Jordan
| | - Rozan O. Al-Khreshieh
- Department of Medical Laboratory Analysis, Faculty of Science, Al-Balqa Applied University, Al-salt, Jordan
| | | |
Collapse
|
29
|
Alizadeh M, Dorranian D, Sari AH. Comparison of the antimicrobial photocatalytic activities of SiO 2 and Au@SiO 2 nanostructures in water decontamination. Microsc Res Tech 2024; 87:896-907. [PMID: 38149754 DOI: 10.1002/jemt.24486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/04/2023] [Accepted: 12/18/2023] [Indexed: 12/28/2023]
Abstract
Photocatalytic disinfection of Escherichia coli suspension by silicon dioxide nanoparticles and silicon dioxide/gold nanocomposite in a batch reactor is investigated experimentally and results are compared. Silica nanoparticles were synthesized by Stöber method and pulsed laser ablation method was employed to prepare gold nanoparticles in distilled water. Composition of two nanoparticles species was carried out, using the second harmonic pulse of Nd:YAG laser, whose wavelength is in the absorption spectra of gold nanoparticles. Results confirm a decrease in the bandgap energy of silica nanoparticles after composition. Escherichia coli were selected as an indicator of the microbial water contamination. Disk diffusion method was used to evaluate the antimicrobial potential of SiO2 and Au@SiO2 nanostructures. Photocatalytic activities of both nanostructures were examined in dark, and under the irradiation of UV and visible light. In all conditions, the performance of Au@SiO2 nanocomposites was higher than SiO2 nanoparticles. In dark condition the higher biocidal nature and activity of Au nanoparticles and for the case of UV radiation, decreasing the bandgap energy and recombination rate of SiO2 nanoparticles after composition with Au increased the efficiency. For the case of visible light radiation, surface plasmon resonances effects, and local heat of Au nanoparticles were responsible for increasing the efficiency. RESEARCH HIGHLIGHTS: Doping large bandgap semiconductors nanostructures, such as silica with metal nanoparticles, such as gold will improve their photocatalytic activity to work in visible light. In this mechanism, gold nanoparticles act as effective traps to prevent the recombination of photogenerated electron-hole pairs. Other mechanisms, such as Schottky barrier formation, surface plasmon resonance absorption of gold nanoparticles, and biocidal nature of the gold nanoparticles are effective in increasing the efficiency of Au doped silica nanostructures.
Collapse
Affiliation(s)
- Mahsa Alizadeh
- Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Davoud Dorranian
- Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Hossein Sari
- Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
30
|
Das S, Jegadeesan JT, Basu B. Gelatin Methacryloyl (GelMA)-Based Biomaterial Inks: Process Science for 3D/4D Printing and Current Status. Biomacromolecules 2024; 25:2156-2221. [PMID: 38507816 DOI: 10.1021/acs.biomac.3c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Tissue engineering for injured tissue replacement and regeneration has been a subject of investigation over the last 30 years, and there has been considerable interest in using additive manufacturing to achieve these goals. Despite such efforts, many key questions remain unanswered, particularly in the area of biomaterial selection for these applications as well as quantitative understanding of the process science. The strategic utilization of biological macromolecules provides a versatile approach to meet diverse requirements in 3D printing, such as printability, buildability, and biocompatibility. These molecules play a pivotal role in both physical and chemical cross-linking processes throughout the biofabrication, contributing significantly to the overall success of the 3D printing process. Among the several bioprintable materials, gelatin methacryloyl (GelMA) has been widely utilized for diverse tissue engineering applications, with some degree of success. In this context, this review will discuss the key bioengineering approaches to identify the gelation and cross-linking strategies that are appropriate to control the rheology, printability, and buildability of biomaterial inks. This review will focus on the GelMA as the structural (scaffold) biomaterial for different tissues and as a potential carrier vehicle for the transport of living cells as well as their maintenance and viability in the physiological system. Recognizing the importance of printability toward shape fidelity and biophysical properties, a major focus in this review has been to discuss the qualitative and quantitative impact of the key factors, including microrheological, viscoelastic, gelation, shear thinning properties of biomaterial inks, and printing parameters, in particular, reference to 3D extrusion printing of GelMA-based biomaterial inks. Specifically, we emphasize the different possibilities to regulate mechanical, swelling, biodegradation, and cellular functionalities of GelMA-based bio(material) inks, by hybridization techniques, including different synthetic and natural biopolymers, inorganic nanofillers, and microcarriers. At the close, the potential possibility of the integration of experimental data sets and artificial intelligence/machine learning approaches is emphasized to predict the printability, shape fidelity, or biophysical properties of GelMA bio(material) inks for clinically relevant tissues.
Collapse
Affiliation(s)
- Soumitra Das
- Materials Research Centre, Indian Institute of Science, Bangalore, India 560012
| | | | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore, India 560012
| |
Collapse
|
31
|
Spogli R, Faffa C, Ambrogi V, D’Alessandro V, Pastori G. Ozonated Sunflower Oil Embedded within Spray-Dried Chitosan Microspheres Cross-Linked with Azelaic Acid as a Multicomponent Solid Form for Broad-Spectrum and Long-Lasting Antimicrobial Activity. Pharmaceutics 2024; 16:502. [PMID: 38675163 PMCID: PMC11054446 DOI: 10.3390/pharmaceutics16040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Multicomponent solid forms for the combined delivery of antimicrobials can improve formulation performance, especially for poorly soluble drugs, by enabling the modified release of the active ingredients to better meet therapeutic needs. Chitosan microspheres incorporating ozonated sunflower oil were prepared by a spray-drying method and using azelaic acid as a biocompatible cross-linker to improve the long time frame. Two methods were used to incorporate ozonated oil into microspheres during the atomization process: one based on the use of a surfactant to emulsify the oil and another using mesoporous silica as an oil absorbent. The encapsulation efficiency of the ozonated oil was evaluated by measuring the peroxide value in the microspheres, which showed an efficiency of 75.5-82.1%. The morphological aspects; particle size distribution; zeta potential; swelling; degradation time; and thermal, crystallographic and spectroscopic properties of the microspheres were analyzed. Azelaic acid release and peroxide formation over time were followed in in vitro analyses, which showed that ozonated oil embedded within chitosan microspheres cross-linked with azelaic acid is a valid system to obtain a sustained release of antimicrobials. In vitro tests showed that the microspheres exhibit synergistic antimicrobial activity against P. aeruginosa, E. coli, S. aureus, C. albicans and A. brasiliensis. This makes them ideal for use in the development of biomedical devices that require broad-spectrum and prolonged antimicrobial activity.
Collapse
Affiliation(s)
- Roberto Spogli
- Prolabin & Tefarm Srl, via dell’Acciaio N°9, 06136 Perugia, Italy; (C.F.); (G.P.)
| | - Caterina Faffa
- Prolabin & Tefarm Srl, via dell’Acciaio N°9, 06136 Perugia, Italy; (C.F.); (G.P.)
| | - Valeria Ambrogi
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy;
| | | | - Gabriele Pastori
- Prolabin & Tefarm Srl, via dell’Acciaio N°9, 06136 Perugia, Italy; (C.F.); (G.P.)
| |
Collapse
|
32
|
Saha A, Mishra P, Biswas G, Bhakta S. Greening the pathways: a comprehensive review of sustainable synthesis strategies for silica nanoparticles and their diverse applications. RSC Adv 2024; 14:11197-11216. [PMID: 38590352 PMCID: PMC11000228 DOI: 10.1039/d4ra01047g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
Silica nanoparticles (SiNPs) have emerged as a multipurpose solution with wide-ranging applications in various industries such as medicine, agriculture, construction, cosmetics, and food production. In 1961, Stöber introduced a ground-breaking sol-gel method for synthesizing SiNPs, which carried a new era of exploration both in academia and industry, uncovering numerous possibilities for these simple yet multifaceted particles. Inspite of numerous reported literature with wide applicability, the synthesis of these nanoparticles with the desired size and functionalities poses considerable challenges. Over time, researchers have strived to optimize the synthetic route, particularly by developing greener approaches that minimize environmental impact. By reducing hazardous chemicals, energy consumption, and waste generation, these greener synthesis methods have become an important focus in the field. This review aims to provide a comprehensive analysis of the various synthetic approaches available for different types of SiNPs. Starting from the Stöber' method, we analyze other methods as well to synthesis different types of SiNPs including mesoporous, core-shell and functionalized nanoparticles. With increasing concerns with the chemical methods associated for environmental issues, we aim to assist readers in identifying suitable greener synthesis methods tailored to their specific requirements. By highlighting the advancements in reaction time optimization, waste reduction, and environmentally friendly precursors, we offer insights into the latest techniques that contribute to greener and more sustainable SiNPs synthesis. Additionally, we briefly discuss the diverse applications of SiNPs, demonstrating their relevance and potential impact in fields such as medicine, agriculture, and cosmetics. By emphasizing the greener synthesis methods and economical aspects, this review aims to inspire researchers and industry professionals to adopt environmentally conscious practices while harnessing the immense capabilities of SiNPs.
Collapse
Affiliation(s)
- Arighna Saha
- Department of Chemistry, Cooch Behar Panchanan Barma University Cooch Behar 736101 West Bengal India
- Cooch Behar College Cooch Behar 736101 West Bengal India
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi New Delhi 110016 India
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University Cooch Behar 736101 West Bengal India
| | | |
Collapse
|
33
|
da Silva Gomes B, Cláudia Paiva-Santos A, Veiga F, Mascarenhas-Melo F. Beyond the adverse effects of the systemic route: Exploiting nanocarriers for the topical treatment of skin cancers. Adv Drug Deliv Rev 2024; 207:115197. [PMID: 38342240 DOI: 10.1016/j.addr.2024.115197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/21/2023] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
Skin cancer is a heterogeneous disease that can be divided into two main groups, melanoma and nonmelanoma skin cancers. Conventional therapies for skin cancer have numerous systemic side effects and a high recurrence rate. Topical treatment is an alternative approach, but drug permeability remains a challenge. Therefore, nanocarriers appear as important nanotechnology tools that reduces both the side effects and improves clinical outcomes. This is why they are attracting growing interest. In this review, scientific articles on the use of nanocarriers for the topical treatment of skin cancer were collected. Despite the promising results of the presented nanocarriers and considering that some of them are already on the market, there is an urgent need for investment in the development of manufacturing methods, as well as of suitable toxicological and regulatory evaluations, since the conventional methods currently used to develop these nanocarriers-based products are more time-consuming and expensive than conventional products.
Collapse
Affiliation(s)
- Beatriz da Silva Gomes
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Ana Cláudia Paiva-Santos
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Francisco Veiga
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Filipa Mascarenhas-Melo
- University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; Higher School of Health, Polytechnic Institute of Guarda, Rua da Cadeia, 6300 - 307 Guarda, Portugal.
| |
Collapse
|
34
|
Kalash A, Tsamesidis I, Pouroutzidou GK, Kontonasaki E, Gkiliopoulos D, Arhakis A, Arapostathis KN, Theocharidou A. Effect of Modified Bioceramic Mineral Trioxide Aggregate Cement with Mesoporous Nanoparticles on Human Gingival Fibroblasts. Curr Issues Mol Biol 2024; 46:3005-3021. [PMID: 38666918 PMCID: PMC11048828 DOI: 10.3390/cimb46040188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The ion doping of mesoporous silica nanoparticles (MSNs) has played an important role in revolutionizing several materials applied in medicine and dentistry by enhancing their antibacterial and regenerative properties. Mineral trioxide aggregate (MTA) is a dental material widely used in vital pulp therapies with high success rates. The aim of this study was to investigate the effect of the modification of MTA with cerium (Ce)- or calcium (Ca)-doped MSNs on the biological behavior of human gingival fibroblasts (hGFs). MSNs were synthesized via sol-gel, doped with Ce and Ca ions, and mixed with MTA at three ratios each. Powder specimens were characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Biocompatibility was evaluated using a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay following hGFs' incubation in serial dilutions of material eluates. Antioxidant status was evaluated using Cayman's antioxidant assay after incubating hGFs with material disc specimens, and cell attachment following dehydration fixation was observed through SEM. Material characterization confirmed the presence of mesoporous structures. Biological behavior and antioxidant capacity were enhanced in all cases with a statistically significant increase in CeMTA 50.50. The application of modified MTA with cerium-doped MSNs offers a promising strategy for vital pulp therapies.
Collapse
Affiliation(s)
- Alexandra Kalash
- Department of Dentistry, School of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.K.); (I.T.); (G.K.P.); (E.K.); (A.A.); (K.N.A.)
| | - Ioannis Tsamesidis
- Department of Dentistry, School of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.K.); (I.T.); (G.K.P.); (E.K.); (A.A.); (K.N.A.)
| | - Georgia K. Pouroutzidou
- Department of Dentistry, School of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.K.); (I.T.); (G.K.P.); (E.K.); (A.A.); (K.N.A.)
| | - Eleana Kontonasaki
- Department of Dentistry, School of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.K.); (I.T.); (G.K.P.); (E.K.); (A.A.); (K.N.A.)
| | - Dimitrios Gkiliopoulos
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Aristidis Arhakis
- Department of Dentistry, School of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.K.); (I.T.); (G.K.P.); (E.K.); (A.A.); (K.N.A.)
| | - Konstantinos N. Arapostathis
- Department of Dentistry, School of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.K.); (I.T.); (G.K.P.); (E.K.); (A.A.); (K.N.A.)
| | - Anna Theocharidou
- Department of Dentistry, School of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.K.); (I.T.); (G.K.P.); (E.K.); (A.A.); (K.N.A.)
| |
Collapse
|
35
|
Mahapatra P, Pal SK, Ohshima H, Gopmandal PP. Electrohydrodynamics of diffuse porous colloids. SOFT MATTER 2024; 20:2840-2862. [PMID: 38456335 DOI: 10.1039/d3sm01759a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The present article deals with the electrohydrodynamic motion of diffuse porous particles governed by an applied DC electric field. The spatial distribution of monomers as well as the charge distribution across the particle are considered to follow sigmoidal distribution involving decay length. Such a parameter measures the degree of inhomogeneity of the monomer distribution across the particle. The diffuse porous particles resemble several colloidal entities which are often seen in the environment as well as in biological and pharmaceutical industries. Considering the impact of bulk pH and ion steric effects, we modelled the electrohydrodynamics of such porous particulates based on the modified Boltzmann distribution for the spatial distribution of electrolyte ions and the Poisson equation for electric potential as well as the conservation of mass and momentum principles. We adopt regular perturbation analysis with weak field assumption and the perturbed equations are solved numerically to calculate the electrophoretic mobility and neutralization fraction of the particle charge during its motion as well as fluid collection efficiency. We further deduced the closed form relation between the drag force experienced by the charged porous particle and the fluid collection efficiency. In addition to the numerical results, we further derived the closed form analytical results for all the intrinsic parameters indicated above derived within the Debye-Hückel electrostatic framework and homogeneous distribution of monomers within the particle for which the decay length vanishes. The deduced mathematical results as indicated above will be useful to analyze several electrostatic and hydrodynamic features of a wide class of porous particulate and environmental entities.
Collapse
Affiliation(s)
- Paramita Mahapatra
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur-713209, India.
| | - S K Pal
- Department of Mathematics, Jadavpur University, Kolkata 700032, India
| | - H Ohshima
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Partha P Gopmandal
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur-713209, India.
| |
Collapse
|
36
|
Chen SY, Jian JY, Lin HM. Functionalization of rice husk-derived mesoporous silica nanoparticles for targeted and imaging in cancer drug delivery. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2120-2129. [PMID: 38009620 DOI: 10.1002/jsfa.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/03/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Rice, a pivotal global food staple, annually accumulates vast amounts of rice husks, resulting in substantial environmental impact. Exploiting the high silica content in rice husk, our research aimed to recycle this agricultural byproduct to synthesize mesoporous silica nanoparticles (rMSNs). These nanoparticles were further modified to evaluate their potential as effective carriers for cancer drug delivery. RESULTS rMSNs showed high biocompatibility, large surface area and porous structure as MSNs, making them excellent drug carriers. Further modifications were applied to rMSNs, such as the incorporation of the lanthanides europium and gadolinium into rMSNs, making them fluorescent and magnetic for detection and tracking using confocal fluorescence microscopy and magnetic resonance imaging. Additionally, folic acid and aptamer AS1411 were conjugated with rMSNs to enhance the targeting of cancer cells. HeLa cells exhibited higher uptake of camptothecin (CPT)-loaded rMSNs compared to normal fibroblast cells (L929). The linkage of disulfide bonds to rMSNs also allowed CPT to be carried by rMSNs and released intracellularly in the presence of the abundant reducing agent glutathione. The validation of rMSNs in vitro and in vivo proved their practical feasibility. CONCLUSION Our findings indicate that low-cost rMSNs, derived from recycled agricultural waste, can replace highly valuable MSNs. Functionalized rMSNs exhibit promising capabilities in transporting clinical drugs to specific aberrant tissues and offering dual-targeting and dual-imaging functionalities for enhanced cancer therapy. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shiow-Yi Chen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung City, Taiwan
| | - Jhih-Yun Jian
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung City, Taiwan
| | - Hsiu-Mei Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung City, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City, Taiwan
- Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung City, Taiwan
| |
Collapse
|
37
|
Budiman A, Anastasya G, Handini AL, Lestari IN, Subra L, Aulifa DL. Characterization of Drug with Good Glass-Forming Ability Loaded Mesoporous Silica Nanoparticles and Its Impact Toward in vitro and in vivo Studies. Int J Nanomedicine 2024; 19:2199-2225. [PMID: 38465205 PMCID: PMC10924831 DOI: 10.2147/ijn.s453873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/18/2024] [Indexed: 03/12/2024] Open
Abstract
Solid oral dosage forms are mostly preferred in pharmaceutical formulation development due to patient convenience, ease of product handling, high throughput, low manufacturing costs, with good physical and chemical stability. However, 70% of drug candidates have poor water solubility leading to compromised bioavailability. This phenomenon occurs because drug molecules are often absorbed after dissolving in gastrointestinal fluid. To address this limitation, delivery systems designed to improve the pharmacokinetics of drug molecules are needed to allow controlled release and target-specific delivery. Among various strategies, amorphous formulations show significantly high potential, particularly for molecules with solubility-limited dissolution rates. The ease of drug molecules to amorphized is known as their glass-forming ability (GFA). Specifically, drug molecules categorized into class III based on the Taylor classification have a low recrystallization tendency and high GFA after cooling, with substantial "glass stability" when heated. In the last decades, the application of mesoporous silica nanoparticles (MSNs) as drug delivery systems (DDS) has gained significant attention in various investigations and the pharmaceutical industry. This is attributed to the unique physicochemical properties of MSNs, including high loading capacity, recrystallization inhibition, excellent biocompatibility, and easy functionalization. Therefore, this study aimed to discuss the current state of good glass former drug loaded mesoporous silica and shows its impact on the pharmaceutical properties including dissolution and physical stability, along with in vivo study. The results show the importance of determining whether mesoporous structures are needed in amorphous formulations to improve the pharmaceutical properties of drug with a favorable GFA.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Bandung, Indonesia
| | - Gracia Anastasya
- Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Bandung, Indonesia
| | - Annisa Luthfiyah Handini
- Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Bandung, Indonesia
| | - Ira Novianty Lestari
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Laila Subra
- Department of Pharmacy, Universiti Geomatika Malaysia, Kuala Lumpur, Malaysia
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
38
|
Su X, Li B, Chen S, Wang X, Song H, Shen B, Zheng Q, Yang M, Yue P. Pore engineering of micro/mesoporous nanomaterials for encapsulation, controlled release and variegated applications of essential oils. J Control Release 2024; 367:107-134. [PMID: 38199524 DOI: 10.1016/j.jconrel.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Essential oils have become increasingly popular in fields of medical, food and agriculture, owing to their strongly antimicrobial, anti-inflammation and antioxidant effects, greatly meeting demand from consumers for healthy and safe natural products. However, the easy volatility and/or chemical instability of active ingredients of essential oils (EAIs) can result in the loss of activity before realizing their functions, which have greatly hindered the widely applications of EAIs. As an emerging trend, micro/mesoporous nanomaterials (MNs) have drawn great attention for encapsulation and controlled release of EAIs, owing to their tunable pore structural characteristics. In this review, we briefly discuss the recent advances of MNs that widely used in the controlled release of EAIs, including zeolites, metal-organic frameworks (MOFs), mesoporous silica nanomaterials (MSNs), and provide a comprehensive summary focusing on the pore engineering strategies of MNs that affect their controlled-release or triggered-release for EAIs, including tailorable pore structure properties (e.g., pore size, pore surface area, pore volume, pore geometry, and framework compositions) and surface properties (surface modification and surface functionalization). Finally, the variegated applications and potential challenges are also given for MNs based delivery strategies for EAIs in the fields of healthcare, food and agriculture. These will provide considerable instructions for the rational design of MNs for controlled release of EAIs.
Collapse
Affiliation(s)
- Xiaoyu Su
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Biao Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shuiyan Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xinmin Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane 4072, Australia
| | - Baode Shen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
39
|
Miyashita SI, Ogura T, Matsuura SI, Fukuda E. Particle Size Measurement and Detection of Bound Proteins of Non-Porous/Mesoporous Silica Microspheres by Single-Particle Inductively Coupled Plasma Mass Spectrometry. Molecules 2024; 29:1086. [PMID: 38474598 DOI: 10.3390/molecules29051086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Single-particle inductively coupled plasma mass spectrometry (spICP-MS) has been used for particle size measurement of diverse types of individual nanoparticles and micrometer-sized carbon-based particles such as microplastics. However, its applicability to the measurement of micrometer-sized non-carbon-based particles such as silica (SiO2) particles is unclear. In this study, the applicability of spICP-MS to particle size measurement of non-porous/mesoporous SiO2 microspheres with a nominal diameter of 5.0 µm or smaller was investigated. Particle sizes of these microspheres were measured using both spICP-MS based on a conventional calibration approach using an ion standard solution and scanning electron microscopy as a reference technique, and the results were compared. The particle size distributions obtained using both techniques were in agreement within analytical uncertainty. The applicability of this technique to the detection of metal-containing protein-binding mesoporous SiO2 microspheres was also investigated. Bound iron (Fe)-containing proteins (i.e., lactoferrin and transferrin) of mesoporous SiO2 microspheres were detected using Fe as a presence marker for the proteins. Thus, spICP-MS is applicable to the particle size measurement of large-sized and non-porous/mesoporous SiO2 microspheres. It has considerable potential for element-based detection and qualification of bound proteins of mesoporous SiO2 microspheres in a variety of applications.
Collapse
Affiliation(s)
- Shin-Ichi Miyashita
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba 305-8563, Ibaraki, Japan
| | - Toshihiko Ogura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Ibaraki, Japan
| | - Shun-Ichi Matsuura
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), 4-2-1 Nigatake, Miyagino-ku, Sendai 983-8551, Miyagi, Japan
| | - Eriko Fukuda
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan
| |
Collapse
|
40
|
Bushuev YG, Grosu Y, Chorążewski M. Spontaneous Dipole Reorientation in Confined Water and Its Effect on Wetting/Dewetting of Hydrophobic Nanopores. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7604-7616. [PMID: 38300737 PMCID: PMC10875646 DOI: 10.1021/acsami.3c17272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
The properties of nanoconfined fluids are important for a broad range of natural and engineering systems. In particular, wetting/dewetting of hydrophobic nanoporous materials is crucial due to their broad applicability for molecular separation and liquid purification; energy storage, conversion, recuperation, and dissipation; for catalysis, chromatography, and so on. In this work, a rapid, orchestrated, and spontaneous dipole reorientation was observed in hydrophobic nanotubes of various pore sizes d (7.9-16.5 Å) via simulations. This phenomenon leads to the fragmentation of water clusters in the narrow nanopores (d = 7.9, 10 Å) and strongly affects dewetting through cluster repulsion. The cavitation in these pores has an electrostatic origin. The dependence of hydrogen-bonded network properties on the tube aperture is obtained and is used to explain wetting (intrusion)-dewetting (extrusion) hysteresis. Computer simulations and experimental data demonstrate that d equals ca. 12.5 Å is a threshold between a nonhysteretic (spring) behavior, where intrusion-extrusion is reversible, and a hysteretic one (shock absorber), where hysteresis is prominent. This work suggests that water clustering and the electrostatic nature of cavitation are important factors that can be effectively exploited for controlling the wetting/dewetting of nanoporous materials.
Collapse
Affiliation(s)
- Yuriy G. Bushuev
- Institute
of Chemistry, University of Silesia in Katowice, Szkolna 9 Street, 40-006 Katowice, Poland
| | - Yaroslav Grosu
- Institute
of Chemistry, University of Silesia in Katowice, Szkolna 9 Street, 40-006 Katowice, Poland
- Centre
for Cooperative Research on Alternative Energies (CIC EnergiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein
48, Vitoria, Gasteiz 01510, Spain
| | - Mirosław Chorążewski
- Institute
of Chemistry, University of Silesia in Katowice, Szkolna 9 Street, 40-006 Katowice, Poland
| |
Collapse
|
41
|
Kouznetsova T, Ivanets A, Prozorovich V, Shornikova P, Kapysh L, Tian Q, Péter L, Trif L, Almásy L. Design of Nickel-Containing Nanocomposites Based on Ordered Mesoporous Silica: Synthesis, Structure, and Methylene Blue Adsorption. Gels 2024; 10:133. [PMID: 38391463 PMCID: PMC10888240 DOI: 10.3390/gels10020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Mesoporous materials containing heteroelements have a huge potential for use as catalysts, exchangers, and adsorbents due to their tunable nanometer-sized pores and exceptionally large internal surfaces accessible to bulky organic molecules. In the present work, ordered mesoporous silica containing Ni atoms as active sites was synthesized by a new low-temperature method of condensation of silica precursors on a micellar template from aqueous solutions in the presence of nickel salt. The homogeneity of the resulting product was achieved by introducing ammonia and ammonium salt as a buffer to maintain a constant pH value. The obtained materials were characterized by nitrogen sorption, X-ray and neutron diffraction, scanning electron microscopy, infrared spectroscopy, and thermal analysis. Their morphology consists of polydisperse spherical particles 50-300 nm in size, with a hexagonally ordered channel structure, high specific surface area (ABET = 900-1200 m2/g), large pore volume (Vp = 0.70-0.90 cm3/g), average mesopore diameter of about 3 nm, and narrow pore size distribution. Adsorption tests for methylene blue show sorption capacities reaching 39-42 mg/g at alkaline pH. The advantages of producing nickel silicates by this method, in contrast to precipitation from silicon alkoxides, are the low cost of reagents, fire safety, room-temperature processing, and the absence of specific problems associated with the use of ethanol as a solvent, as well as the absence of the inevitable capture of organic matter in the precipitation process.
Collapse
Affiliation(s)
- Tatyana Kouznetsova
- Institute of General and Inorganic Chemistry, NAS of Belarus, 220012 Minsk, Belarus
| | - Andrei Ivanets
- Institute of General and Inorganic Chemistry, NAS of Belarus, 220012 Minsk, Belarus
| | - Vladimir Prozorovich
- Institute of General and Inorganic Chemistry, NAS of Belarus, 220012 Minsk, Belarus
| | - Polina Shornikova
- Institute of General and Inorganic Chemistry, NAS of Belarus, 220012 Minsk, Belarus
| | - Lizaveta Kapysh
- Institute of General and Inorganic Chemistry, NAS of Belarus, 220012 Minsk, Belarus
| | - Qiang Tian
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
| | - László Péter
- Institute for Solid State Physics and Optics, HUN-REN Wigner Research Centre for Physics, Konkoly Thege Miklós str. 29-33, 1121 Budapest, Hungary
| | - László Trif
- Institute for Energy Security and Environmental Safety, HUN-REN Research Centre for Natural Sciences, Konkoly Thege Miklós str. 29-33, 1121 Budapest, Hungary
| | - László Almásy
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
- Institute for Energy Security and Environmental Safety, HUN-REN Centre for Energy Research, Konkoly Thege Miklós str. 29-33, 1121 Budapest, Hungary
| |
Collapse
|
42
|
Skendrović D, Primožič M, Rezić T, Vrsalović Presečki A. Mesocellular Silica Foam as Immobilization Carrier for Production of Statin Precursors. Int J Mol Sci 2024; 25:1971. [PMID: 38396648 PMCID: PMC10887991 DOI: 10.3390/ijms25041971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The employment of 2-deoxyribose-5-phosphate aldolase (DERA) stands as a prevalent biocatalytic route for synthesizing statin side chains. The main problem with this pathway is the low stability of the enzyme. In this study, mesocellular silica foam (MCF) with different pore sizes was used as a carrier for the covalent immobilization of DERA. Different functionalizing and activating agents were tested and kinetic modeling was subsequently performed. The use of succinic anhydride as an activating agent resulted in an enzyme hyperactivation of approx. 140%, and the stability almost doubled compared to that of the free enzyme. It was also shown that the pore size of MCF has a decisive influence on the stability of the DERA enzyme.
Collapse
Affiliation(s)
- Dino Skendrović
- Faculty of Chemical Engineering and Technology, University of Zagreb, HR-10000 Zagreb, Croatia;
| | - Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia;
| | - Tonči Rezić
- Faculty of Food Technology and Biotechnology, University of Zagreb, HR-10000 Zagreb, Croatia;
| | - Ana Vrsalović Presečki
- Faculty of Chemical Engineering and Technology, University of Zagreb, HR-10000 Zagreb, Croatia;
| |
Collapse
|
43
|
Hu Z, Lv X, Zhang H, Zhuang S, Zheng K, Zhou T, Cen L. An injectable gel based on photo-cross-linkable hyaluronic acid and mesoporous bioactive glass nanoparticles for periodontitis treatment. Int J Biol Macromol 2024; 257:128596. [PMID: 38052282 DOI: 10.1016/j.ijbiomac.2023.128596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/07/2023]
Abstract
Guided bone regeneration (GBR) is an effective strategy to promote periodontal tissue repair. The current study aimed to develop an injectable gel for GBR, composed of photo-cross-linkable hyaluronic acid and mesoporous bioactive glass nanoparticles (MBGNs) loaded with antibacterial minocycline hydrochloride (MNCl). Hyaluronic acid modified with methacrylic anhydride (MHA) that could be cross-linked under UV irradiation was first synthesized. Dynamic rheological evaluation of MHA under UV was carried out to determine its in-situ gelling feasibility and stability. Morphological and mechanical characterization was performed to determine the optimal concentration of MHA gels. Sol-gel derived MBGNs loaded with MNCl were further incorporated into MHA gels to obtain the injectable drug-loaded MBGN-MNCl/MHA gels. In vitro antibacterial, anti-inflammatory and osteogenic effects of this gel were evaluated. It was shown that the MHA gel obtained from 3 % MHA under UV treatment of 30s exhibited a suitable porous structure with a compressive strength of 100 kPa. MBGNs with particle size of ∼120 nm and mesopores were confirmed by TEM and SEM. MBGNs had a loading capacity of ∼120 mg/g for MNCl, exhibiting a sustained release behavior. The MBGN-MNCl/MHA gel was shown to effectively inhibit the proliferation of Streptococcus mutans and the expression of pro-inflammatory factors IL-6 and TNF-α by macrophages. It could on the other hand significantly promote the expression of osteogenic-related genes ALP, Runx2, OPN, and osterix of MC3T3-E1 cells. In conclusion, the current design using photo-crosslinkable MHA gel embedded with MNCl loaded MBGNs can serve as a promising injectable formulation for GBR treatment of irregular periodontal defects.
Collapse
Affiliation(s)
- Zhihuan Hu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China
| | - Xiaolei Lv
- Department of Oral and Maxillo-facial Implantology, Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Stomatology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Huan Zhang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China
| | - Shiya Zhuang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China
| | - Kai Zheng
- Jiangsu Province Engineering Research Center of Stomatological Translation Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Tian Zhou
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Center of Head and Neck Oncology Clinical and Translational Science, China.
| | - Lian Cen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China.
| |
Collapse
|
44
|
Elkhalifa ME, Ashraf M, Ahmed A, Usman A, Hamdoon AA, Elawad MA, Almalki MG, Mosa OF, Niyazov LN, Ayaz M. Polyphenols and their nanoformulations as potential antibiofilm agents against multidrug-resistant pathogens. Future Microbiol 2024; 19:255-279. [PMID: 38305223 DOI: 10.2217/fmb-2023-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/13/2023] [Indexed: 02/03/2024] Open
Abstract
The emergence of multidrug-resistant (MDR) pathogens is a major problem in the therapeutic management of infectious diseases. Among the bacterial resistance mechanisms is the development of an enveloped protein and polysaccharide-hydrated matrix called a biofilm. Polyphenolics have demonstrated beneficial antibacterial effects. Phenolic compounds mediate their antibiofilm effects via disruption of the bacterial membrane, deprivation of substrate, protein binding, binding to adhesion complex, viral fusion blockage and interactions with eukaryotic DNA. However, these compounds have limitations of chemical instability, low bioavailability, poor water solubility and short half-lives. Nanoformulations offer a promising solution to overcome these challenges by enhancing their antibacterial potential. This review summarizes the antibiofilm role of polyphenolics, their underlying mechanisms and their potential role as resistance-modifying agents.
Collapse
Affiliation(s)
- Modawy Em Elkhalifa
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
- Faculty of Public and Environmental Health, University of Khartoum, Khartoum, Sudan
| | - Muhammad Ashraf
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP, 18800, Pakistan
| | - Alshebli Ahmed
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
- Faculty of Public and Environmental Health, University of Khartoum, Khartoum, Sudan
| | - Assad Usman
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP, 18800, Pakistan
| | - Alashary Ae Hamdoon
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
- Faculty of Public and Environmental Health, University of Khartoum, Khartoum, Sudan
| | - Mohammed A Elawad
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
- Faculty of Public and Environmental Health, University of Khartoum, Khartoum, Sudan
| | - Meshari G Almalki
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
| | - Osama F Mosa
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
| | - Laziz N Niyazov
- Medical Chemistry Department, Bukhara State Medical Institute Named After Abu Ali Ibn Sino, Bukhara, Uzbekistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP, 18800, Pakistan
| |
Collapse
|
45
|
Miranda MCR, Nunes CM, Santos LF, da Silva LB, de Jesus VR, Filho NA, Pedro JAF, Lopes JLS, Oliveira CLP, Fantini MCA, Cardoso JS, Trezena AG, Ribeiro OG, Sant'Anna OA, Tino-De-Franco M, Martins TS. Ordered mesoporous silicas for potential applications in solid vaccine formulations. Vaccine 2024; 42:689-700. [PMID: 38145911 DOI: 10.1016/j.vaccine.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/27/2023]
Abstract
In an effort to develop efficient vaccine formulations, the use of ordered mesoporous silica (SBA-15) as an antigen carrier has been investigated. SBA-15 has required properties such as high surface area and pore volume, including narrow pore size distribution to protect antigens inside its matrix. This study aimed to examine the impact of solvent removal methods, specifically freeze-drying and evaporation on the intrinsic properties of an immunogenic complex. The immunogenic complexes, synthesized and incorporated with BSA, were characterized by various physicochemical techniques. Small Angle X-ray Scattering measurements revealed the characteristic reflections associated to pure SBA-15, indicating the preservation of the silica mesostructured following BSA incorporation and the formation of BSA aggregates within the macropore region. Nitrogen Adsorption Isotherm measurements demonstrated a decrease in surface area and pore volume for all samples, indicating that the BSA was incorporated into the SBA-15 matrix. Fluorescence spectroscopy evidenced that the tryptophan residues in BSA inside SBA-15 or in solution displayed similar spectra, showing the preservation of the aromatic residues' environment. The Circular Dichroism spectra of BSA in both conditions suggest the preservation of its native secondary structure after the encapsulation process. The immunogenic analysis with the detection of anti-BSA IgG did not give any significant difference between the non-dried, freeze-dried or evaporated groups. However, all groups containing BSA and SBA-15 showed results almost three times higher than the groups with pure BSA (control group). These facts indicate that none of the BSA incorporation methods interfered with the immunogenicity of the complex. In particular, the freeze-dried process is regularly used in the pharmaceutical industry, therefore its adequacy to produce immunogenic complexes was proved Furthermore, the results showed that SBA-15 increased the immunogenic activity of BSA.
Collapse
Affiliation(s)
- Matheus C R Miranda
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Carmen M Nunes
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Luana F Santos
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Leonardo B da Silva
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Vinicius R de Jesus
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Newton Andréo Filho
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Jéssica A F Pedro
- Instituto de Física, Universidade de São Paulo, São Paulo, SP, Brazil
| | - José L S Lopes
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | - Tereza S Martins
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil.
| |
Collapse
|
46
|
Abdelwahab WM, Auclair S, Borgogna T, Siram K, Riffey A, Bazin HG, Cottam HB, Hayashi T, Evans JT, Burkhart DJ. Co-Delivery of a Novel Lipidated TLR7/8 Agonist and Hemagglutinin-Based Influenza Antigen Using Silica Nanoparticles Promotes Enhanced Immune Responses. Pharmaceutics 2024; 16:107. [PMID: 38258117 PMCID: PMC10819884 DOI: 10.3390/pharmaceutics16010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Co-delivery of antigens and adjuvants to the same antigen-presenting cells (APCs) can significantly improve the efficacy and safety profiles of vaccines. Here, we report amine-grafted silica nanoparticles (A-SNP) as a tunable vaccine co-delivery platform for TLR7/8 agonists along with the recombinant influenza antigen hemagglutinin H7 (H7) to APCs. A-SNP of two different sizes (50 and 200 nm) were prepared and coated with INI-4001 at different coating densities, followed by co-adsorption of H7. Both INI-4001 and H7 showed >90% adsorption to the tested A-SNP formulations. TNF-α and IFN-α cytokine release by human peripheral blood mononuclear cells as well as TNF-α, IL-6, and IL-12 release by mouse bone marrow-derived dendritic cells revealed that the potency of the INI-4001-adsorbed A-SNP (INI-4001/A-SNP) formulations was improved relative to aqueous formulation control. This improved potency was dependent on particle size and ligand coating density. In addition, slow-release profiles of INI-4001 were measured from INI-4001/A-SNP formulations in plasma with 30-50% INI-4001 released after 7 days. In vivo murine immunization studies demonstrated significantly improved H7-specific humoral and Th1/Th17-polarized T cell immune responses with no observed adverse reactions. Low-density 50 nm INI-4001/A-SNP elicited significantly higher IFN-γ and IL-17 induction over that of the H7 antigen-only group and INI-4001 aqueous formulation controls. In summary, this work introduces an effective and biocompatible SNP-based co-delivery platform that enhances the immunogenicity of TLR7/8 agonist-adjuvanted subunit influenza vaccines.
Collapse
Affiliation(s)
- Walid M. Abdelwahab
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA (K.S.); (A.R.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Sarah Auclair
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA (K.S.); (A.R.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Timothy Borgogna
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA (K.S.); (A.R.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Karthik Siram
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA (K.S.); (A.R.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Alexander Riffey
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA (K.S.); (A.R.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Hélène G. Bazin
- Inimmune Corporation, 1121 East Broadway, Missoula, MT 59812, USA;
| | - Howard B. Cottam
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA (T.H.)
| | - Tomoko Hayashi
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA (T.H.)
| | - Jay T. Evans
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA (K.S.); (A.R.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
- Inimmune Corporation, 1121 East Broadway, Missoula, MT 59812, USA;
| | - David J. Burkhart
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA (K.S.); (A.R.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
- Inimmune Corporation, 1121 East Broadway, Missoula, MT 59812, USA;
| |
Collapse
|
47
|
Wang Y, Cheng W, Zhu J, He L, Ren W, Bao D, Piao JG. Programmed Co-delivery of tamoxifen and docetaxel using lipid-coated mesoporous silica nanoparticles for overcoming CYP3A4-mediated resistance in triple-negative breast cancer treatment. Biomed Pharmacother 2024; 170:116084. [PMID: 38157645 DOI: 10.1016/j.biopha.2023.116084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/16/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
PURPOSE This study aims to revolutionize the treatment of aggressive triple-negative breast cancer (TNBC), notorious for its resistance to standard therapies. By ingeniously combining Tamoxifen (TMX) and Docetaxel (DTX) within a lipid-coated mesoporous silica nanoparticle (LP-MSN) delivery system, we intend to enhance therapeutic efficacy while circumventing DTX resistance mediated by CYP3A4 expression. METHODS We rigorously tested TNBC cell lines to confirm the responsiveness to Docetaxel (DTX) and Tamoxifen (TMX). We adeptly engineered LP-MSN nanoparticles and conducted a thorough examination of the optimal drug release strategy, evaluating the LP-MSN system's ability to mitigate the impact of CYP3A4 on DTX. Additionally, we comprehensively analyzed its pharmacological performance. RESULTS Our innovative approach utilizing TMX and DTX within LP-MSN showcased remarkable efficacy. Sequential drug release from the lipid layer and mesoporous core curbed CYP3A4-mediated metabolism, substantially enhancing cytotoxic effects on TNBC cells without harming normal cells. CONCLUSION This pioneering research introduces a breakthrough strategy for tackling TNBC. By capitalizing on synergistic TMX and DTX effects via LP-MSN, we surmount drug resistance mediated by CYP3A4. This advancement holds immense potential for transforming TNBC treatment, warranting further clinical validation.
Collapse
Affiliation(s)
- Yinan Wang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - WeiYi Cheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jingjing Zhu
- Fuyang TCM Hospital of Orthopedics Affiliated to Zhejiang Chinese Medical University (Hangzhou Fuyang Hospital of Orthopedics of Traditional Chinese Medicine), Hangzhou 311400, China
| | - Li He
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - WeiYe Ren
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Dandan Bao
- Department of Dermatology & Cosmetology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China.
| | - Ji-Gang Piao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
48
|
Dang BTN, Kwon TK, Lee S, Jeong JH, Yook S. Nanoparticle-based immunoengineering strategies for enhancing cancer immunotherapy. J Control Release 2024; 365:773-800. [PMID: 38081328 DOI: 10.1016/j.jconrel.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Cancer immunotherapy is a groundbreaking strategy that has revolutionized the field of oncology compared to other therapeutic strategies, such as surgery, chemotherapy, or radiotherapy. However, cancer complexity, tumor heterogeneity, and immune escape have become the main hurdles to the clinical application of immunotherapy. Moreover, conventional immunotherapies cause many harmful side effects owing to hyperreactivity in patients, long treatment durations and expensive cost. Nanotechnology is considered a transformative approach that enhances the potency of immunotherapy by capitalizing on the superior physicochemical properties of nanocarriers, creating highly targeted tissue delivery systems. These advantageous features include a substantial specific surface area, which enhances the interaction with the immune system. In addition, the capability to finely modify surface chemistry enables the achievement of controlled and sustained release properties. These advances have significantly increased the potential of immunotherapy, making it more powerful than ever before. In this review, we introduce recent nanocarriers for application in cancer immunotherapy based on strategies that target different main immune cells, including T cells, dendritic cells, natural killer cells, and tumor-associated macrophages. We also provide an overview of the role and significance of nanotechnology in cancer immunotherapy.
Collapse
Affiliation(s)
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Simmyung Yook
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
49
|
Singh Y, Sharma S, Kumar U, Sihag P, Balyan P, Singh KP, Dhankher OP. Strategies for economic utilization of rice straw residues into value-added by-products and prevention of environmental pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167714. [PMID: 37832665 DOI: 10.1016/j.scitotenv.2023.167714] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Rice straw management, along with the prevalent practice of residue burning, poses multifaceted challenges with substantial environmental and human health implications. After harvest, a considerable amount of straw is left behind, often disposed of through burning, releasing several pollutants into the environment. Carbon dioxide (CO2) dominates at 70%, accompanied by methane (CH4) at 0.66%, carbon monoxide (CO) at 7%, and nitrous oxide (N2O) at 2.09%. This process further compounds issues by depleting soil nutrients like nitrogen and organic matter. This review focuses on strategies for residue management and using straw as value-added by-products. We address research gaps and offer potential recommendations for rice straw management using economically feasible and practical routes. We elaborate that to improve rice straw digestibility, utilization in mushroom cultivation, and other value-added products, low silica (Si) rice varieties must be developed using modern technologies including marker-assisted selection breeding or genome editing. Developing low Si rice could also reduce arsenic uptake by rice, as rice plants use the same transporters for the uptake of both elements. Conversely, silica is also indispensable for quality rice production; hence, optimizing silicon content in rice is worth investigating. More research is required to understand the extent of silicon's effect on the utilization of straw for various purposes. This review also discusses the importance of educating farmers about the straw burning issue and its environmental consequences. We highlight the significance of tailoring rice straw management methods to local suitability, moving away from a universal approach. More extension work is needed to encourage farmers to opt for environmentally and economically sound options for rice straw management. Policy intervention to incentivize farmers and develop technologies for the widespread use of rice straw for various industries and product development could help in the management of rice straw and will also create a circular economy.
Collapse
Affiliation(s)
- Yogita Singh
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Sudhir Sharma
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA 01003, USA
| | - Upendra Kumar
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India; Department of Plant Science, Mahatma Jyotiba Phule Rohilkhand University, Bareilly-243006, India.
| | - Pooja Sihag
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Priyanka Balyan
- Department of Botany, Deva Nagri P.G. College, CCS University Meerut, 250001, India
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences & Humanities, GB Pant University of Agriculture & Technology, Pantnagar 263145, India; Vice-Chancellor's Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly 243001, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA 01003, USA.
| |
Collapse
|
50
|
Heidari R, Assadollahi V, Khosravian P, Mirzaei SA, Elahian F. Engineered mesoporous silica nanoparticles, new insight nanoplatforms into effective cancer gene therapy. Int J Biol Macromol 2023; 253:127060. [PMID: 37774811 DOI: 10.1016/j.ijbiomac.2023.127060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
The use of nucleic acid to control the expression of genes relevant to tumor progression is a key therapeutic approach in cancer research. Therapeutics based on nucleic acid provide novel concepts for untreatable targets. Nucleic acids as molecular medications must enter the target cell to be effective and obstacles in the systemic delivery of DNA or RNA limit their use in a clinical setting. The creation of nucleic acid delivery systems based on nanoparticles in order to circumvent biological constraints is advancing quickly. The ease of synthesis and surface modification, biocompatibility, biodegradability, cost-effectiveness and high loading capability of nucleic acids have prompted the use of mesoporous silica nanoparticles (MSNs) in gene therapy. The unique surface features of MSNs facilitate their design and decoration for high loading of nucleic acids, immune system evasion, cancer cell targeting, controlled cargo release, and endosomal escape. Reports have demonstrated successful therapeutic outcomes with the administration of a variety of engineered MSNs capable of delivering genes to tumor sites in laboratory animals. This comprehensive review of studies about siRNA, miRNA, shRNA, lncRNA and CRISPR/Cas9 delivery by MSNs reveals engineered MSNs as a safe and efficient system for gene transfer to cancer cells and cancer mouse models.
Collapse
Affiliation(s)
- Razieh Heidari
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vahideh Assadollahi
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Pegah Khosravian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Human Stem Cells and Neuronal Differentiation Core, Baylor College of Medicine, Houston, USA.
| |
Collapse
|