1
|
Chen S, Gao J, Zhang T. From mesenchymal stem cells to their extracellular vesicles: Progress and prospects for asthma therapy. Asian J Pharm Sci 2024; 19:100942. [PMID: 39253613 PMCID: PMC11382190 DOI: 10.1016/j.ajps.2024.100942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 12/18/2023] [Accepted: 05/20/2024] [Indexed: 09/11/2024] Open
Abstract
Asthma is a widespread public health concern, with an increasing incidence. Despite the implementation of current treatment strategies, asthma control, particularly for severe cases, remains suboptimal. Recent research has revealed the encouraging prospects of extracellular vesicles (EVs) secreted by mesenchymal stem cells (MSCs) as a viable therapeutic option for alleviating asthma symptoms. Therefore, the present review aims to provide an overview of the current progress and the therapeutic mechanisms of using MSC-derived EVs (MSC-EVs) for asthma treatment. Additionally, different administration approaches for EVs and their impacts on biodistribution and the curative outcomes of EVs are summarized. Notably, the potential benefits of nebulized inhalation of MSC-EVs are addressed. Also, the possibilities and challenges of using MSC-EVs for asthma treatment in clinics are highlighted. Overall, this review is intended to give new insight into the utilization of MSC-EVs as a potential biological drug for asthma treatment.
Collapse
Affiliation(s)
- Shihan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Biney IN, Ari A, Barjaktarevic IZ, Carlin B, Christiani DC, Cochran L, Drummond MB, Johnson K, Kealing D, Kuehl PJ, Li J, Mahler DA, Martinez S, Ohar J, Radonovich LJ, Sood A, Suggett J, Tal-Singer R, Tashkin D, Yates J, Cambridge L, Dailey PA, Mannino DM, Dhand R. Guidance on Mitigating the Risk of Transmitting Respiratory Infections During Nebulization by the COPD Foundation Nebulizer Consortium. Chest 2024; 165:653-668. [PMID: 37977263 DOI: 10.1016/j.chest.2023.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Nebulizers are used commonly for inhaled drug delivery. Because they deliver medication through aerosol generation, clarification is needed on what constitutes safe aerosol delivery in infectious respiratory disease settings. The COVID-19 pandemic highlighted the importance of understanding the safety and potential risks of aerosol-generating procedures. However, evidence supporting the increased risk of disease transmission with nebulized treatments is inconclusive, and inconsistent guidelines and differing opinions have left uncertainty regarding their use. Many clinicians opt for alternative devices, but this practice could impact outcomes negatively, especially for patients who may not derive full treatment benefit from handheld inhalers. Therefore, it is prudent to develop strategies that can be used during nebulized treatment to minimize the emission of fugitive aerosols, these comprising bioaerosols exhaled by infected individuals and medical aerosols generated by the device that also may be contaminated. This is particularly relevant for patient care in the context of a highly transmissible virus. RESEARCH QUESTION How can potential risks of infections during nebulization be mitigated? STUDY DESIGN AND METHODS The COPD Foundation Nebulizer Consortium (CNC) was formed in 2020 to address uncertainties surrounding administration of nebulized medication. The CNC is an international, multidisciplinary collaboration of patient advocates, pulmonary physicians, critical care physicians, respiratory therapists, clinical scientists, and pharmacists from research centers, medical centers, professional societies, industry, and government agencies. The CNC developed this expert guidance to inform the safe use of nebulized therapies for patients and providers and to answer key questions surrounding medication delivery with nebulizers during pandemics or when exposure to common respiratory pathogens is anticipated. RESULTS CNC members reviewed literature and guidelines regarding nebulization and developed two sets of guidance statements: one for the health care setting and one for the home environment. INTERPRETATION Future studies need to explore the risk of disease transmission with fugitive aerosols associated with different nebulizer types in real patient care situations and to evaluate the effectiveness of mitigation strategies.
Collapse
Affiliation(s)
- Isaac N Biney
- University Pulmonary and Critical Care, The University of Tennessee Graduate School of Medicine, Knoxville, TN.
| | - Arzu Ari
- Department of Respiratory Care and Texas State Sleep Center, Texas State University, Round Rock, TX
| | - Igor Z Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles Health Sciences, Los Angeles, CA; Division of Liver and Pancreas Transplantation, David Geffen School of Medicine, University of California Los Angeles Health Sciences, Los Angeles, CA
| | - Brian Carlin
- Sleep Medicine and Lung Health Consultants LLC, Pittsburgh, PA
| | - David C Christiani
- Harvard T.H. Chan School of Public Health, Harvard Medical School, Cambridge, MA; Pulmonary and Critical Care Division, Massachusetts General Hospital, Boston, MA
| | | | - M Bradley Drummond
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | | | | | - Jie Li
- Rush University, Chicago, IL
| | - Donald A Mahler
- Geisel School of Medicine at Dartmouth, Hanover, NH; Valley Regional Hospital, Claremont, NH
| | | | - Jill Ohar
- Bowman Gray Center for Medical Education, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Lewis J Radonovich
- Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV
| | - Akshay Sood
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM
| | | | | | - Donald Tashkin
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles Health Sciences, Los Angeles, CA
| | | | - Lisa Cambridge
- Medical Science & Pharmaceutical Alliances, PARI, Inc., Midlothian, VA
| | | | | | - Rajiv Dhand
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Tennessee Graduate School of Medicine, Knoxville, TN
| |
Collapse
|
3
|
Dhanak M, Verma S, Hughes PG, Ching AL, Lo A, Clay C, McKinney A, Frankenfield J. The Laboratory Characterization of Fugitive Aerosol Emissions From a Standard Jet Nebulizer With and Without a Filtered Mouthpiece. Cureus 2023; 15:e50611. [PMID: 38226095 PMCID: PMC10788659 DOI: 10.7759/cureus.50611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
Background and objective The risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission from patients with coronavirus disease 2019 (COVID-19) during nebulization is unclear. In this study, we aimed to address this issue. Methods Fugitive emissions of aerosolized saline during nebulization were observed using a standard jet nebulizer fitted with unfiltered and filtered mouthpieces connected via a mannequin to a breathing simulator. Fugitive emissions were observed by using a laser sheet and captured on high-definition video, and they were measured by using optical particle counters positioned where a potential caregiver may be administering nebulization and three other locations in the sagittal plane at various distances downstream of the mannequin. Results The use of a standard unfiltered mouthpiece resulted in significant emission of fugitive aerosols ahead of and above the mannequin (spread over 2 m in front). A mouthpiece with a filter-adaptor effectively suppressed the emissions, with only minor leakage from the nebulizer cup. Particle count measurements supported the visual observations, providing total particle count levels and aerosol concentration levels at the measurement locations. The levels decayed slowly with downstream distance. Conclusions The visualization described above captured the dispersion of emitted aerosols in the plane of the laser sheet, aligned with the sagittal plane. The particle count measurements provided temporal and spatial distributions of the aerosol concentration levels over the time and locations considered. However, the exhaled air and aerosolized droplets spread three-dimensionally in front of and above the mannequin. The results visually highlight the effectiveness of using a filtered mouthpiece in suppressing the fugitive aerosols and identify an approach for limiting the occupational exposure of healthcare workers to these emissions while administering nebulized therapies.
Collapse
Affiliation(s)
- Manhar Dhanak
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, USA
| | - Siddhartha Verma
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, USA
| | - Patrick G Hughes
- Emergency Medicine, Florida Atlantic University, Boca Raton, USA
| | - Ai Ling Ching
- Medical Affairs, Theravance Biopharma US, Inc., South San Francisco, USA
| | - Arthur Lo
- Medical Affairs, Theravance Biopharma US, Inc., South San Francisco, USA
| | - Candice Clay
- Medical Affairs, Theravance Biopharma US, Inc., South San Francisco, USA
| | - Adriana McKinney
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, USA
| | - John Frankenfield
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, USA
| |
Collapse
|
4
|
Egbers PH, Sutt AL, Petersson JE, Bergström L, Sundman E. High-flow via a tracheostomy tube and speaking valve during weaning from mechanical ventilation and tracheostomy. Acta Anaesthesiol Scand 2023; 67:1403-1413. [PMID: 37437910 DOI: 10.1111/aas.14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Weaning from mechanical ventilation and tracheostomy after prolonged intensive care consume enormous resources with optimal management not currently well described. Restoration of respiratory flow via the upper airway is essential and early cuff-deflation using a one-way valve (OWV) is recommended. However, extended OWV use may cause dry airways and thickened secretions which challenge the weaning process. High-flow therapy via the tracheostomy tube (HFT-T) humidifies inspired air and may be connected via an in-line OWV (HFT-T-OWV) alleviating these problems. We aim to provide clinical and experimental data on the safety of HFT-T-OWV along with a practical guide to facilitate clinical use during weaning from mechanical ventilation and tracheostomy. METHODS Data on adverse events of HFT-T-OWV were retrieved from a quality register for patients treated at an intensive care rehabilitation center between 2019 and 2022. Benchtop experiments were performed to measure maximum pressures and pressure support generated by HFT-T-OWV at 25-60 L/min flow using two different HFT-T adapters (interfaces). In simulated airway obstruction using a standard OWV (not in-line) maximum pressures were measured with oxygen delivered via the side port at 1-3 L/min. RESULTS Of 128 tracheostomized patients who underwent weaning attempts, 124 were treated with HFT-T-OWV. The therapy was well tolerated, and no adverse events related to the practice were detected. The main reason for not using HFT-T-OWV was partial upper airway obstruction using a OWV. Benchtop experiments demonstrated HFT-T-OWV maximum pressures <4 cmH2 O and pressure support 0-0.6 cmH2 O. In contrast, 1-3 L/min supplemental oxygen via a standard OWV caused pressures between 84 and 148 cmH2 O during simulated airway obstruction. CONCLUSIONS Current study clinical data and benchtop experiments indicate that HFT-T-OWV was well tolerated and appeared safe. Pressure support was low, but humidification may enable extended use of a OWV without dry airway mucosa and thickened secretions. Results suggest the treatment could offer advantages to standard OWV use, with or without supplementary oxygen, as well as to HFT-T without a OWV, for weaning from mechanical ventilation and tracheostomy. However, for definitive treatment recommendations, randomized clinical trials are needed.
Collapse
Affiliation(s)
- Peter H Egbers
- Medical Centre of Leeuwarden, Leeuwarden, The Netherlands
| | - Anna-Liisa Sutt
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
- Consulting Speech and Language Therapist, Bank Partners, The Royal London Hospital, London, UK
| | - Jenny E Petersson
- Remeo Intensive Care Rehabilitation Center, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Liza Bergström
- Remeo Intensive Care Rehabilitation Center, Stockholm, Sweden
- Division of Neurology, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Eva Sundman
- Remeo Intensive Care Rehabilitation Center, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Eain MMG, Nolan K, Murphy B, McCaul C, MacLoughlin R. Exhaled patient derived aerosol dispersion during awake tracheal intubation with concurrent high flow nasal therapy. J Clin Monit Comput 2023; 37:1265-1273. [PMID: 36930390 PMCID: PMC10022553 DOI: 10.1007/s10877-023-00990-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023]
Abstract
Awake Tracheal Intubation (ATI) can be performed in cases where there is potential for difficult airway management. It is considered an aerosol generating procedure and is a source of concern to healthcare workers due to the risk of transmission of airborne viral infections, such as SARS-CoV-2. At present, there is a lack of data on the quantities, size distributions and spread of aerosol particles generated during such procedures. This was a volunteer observational study which took place in an operating room of a university teaching hospital. Optical particle sizers were used to provide real time aerosol characterisation during a simulated ATI performed with concurrent high-flow nasal oxygen therapy. The particle sizers were positioned at locations that represented the different locations of clinical staff in an operating room during an ATI. The greatest concentration of patient derived aerosol particles was within 0.5-1.0 m of the subject and along their midline, 2242 #/cm3. As the distance, both radial and longitudinal, from the subject increased, the concentration decreased towards ambient levels, 36.9 ± 5.1 #/cm3. Patient derived aerosol particles < 5 µm in diameter remained entrained in the exhaled aerosol plume and fell to the floor or onto the subject. Patient derived particles > 5 µm in diameter broke away from the exhaled plume and spread radially throughout the operating room. Irrespective of distance and ventilation status, full airborne protective equipment should be worn by all staff when ATI is being performed on patients with suspected viral respiratory infections.
Collapse
Affiliation(s)
- Marc Mac Giolla Eain
- Research and Development, Science and Emerging Technologies, Aerogen Ltd, IDA Business Park, Dangan, Galway, H91HE94, Ireland
| | - Kevin Nolan
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Brian Murphy
- Department of Anaesthesia, Rotunda Hospital, Parnell Square, Dublin, Ireland
| | - Conan McCaul
- Department of Anaesthesia, Rotunda Hospital, Parnell Square, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Ltd, IDA Business Park, Dangan, Galway, H91HE94, Ireland.
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons, Dublin, Ireland.
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland.
| |
Collapse
|
6
|
O'Toole C, McGrath JA, Joyce M, O'Sullivan A, Thomas C, Murphy S, MacLoughlin R, Byrne MA. Effect of Nebuliser and Patient Interface Type on Fugitive Medical Aerosol Emissions in Adult and Paediatric Patients. Eur J Pharm Sci 2023; 187:106474. [PMID: 37225006 DOI: 10.1016/j.ejps.2023.106474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Open circuit aerosol therapy is associated with the potential for fugitive emissions of medical aerosol. Various nebulisers and interfaces are used in respiratory treatments, including the recent consideration of filtered interfaces. This study aims to quantify fugitive medical aerosols from various nebuliser types, in conjunction with different filtered and non-filtered interfaces. METHODS For both simulated adult and paediatric breathing, four nebuliser types were assessed including; a small volume jet nebuliser (SVN), a breath enhanced jet nebuliser (BEN), a breath actuated jet nebuliser (BAN) and a vibrating mesh nebuliser (VMN). A combination of different interfaces were used including filtered and unfiltered mouthpieces, as well as open, valved and filtered facemasks. Aerosol mass concentrations were measured using an Aerodynamic Particle Sizer at 0.8 m and 2.0 m. Additionally, inhaled dose was assessed. RESULTS Highest mass concentrations recorded were 214 (177, 262) µg m-3 at 0.8 m over 45-minute run. The highest and lowest fugitive emissions were observed for the adult SVN facemask combination, and the adult BAN filtered mouthpiece combination respectively. Fugitive emissions decreased when using breath-actuated (BA) mode compared to continuous (CN) mode on the BAN for the adult and paediatric mouthpiece combination. Lower fugitive emissions were observed when a filtered facemask or mouthpiece was used, compared to unfiltered scenarios. For the simulated adult, highest and lowest inhaled dose were 45.1 (42.6, 45.6)% and 11.0 (10.1,11.9)% for the VMN and SVN respectively. For the simulated paediatric, highest and lowest inhaled dose were 44.0 (42.4, 44.8)% and 6.1 (5.9, 7.0)% for the VMN and BAN CN respectively. Potential inhalation exposure of albuterol was calculated to be up to 0.11 µg and 0.12 µg for a bystander and healthcare worker respectively. CONCLUSION This work demonstrates the need for filtered interfaces in clinical and homecare settings to minimise fugitive emissions and to reduce the risk of secondary exposure to care givers.
Collapse
Affiliation(s)
- Ciarraí O'Toole
- Physics, School of Natural Sciences, Ryan Institute's Centre for Climate and Air Pollution Studies, College of Science & Engineering, University of Galway, H91 CF50, Galway, Ireland.
| | - James A McGrath
- Physics, School of Natural Sciences, Ryan Institute's Centre for Climate and Air Pollution Studies, College of Science & Engineering, University of Galway, H91 CF50, Galway, Ireland; Department of Experimental Physics, Maynooth University, Maynooth, Co. Kildare, Ireland.
| | - Mary Joyce
- R&D Science & Emerging Technologies, Aerogen Ltd., IDA Business Park, Dangan, Galway, Ireland.
| | - Andrew O'Sullivan
- R&D Science & Emerging Technologies, Aerogen Ltd., IDA Business Park, Dangan, Galway, Ireland.
| | - Ciara Thomas
- R&D Science & Emerging Technologies, Aerogen Ltd., IDA Business Park, Dangan, Galway, Ireland.
| | - Sarah Murphy
- R&D Science & Emerging Technologies, Aerogen Ltd., IDA Business Park, Dangan, Galway, Ireland.
| | - Ronan MacLoughlin
- R&D Science & Emerging Technologies, Aerogen Ltd., IDA Business Park, Dangan, Galway, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons, Dublin, Ireland; School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland.
| | - Miriam A Byrne
- Physics, School of Natural Sciences, Ryan Institute's Centre for Climate and Air Pollution Studies, College of Science & Engineering, University of Galway, H91 CF50, Galway, Ireland.
| |
Collapse
|
7
|
Ramsey ME, Faugno AJ, Puryear WB, Lee BC, Foss AD, Lambert LH, Nargi FE, Bopp GP, Lee LP, Rudzinski CM, Ervin BL, Runstadler JA, Hill NS. Characterization of SARS-CoV-2 Aerosols Dispersed During Noninvasive Respiratory Support of Patients With COVID-19. Respir Care 2023; 68:8-17. [PMID: 36566031 PMCID: PMC9993517 DOI: 10.4187/respcare.10340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND In the midst of the COVID-19 pandemic, noninvasive respiratory support (NRS) therapies such as high-flow nasal cannula (HFNC) and noninvasive ventilation (NIV) were central to respiratory care. The extent to which these treatments increase the generation and dispersion of infectious respiratory aerosols is not fully understood. The objective of this study was to characterize SARS-CoV-2 aerosol dispersion from subjects with COVID-19 undergoing NRS therapy. METHODS Several different aerosol sampling devices were used to collect air samples in the vicinity of 31 subjects with COVID-19, most of whom were receiving NRS therapy, primarily HFNC. Aerosols were collected onto filters and analyzed for the presence of SARS-CoV-2 RNA. Additional measurements were collected in an aerosol chamber with healthy adult subjects using respiratory therapy devices under controlled and reproducible conditions. RESULTS Fifty aerosol samples were collected from subjects receiving HFNC or NIV therapy, whereas 6 samples were collected from subjects not receiving NRS. Only 4 of the 56 aerosol samples were positive for SARS-CoV-2 RNA, and all positive samples were collected using a high air flow scavenger mask collection device placed in close proximity to the subject. The chamber measurements with healthy subjects did not show any significant increase in aerosol dispersion caused by the respiratory therapy devices compared to baseline. CONCLUSIONS Our findings demonstrate very limited detection of SARS-CoV-2-containing aerosols in the vicinity of subjects with COVID-19 receiving NRS therapies in the clinical setting. These results, combined with controlled chamber measurements showing that HFNC and NIV device usage was not associated with increased aerosol dispersion, suggest that NRS therapies do not result in increased dispersal of aerosols in the clinical setting.
Collapse
Affiliation(s)
- Meghan E Ramsey
- Biotechnology and Human Systems Division, Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, Massachusetts
| | - Anthony J Faugno
- Critical Care and Sleep Division, Tufts Medical Center, Boston, Massachusetts
| | - Wendy B Puryear
- Cummings School of Veterinary Medicine, Tufts University, Grafton, Massachusetts
| | - Brian C Lee
- Biotechnology and Human Systems Division, Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, Massachusetts
| | - Alexa D Foss
- Cummings School of Veterinary Medicine, Tufts University, Grafton, Massachusetts
| | - Lester H Lambert
- Critical Care and Sleep Division, Tufts Medical Center, Boston, Massachusetts
| | - Frances E Nargi
- Biotechnology and Human Systems Division, Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, Massachusetts
| | - Gregory P Bopp
- Biotechnology and Human Systems Division, Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, Massachusetts
| | - Lauren P Lee
- Biotechnology and Human Systems Division, Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, Massachusetts
| | - Christina M Rudzinski
- Biotechnology and Human Systems Division, Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, Massachusetts
| | - Benjamin L Ervin
- Biotechnology and Human Systems Division, Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, Massachusetts
| | | | - Nicholas S Hill
- Critical Care and Sleep Division, Tufts Medical Center, Boston, Massachusetts.
| |
Collapse
|
8
|
Mac Giolla Eain M, Cahill R, MacLoughlin R, Nolan K. Aerosol release, distribution, and prevention during aerosol therapy: a simulated model for infection control. Drug Deliv 2022; 29:10-17. [PMID: 34962221 PMCID: PMC8725970 DOI: 10.1080/10717544.2021.2015482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 10/24/2022] Open
Abstract
Aerosol therapy is used to deliver medical therapeutics directly to the airways to treat respiratory conditions. A potential consequence of this form of treatment is the release of fugitive aerosols, both patient derived and medical, into the environment and the subsequent exposure of caregivers and bystanders to potential viral infections. This study examined the release of these fugitive aerosols during a standard aerosol therapy to a simulated adult patient. An aerosol holding chamber and mouthpiece were connected to a representative head model and breathing simulator. A combination of laser and Schlieren imaging was used to non-invasively visualize the release and dispersion of fugitive aerosol particles. Time-varying aerosol particle number concentrations and size distributions were measured with optical particle sizers at clinically relevant positions to the simulated patient. The influence of breathing pattern, normal and distressed, supplemental air flow, at 0.2 and 6 LPM, and the addition of a bacterial filter to the exhalation port of the mouthpiece were assessed. Images showed large quantities of fugitive aerosols emitted from the unfiltered mouthpiece. The images and particle counter data show that the addition of a bacterial filter limited the release of these fugitive aerosols, with the peak fugitive aerosol concentrations decreasing by 47.3-83.3%, depending on distance from the simulated patient. The addition of a bacterial filter to the mouthpiece significantly reduces the levels of fugitive aerosols emitted during a simulated aerosol therapy, p≤ .05, and would greatly aid in reducing healthcare worker and bystander exposure to potentially harmful fugitive aerosols.
Collapse
Affiliation(s)
| | - Ronan Cahill
- School of Medicine, UCD Centre for Precision Surgery, University College Dublin, Dublin, Ireland
| | - Ronan MacLoughlin
- Aerogen Ltd, IDA Business Park, Galway, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons, Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Kevin Nolan
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
9
|
Saunders JL, Davis MD. Evaluation of Exhaled Fugitive Particles During Mechanical Ventilation. Respir Care 2022; 67:1361-1362. [PMID: 36137579 PMCID: PMC9994310 DOI: 10.4187/respcare.10483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jessica L Saunders
- Riley Hospital for Children atIndiana University School of MedicinePediatric Pulmonology, Allergy and Sleep MedicineIndianapolis, Indiana
| | - Michael D Davis
- Riley Hospital for Children atIndiana University School of MedicinePediatric Pulmonology, Allergy and Sleep MedicineIndianapolis, IndianaWells Center for Pediatric ResearchRiley Hospital for Children atIndiana University School of MedicineIndianapolis, Indiana
| |
Collapse
|
10
|
Li J, A Alolaiwat A, J Harnois L, Fink JB, Dhand R. Mitigating Fugitive Aerosols During Aerosol Delivery via High-Flow Nasal Cannula Devices. Respir Care 2022; 67:404-414. [PMID: 34789564 PMCID: PMC9994017 DOI: 10.4187/respcare.09589] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Aerosol delivery via high-flow nasal cannula (HFNC) has attracted clinical interest in recent years. However, both HFNC and nebulization are categorized as aerosol-generating procedures (AGPs). In vitro studies raised concerns that AGPs had high transmission risk. Very few in vivo studies examined fugitive aerosols with nebulization via HFNC, and effective methods to mitigate aerosol dispersion are unknown. METHODS Two HFNC devices (Airvo 2 and Vapotherm) with or without a vibrating mesh nebulizer were compared; HFNC alone, surgical mask over HFNC interface, and HFNC with face tent scavenger were used in a random order for 9 healthy volunteers. Fugitive aerosol concentrations at sizes of 0.3-10.0 μm were continuously measured by particle sizers placed at 1 and 3 ft from participants. On a different day, 6 of the 9 participants received 6 additional nebulizer treatments via vibrating mesh nebulizer or small-volume nebulizer (SVN) with a face mask or a mouthpiece with/without an expiratory filter. In vitro simulation was employed to quantify inhaled dose of albuterol with vibrating mesh nebulizer via Airvo 2 and Vapotherm. RESULTS Compared to baseline, neither HFNC device generated higher aerosol concentrations. Compared to HFNC alone, vibrating mesh nebulizer via Airvo 2 generated higher 0.3-1.0 μm particles (all P < .05), but vibrating mesh nebulizer via Vapotherm did not. Concentrations of 1.0-3.0 μm particles with vibrating mesh nebulizer via Airvo 2 were similar with vibrating mesh nebulizer and a mouthpiece/face mask but less than SVN with a mouthpiece/face mask (all P < .05). Placing a surgical mask over HFNC during nebulization reduced 0.5-1.0 μm particles (all P < .05) to levels similar to the use of a nebulizer with mouthpiece and expiratory filter. In vitro the inhaled dose of albuterol with vibrating mesh nebulizer via Airvo 2 was ≥ 6 times higher than vibrating mesh nebulizer via Vapotherm. CONCLUSIONS During aerosol delivery via HFNC, Airvo 2 generated higher inhaled dose and consequently higher fugitive aerosols than Vapotherm. Simple measures, such as placing a surgical mask over nasal cannula during nebulization via HFNC, could effectively reduce fugitive aerosol concentrations.
Collapse
Affiliation(s)
- Jie Li
- Department of Cardiopulmonary Sciences, Division of Respiratory Care, Rush University, Chicago, Illinois.
| | - Amnah A Alolaiwat
- Department of Cardiopulmonary Sciences, Division of Respiratory Care, Rush University, Chicago, Illinois
| | - Lauren J Harnois
- Department of Cardiopulmonary Sciences, Division of Respiratory Care, Rush University, Chicago, Illinois
| | - James B Fink
- Department of Cardiopulmonary Sciences, Division of Respiratory Care, Rush University, Chicago, Illinois; and Aerogen Pharma Corp, San Mateo, California
| | - Rajiv Dhand
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee
| |
Collapse
|
11
|
Quach S. Questions About Fugitive Aerosols: The Answer Is PPE. Respir Care 2022; 67:496-499. [PMID: 35338098 PMCID: PMC9994015 DOI: 10.4187/respcare.10031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shirley Quach
- School of Rehabilitation SciencesMcMaster UniversityHamilton, Canada
| |
Collapse
|
12
|
Gallagher L, Joyce M, Murphy B, Mac Giolla Eain M, MacLoughlin R. The Impact of Head Model Choice on the In Vitro Evaluation of Aerosol Drug Delivery. Pharmaceutics 2021; 14:pharmaceutics14010024. [PMID: 35056920 PMCID: PMC8777612 DOI: 10.3390/pharmaceutics14010024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 11/20/2022] Open
Abstract
There are variations in the values reported for aerosol drug delivery across in vitro experiments throughout the published literature, and often with the same devices or similar experimental setups. Factors contributing to this variability include, but are not limited to device type, equipment settings, drug type and quantification methods. This study assessed the impact of head model choice on aerosol drug delivery using six different adults and three different paediatric head models in combination with a facemask, mouthpiece, and high-flow nasal cannula. Under controlled test conditions, the quantity of drug collected varied depending on the choice of head model. Head models vary depending on a combination of structural design differences, facial features (size and structure), internal volume measurements and airway geometries and these variations result in the differences in aerosol delivery. Of the widely available head models used in this study, only three were seen to closely predict in vivo aerosol delivery performance in adults compared with published scintigraphy data. Further, this testing identified the limited utility of some head models under certain test conditions, for example, the range reported across head models was aerosol drug delivery of 2.62 ± 2.86% to 37.79 ± 1.55% when used with a facemask. For the first time, this study highlights the impact of head model choice on reported aerosol drug delivery within a laboratory setting and contributes to explaining the differences in values reported within the literature.
Collapse
Affiliation(s)
- Lauren Gallagher
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland; (L.G.); (M.J.); (B.M.); (M.M.G.E.)
| | - Mary Joyce
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland; (L.G.); (M.J.); (B.M.); (M.M.G.E.)
| | - Barry Murphy
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland; (L.G.); (M.J.); (B.M.); (M.M.G.E.)
| | - Marc Mac Giolla Eain
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland; (L.G.); (M.J.); (B.M.); (M.M.G.E.)
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland; (L.G.); (M.J.); (B.M.); (M.M.G.E.)
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
- Correspondence:
| |
Collapse
|
13
|
Ari A, Blain K, Soubra S, Hanania NA. Treating COPD Patients with Inhaled Medications in the Era of COVID-19 and Beyond: Options and Rationales for Patients at Home. Int J Chron Obstruct Pulmon Dis 2021; 16:2687-2695. [PMID: 34611397 PMCID: PMC8487292 DOI: 10.2147/copd.s332021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/13/2021] [Indexed: 01/29/2023] Open
Abstract
COVID-19 has affected millions of patients, caregivers, and clinicians around the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads via droplets and close contact from person to person, and there has been an increased concern regarding aerosol drug delivery due to the potential aerosolizing of viral particles. To date, little focus has been given to aerosol drug delivery to patients with COVID-19 treated at home to minimize their hospital utilization. Since most hospitals were stressed with multiple admissions and experienced restricted healthcare resources in the era of COVID-19 pandemic, treating patients with COPD at home became essential to minimize their hospital utilization. However, guidance on how to deliver aerosolized medications safely and effectively to this patient population treated at home is still lacking. In this paper, we provide some strategies and rationales for device and interface selection, delivery technique, and infection control for patients with COPD who are being treated at home in the era of COVID-19 and beyond.
Collapse
Affiliation(s)
- Arzu Ari
- Department of Respiratory Care, Texas State University, Round Rock, TX, USA
| | - Karen Blain
- Department of Respiratory Therapy, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Said Soubra
- Department of Respiratory Care, Texas State University, Round Rock, TX, USA
| | - Nicola A Hanania
- Airways Clinical Research Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
14
|
Mac Giolla Eain M, Joyce M, MacLoughlin R. An in vitro visual study of fugitive aerosols released during aerosol therapy to an invasively ventilated simulated patient. Drug Deliv 2021; 28:1496-1500. [PMID: 34259091 PMCID: PMC8280995 DOI: 10.1080/10717544.2021.1951893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
COVID-19 can cause serious respiratory complications resulting in the need for invasive ventilatory support and concurrent aerosol therapy. Aerosol therapy is considered a high risk procedure for the transmission of patient derived infectious aerosol droplets. Critical-care workers are considered to be at a high risk of inhaling such infectious droplets. The objective of this work was to use noninvasive optical methods to visualize the potential release of aerosol droplets during aerosol therapy in a model of an invasively ventilated adult patient. The noninvasive Schlieren imaging technique was used to visualize the movement of air and aerosol. Three different aerosol delivery devices: (i) a pressurized metered dose inhaler (pMDI), (ii) a compressed air driven jet nebulizer (JN), and (iii) a vibrating mesh nebulizer (VMN), were used to deliver an aerosolized therapeutic at two different positions: (i) on the inspiratory limb at the wye and (ii) on the patient side of the wye, between the wye and endotracheal tube, to a simulated intubated adult patient. Irrespective of position, there was a significant release of air and aerosol from the ventilator circuit during aerosol delivery with the pMDI and the compressed air driven JN. There was no such release when aerosol therapy was delivered with a closed-circuit VMN. Selection of aerosol delivery device is a major determining factor in the release of infectious patient derived bioaerosol from an invasively mechanically ventilated patient receiving aerosol therapy.
Collapse
Affiliation(s)
- Marc Mac Giolla Eain
- Research and Development, Science and Emerging Technologies, Aerogen, Galway, Ireland
| | - Mary Joyce
- Research and Development, Science and Emerging Technologies, Aerogen, Galway, Ireland
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen, Galway, Ireland.,School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons, Dublin, Ireland.,School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| |
Collapse
|
15
|
Electrochemical Discrimination of Salbutamol from Its Excipients in Ventolin TM at Nanoporous Gold Microdisc Arrays. SENSORS 2021; 21:s21123975. [PMID: 34207616 PMCID: PMC8226559 DOI: 10.3390/s21123975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 02/02/2023]
Abstract
The emergence of specific drug–device combination products in the inhalable pharmaceutical industry demands more sophistication of device functionality in the form of an embedded sensing platform to increase patient safety and extend patent coverage. Controlling the nebuliser function at a miniaturised, integrated electrochemical sensing platform with rapid response time and supporting novel algorithms could deliver such a technology offering. Development of a nanoporous gold (NPG) electrochemical sensor capable of creating a unique fingerprint signal generated by inhalable pharmaceuticals provided the impetus for our study of the electrooxidation of salbutamol, which is the active bronchodilatory ingredient in VentolinTM formulations. It was demonstrated that, at NPG-modified microdisc electrode arrays, salbutamol is distinguishable from the chloride excipient present at 0.0154 M using linear sweep voltammetry and can be detected amperometrically. In contrast, bare gold microdisc electrode arrays cannot afford such discrimination, as the potential for salbutamol oxidation and chloride adsorption reactions overlap. The discriminative power of NPG originates from the nanoconfinement effect for chloride in the internal pores of NPG, which selectively enhances the electron transfer kinetics of this more sluggish reaction relative to that of the faster, diffusion-controlled salbutamol oxidation. Sensing was performed at a fully integrated three-electrode cell-on-chip using Pt as a quasi-reference electrode.
Collapse
|
16
|
Evaluation of Aerosol Therapy during the Escalation of Care in a Model of Adult Cystic Fibrosis. Antibiotics (Basel) 2021; 10:antibiotics10050472. [PMID: 33919035 PMCID: PMC8142975 DOI: 10.3390/antibiotics10050472] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
Lung disease is the main cause of morbidity and mortality in cystic fibrosis (CF). CF patients inhale antibiotics regularly as treatment against persistent bacterial infections. The goal of this study was to investigate the effect of clinical intervention on aerosol therapy during the escalation of care using a bench model of adult CF. Droplet size analysis of selected antibiotics was completed in tandem with the delivered aerosol dose (% of total dose) assessments in simulations of various interventions providing oxygen supplementation or ventilatory support. Results highlight the variability of aerosolised dose delivery. In the homecare setting, the vibrating mesh nebuliser (VMN) delivered significantly more than the jet nebuliser (JN) (16.15 ± 0.86% versus 6.51 ± 2.15%). In the hospital setting, using VMN only, significant variability was seen across clinical interventions. In the emergency department, VMN plus mouthpiece (no supplemental oxygen) was seen to deliver (29.02 ± 1.41%) versus low flow nasal therapy (10 L per minute (LPM) oxygen) (1.81 ± 0.47%) and high flow nasal therapy (50 LPM oxygen) (3.36 ± 0.34%). In the ward/intensive care unit, non-invasive ventilation recorded 19.02 ± 0.28%, versus 22.64 ± 1.88% of the dose delivered during invasive mechanical ventilation. These results will have application in the design of intervention-appropriate aerosol therapy strategies and will be of use to researchers developing new therapeutics for application in cystic fibrosis and beyond.
Collapse
|
17
|
O’Toole C, Joyce M, McGrath JA, O’Sullivan A, Byrne MA, MacLoughlin R. Fugitive aerosols in the intensive care unit: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:592. [PMID: 33987290 PMCID: PMC8105852 DOI: 10.21037/atm-20-2280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022]
Abstract
The risk of unintended inhalation of fugitive aerosols is becoming a topic of increasing interest in the healthcare arena. These fugitive aerosols may be bioaerosols, generated by the patient themselves through cough or sneeze, or they may be therapeutic medical aerosols, generated by therapeutic medical aerosol generators with the intent of delivery to a specific patient's respiratory tract. This review focus' on therapeutic aerosols in the intensive care unit (ICU) only, those typically generated by nebulisers. In the intensive care environment, patients are generally in receipt of ventilatory support, and the literature suggests that these different support interventions influence fugitive therapeutic medical aerosol emissions in a variety of ways. Predominant ventilatory support interventions include, but are not limited to, invasive mechanical ventilation (MV), non-invasive mechanical ventilation (NIV), high flow nasal therapy (HFNT), and supplemental oxygen delivery in spontaneously breathing patients. Further, factors such as nebuliser type, patient interface, patient breathing pattern, nebuliser position in the patient breathing circuit and medication formulation characteristics also have been shown to exert influence on aerosol concentrations and distance from the source. Here we present the state of the art knowledge in this, as yet, poorly described field of research, and identify the key risks, and subsequently, opportunities to mitigate the risks of unintended exposure of both patients and bystanders during and for periods following the administration of therapeutic aerosols.
Collapse
Affiliation(s)
- Ciarraí O’Toole
- School of Physics & Ryan Institute’s Centre for Climate & Air Pollution Studies, National University of Ireland Galway, Galway, Ireland
| | - Mary Joyce
- Aerogen, IDA Business Park, Dangan, Galway, Ireland
| | - James A. McGrath
- School of Physics & Ryan Institute’s Centre for Climate & Air Pollution Studies, National University of Ireland Galway, Galway, Ireland
| | | | - Miriam A. Byrne
- School of Physics & Ryan Institute’s Centre for Climate & Air Pollution Studies, National University of Ireland Galway, Galway, Ireland
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Dangan, Galway, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons, Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| |
Collapse
|
18
|
Ari A, Moody GB. How to deliver aerosolized medications through high flow nasal cannula safely and effectively in the era of COVID-19 and beyond: A narrative review. ACTA ACUST UNITED AC 2021; 57:22-25. [PMID: 33688576 PMCID: PMC7932031 DOI: 10.29390/cjrt-2020-041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The treatments of COVID-19 involve some degree of uncertainty. Current evidence also shows mixed findings with regards to bioaerosol dispersion and airborne transmission of COVID-19 during high flow nasal cannula (HFNC) therapy. While coping with this global pandemic created hot debates on the use of HFNC, it is important to bring detached opinions and current evidence to the attention of health care professionals (HCPs) who may need to use HFNC in patients with COVID-19. Aim The purpose of this paper is to provide a framework on the selection, placement, and use of nebulizers as well as HFNC prongs, gas flow, and delivery technique via HFNC to help clinicians deliver aerosolized medications through HFNC safely and effectively in the era of COVID-19 and beyond. Methods We searched PubMed, Medline, CINAHL, and Science Direct to identify studies on aerosol drug delivery through HFNC using the following keywords: (“aerosols,” OR “nebulizers”) AND (“high flow nasal cannula” OR “high flow oxygen therapy” OR “HFNC”) AND (“COVID-19,” OR “SARS-CoV-2”). Twenty-eight articles including in vitro studies, randomized clinical trials, scintigraphy studies, review articles, prospective and retrospective research were included in this review. Discussion and results It is not clear if the findings of the previous studies on bacterial contamination could be applied to viral transmission because they do not provide data that could be extrapolated to the risk of SARS-CoV-2 transmission. In the face of the unknown risk with the transmission of COVID-19 during HFNC therapy, the benefits of HFNC must be weighed against the risk of infection to HCPs and other patients. Due to the limited number of ventilators available in hospitals and the confirmed effectiveness of HFNC in treating hypoxemic respiratory failure, HFNC may prevent early intubation, and prolonged intensive care unit stays in patients with COVID-19. Conclusion Clinicians should review the magnitude of this risk based on current evidence and use the suggested strategies of this paper for safe and effective delivery of aerosolized medications through HFNC in the era of COVID-19 and beyond.
Collapse
Affiliation(s)
- Arzu Ari
- Department of Respiratory Therapy, Texas State University, Round Rock, TX, USA
| | - Gerald B Moody
- Children's Health - Children's Medical Center, Department of Respiratory Care, Dallas, TX, USA
| |
Collapse
|
19
|
Joyce M, McGrath JA, Mac Giolla Eain M, O’Sullivan A, Byrne M, MacLoughlin R. Nebuliser Type Influences Both Patient-Derived Bioaerosol Emissions and Ventilation Parameters during Mechanical Ventilation. Pharmaceutics 2021; 13:199. [PMID: 33540764 PMCID: PMC7912998 DOI: 10.3390/pharmaceutics13020199] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/11/2022] Open
Abstract
COVID-19 may lead to serious respiratory complications which may necessitate ventilatory support. There is concern surrounding potential release of patient-derived bioaerosol during nebuliser drug refill, which could impact the health of caregivers. Consequently, mesh nebulisers have been recommended by various clinical practice guidelines. Currently, there is a lack of empirical data describing the potential for release of patient-derived bioaerosol during drug refill. This study examined the release of simulated patient-derived bioaerosol, and the effect on positive end expiratory pressure during nebuliser refill during mechanical ventilation of a simulated patient. During jet nebuliser refill, the positive end expiratory pressure decreased from 4.5 to 0 cm H2O. No loss in pressure was noted during vibrating mesh nebuliser refill. A median particle number concentration of 710 particles cm-3 above ambient was detected when refilling the jet nebuliser in comparison to no increase above ambient detected when using the vibrating mesh nebuliser. The jet nebuliser with the endotracheal tube clamped resulted in 60 particles cm-3 above ambient levels. This study confirms that choice of nebuliser impacts both the potential for patient-derived bioaerosol release and the ability to maintain ventilator circuit pressures and validates the recommended use of mesh nebulisers during mechanical ventilation.
Collapse
Affiliation(s)
- Mary Joyce
- Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland; (M.M.G.E.); (A.O.); (R.M.)
| | - James A. McGrath
- School of Physics & Ryan Institute’s Centre for Climate and Air Pollution Studies, National University of Ireland Galway, H91 CF50 Galway, Ireland; (J.A.M.); (M.B.)
| | - Marc Mac Giolla Eain
- Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland; (M.M.G.E.); (A.O.); (R.M.)
| | - Andrew O’Sullivan
- Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland; (M.M.G.E.); (A.O.); (R.M.)
| | - Miriam Byrne
- School of Physics & Ryan Institute’s Centre for Climate and Air Pollution Studies, National University of Ireland Galway, H91 CF50 Galway, Ireland; (J.A.M.); (M.B.)
| | - Ronan MacLoughlin
- Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland; (M.M.G.E.); (A.O.); (R.M.)
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
| |
Collapse
|
20
|
Cazzola M, Ora J, Bianco A, Rogliani P, Matera MG. Guidance on nebulization during the current COVID-19 pandemic. Respir Med 2021; 176:106236. [PMID: 33248363 PMCID: PMC7676318 DOI: 10.1016/j.rmed.2020.106236] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/16/2020] [Indexed: 01/04/2023]
Abstract
Awareness of the risk of airborne transmission of SARS-CoV-2 makes patients hesitant about using inhaled medications that are considered as a potential source of viral transmission and immunosuppression. However, patients with asthma or COPD should continue all prescribed inhaled medications. Apparently, inhalers, including pMDIs, DPIs, or SMIs, have a low risk of contamination although characteristics of drug formulation can precipitate cough, whereas some researchers do not rule out the probability that nebulizer treatments may increase the risk of infection transmission via droplet nuclei and aerosols. Considering that aerosol therapy generates fugitive emissions that are not inhaled by the patient and are released from the device during expiration, several international professional bodies have provided recommendations for drug delivery via inhalers and in particular, nebulizers. Unfortunately, these recommendations are often in conflict with each other and do not clarify whether it is appropriate to use nebulizers during this COVID-19 pandemic. Considering what is available in literature, there are no known infection-related hazards to an uninfected patient and also a patient with COVID-19 that preclude the use of a nebulizer at home, but it fundamental that all patients, regardless of whether or not suffering from COVID-19, always follow some practical advices.
Collapse
Affiliation(s)
- Mario Cazzola
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy,Corresponding author
| | - Josuel Ora
- Respiratory Diseases Unit, “Tor Vergata” University Hospital, Rome, Italy
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”/Monaldi Hospital, Naples, Italy
| | - Paola Rogliani
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy,Respiratory Diseases Unit, “Tor Vergata” University Hospital, Rome, Italy
| | - Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
21
|
Swarnakar R, Gupta NM, Halder I, Khilnani GC. Guidance for nebulization during the COVID-19 pandemic. Lung India 2021; 38:S86-S91. [PMID: 33686989 PMCID: PMC8104341 DOI: 10.4103/lungindia.lungindia_681_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Rajesh Swarnakar
- Department of Pulmonology, Getwell Hospital and Research Institute, Nagpur, Maharashtra, India
| | - Neeraj M Gupta
- Department of Respiratory Medicine, JLN Medical College, Ajmer, Rajasthan, India,, India
| | - Indranil Halder
- Department of Pulmonary Medicine, College of Medicine and JNM Hospital, Kolkata, West Bengal, India
| | - Gopi C Khilnani
- PSRI Institute of Pulmonary, Critical Care and Sleep Medicine, PSRI Hospital, New Delhi, India
| |
Collapse
|
22
|
Plaza G, Hernández-García E, Heredia MP, Moratilla L. Airborne particle dissemination during tracheotomy for critically ill patients with COVID-19. Travel Med Infect Dis 2021; 39:101948. [PMID: 33309814 PMCID: PMC7833988 DOI: 10.1016/j.tmaid.2020.101948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Guillermo Plaza
- ENT Department, Hospital Universitario de Fuenlabrada, Spain.
| | | | - Maria P Heredia
- Preventive Medicine Department, Hospital Universitario de Fuenlabrada, Spain
| | - Laura Moratilla
- Preventive Medicine Department, Hospital Universitario de Fuenlabrada, Spain
| |
Collapse
|
23
|
Fink JB, Ehrmann S, Li J, Dailey P, McKiernan P, Darquenne C, Martin AR, Rothen-Rutishauser B, Kuehl PJ, Häussermann S, MacLoughlin R, Smaldone GC, Muellinger B, Corcoran TE, Dhand R. Reducing Aerosol-Related Risk of Transmission in the Era of COVID-19: An Interim Guidance Endorsed by the International Society of Aerosols in Medicine. J Aerosol Med Pulm Drug Deliv 2020; 33:300-304. [PMID: 32783675 PMCID: PMC7757542 DOI: 10.1089/jamp.2020.1615] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
National and international guidelines recommend droplet/airborne transmission and contact precautions for those caring for coronavirus disease 2019 (COVID-19) patients in ambulatory and acute care settings. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, an acute respiratory infectious agent, is primarily transmitted between people through respiratory droplets and contact routes. A recognized key to transmission of COVID-19, and droplet infections generally, is the dispersion of bioaerosols from the patient. Increased risk of transmission has been associated with aerosol generating procedures that include endotracheal intubation, bronchoscopy, open suctioning, administration of nebulized treatment, manual ventilation before intubation, turning the patient to the prone position, disconnecting the patient from the ventilator, noninvasive positive-pressure ventilation, tracheostomy, and cardiopulmonary resuscitation. The knowledge that COVID-19 subjects can be asymptomatic and still shed virus, producing infectious droplets during breathing, suggests that health care workers (HCWs) should assume every patient is potentially infectious during this pandemic. Taking actions to reduce risk of transmission to HCWs is, therefore, a vital consideration for safe delivery of all medical aerosols. Guidelines for use of personal protective equipment (glove, gowns, masks, shield, and/or powered air purifying respiratory) during high-risk procedures are essential and should be considered for use with lower risk procedures such as administration of uncontaminated medical aerosols. Bioaerosols generated by infected patients are a major source of transmission for SARS CoV-2, and other infectious agents. In contrast, therapeutic aerosols do not add to the risk of disease transmission unless contaminated by patients or HCWs.
Collapse
Affiliation(s)
- James B. Fink
- Aerogen Pharma Corp., San Mateo, California, USA
- Division of Respiratory Care, Department of Cardiopulmonary Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Stephan Ehrmann
- CHRU Tours, Médecine Intensive Réanimation, CIC INSERM 1415, CRICS-TriggerSep Research Network, Tours, France
- INSERM, Centre d'étude des Pathologies Respiratoires, U1100, Université de Tours, Tours, France
| | - Jie Li
- Division of Respiratory Care, Department of Cardiopulmonary Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | | | | | - Chantal Darquenne
- Department of Medicine, University of California, San Diego, California, USA
| | | | | | | | | | - Ronan MacLoughlin
- Aerogen Limited, Galway, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons, Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Gerald C. Smaldone
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, State University of New York at Stony Brook, Stony Brook, New York, USA
| | | | - Timothy E. Corcoran
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rajiv Dhand
- Department of Medicine, Graduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, USA
| |
Collapse
|
24
|
Pande RK, Bhalla A, Myatra SN, Yaddanpuddi LN, Gupta S, Sahoo TK, Prakash R, Sahu TA, Jain A, Gopal PBN, Chaudhry D, Govil D, Dixit S, Samavedam S. Procedures in COVID-19 Patients: Part-I. Indian J Crit Care Med 2020; 24:S263-S271. [PMID: 33354050 PMCID: PMC7724930 DOI: 10.5005/jp-journals-10071-23597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The number of cases with novel coronavirus disease-2019 (COVID-19) infection is increasing every day in the world, and India contributes a substantial proportion of this burden. Critical care specialists have accepted the challenges associated with the COVID-19 pandemic and are frontline warriors in this war. They have worked hard in streamlining workflow isolation of positive patients, clinical management of critically ill patients, and infection prevention practices. With no end in sight for this pandemic, intensive care unit (ICU) practitioners, hospital administrators, and policy makers have to join hands to prepare for the surge in critical care bed capacity. In this position article, we offer several suggestions on important interventions to the ICU practitioners for better management of critically ill patients. This position article highlights key interventions for COVID-19 treatment and covers several important issues such as endotracheal intubation and tracheostomy (surgical vs PCT), nebulization, bronchoscopy, and invasive procedures such as central venous catheters, arterial lines, and HD catheters. How to cite this article: Pande RK, Bhalla A, SN Myatra, Yaddanpuddi LN, Gupta S, Sahoo TK, et al. Procedures in COVID-19 Patients: Part-I. Indian J Crit Care Med 2020;24(Suppl 5):S263-S271.
Collapse
Affiliation(s)
- Rajesh K Pande
- Department of Critical Care Medicine, BLK Center for Critical Care, BLK Superspeciality Hospital, New Delhi, India
| | - Ashish Bhalla
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sheila N Myatra
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Lakshmi N Yaddanpuddi
- Department of Anaesthesiology and Critical Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sachin Gupta
- Department of Critical Care, Narayana Superspeciality Hospital, Gurugram, Haryana, India
| | - Tapas K Sahoo
- Department of Critical Care Medicine, Institute of Critical Care, Medanta Hospital, Ranchi, Jharkhand, India
| | - Ravi Prakash
- Department of Critical Care Medicine, BLK Center for Critical Care, BLK Superspeciality Hospital, New Delhi, India
| | - Tarun A Sahu
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Akansha Jain
- Department of Paediatric ICU, Bhagwan Mahavir Medica Superspecialty Hospital, Ranchi, Jharkhand, India
| | - Palepu BN Gopal
- Department of Critical Care, Continental Hospital, Hyderabad, Telangana, India
| | - Dhruva Chaudhry
- Department of Pulmonary and Critical Care, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Deepak Govil
- Department of Critical Care Medicine, Institute of Critical Care and Anesthesia, Medanta: The Medicity, Gurugram, Haryana, India
| | - Shubhal Dixit
- Department of Critical Care Medicine, Sanjeevan and MJM Hospital, Pune, Maharashtra, India
| | - Srinivas Samavedam
- Department of Critical Care, Virinchi Hospital, Hyderabad, Telangana, India
| |
Collapse
|
25
|
Woods N, MacLoughlin R. Defining a Regulatory Strategy for ATMP/Aerosol Delivery Device Combinations in the Treatment of Respiratory Disease. Pharmaceutics 2020; 12:E922. [PMID: 32993197 PMCID: PMC7601063 DOI: 10.3390/pharmaceutics12100922] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Advanced Therapeutic Medicinal Products (ATMP) are a heterogenous group of investigational medicinal products at the forefront of innovative therapies with direct applicability in respiratory diseases. ATMPs include, but are not limited to, stem cells, their secretome, or extracellular vesicles, and each have shown some potential when delivered topically within the lung. This review focuses on that subset of ATMPs. One key mode of delivery that has enabling potential in ATMP validation is aerosol-mediated delivery. The selection of the most appropriate aerosol generator technology is influenced by several key factors, including formulation, patient type, patient intervention, and healthcare economics. The aerosol-mediated delivery of ATMPs has shown promise for the treatment of both chronic and acute respiratory disease in pre-clinical and clinical trials; however, in order for these ATMP device combinations to translate from the bench through to commercialization, they must meet the requirements set out by the various global regulatory bodies. In this review, we detail the potential for ATMP utility in the lungs and propose the nebulization of ATMPs as a viable route of administration in certain circumstances. Further, we provide insight to the current regulatory guidance for nascent ATMP device combination product development within the EU and US.
Collapse
Affiliation(s)
- Niamh Woods
- College of Medicine, Nursing & Health Sciences, National University of Ireland, H91 TK33 Galway, Ireland;
| | - Ronan MacLoughlin
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
- Aerogen Ltd., Galway Business Park, H91 HE94 Galway, Ireland
| |
Collapse
|
26
|
Yıldız-Peköz A, Ehrhardt C. Advances in Pulmonary Drug Delivery. Pharmaceutics 2020; 12:pharmaceutics12100911. [PMID: 32977672 PMCID: PMC7598662 DOI: 10.3390/pharmaceutics12100911] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022] Open
Abstract
Pulmonary drug delivery represents an attractive, non-invasive administration option. In addition to locally acting drugs, molecules that are intended to produce systemic effects can be delivered via the pulmonary route. Several factors need to be considered in the context of delivering drugs to or via the lungs—in addition to the drug itself, its formulation into an appropriate inhalable dosage form of sufficient stability is critical. It is also essential that this formulation is paired with a suitable inhaler device, which generates an aerosol of a particle/droplet size that ensures deposition in the desired region of the respiratory tract. Lastly, the patient’s (patho-) physiology and inhalation manoeuvre are of importance. This Special Issue brings together recent advances in the areas of inhalation device testing, aerosol formulation development, use of in vitro and in silico models in pulmonary drug deposition and drug disposition studies, and pulmonary delivery of complex drugs, such as vaccines, antibiotics and peptides, to or via the lungs.
Collapse
Affiliation(s)
- Ayca Yıldız-Peköz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, İstanbul University, İstanbul 34116, Turkey;
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Correspondence: ; Tel.: +353-1-896-2441
| |
Collapse
|
27
|
Li J, Fink JB, MacLoughlin R, Dhand R. A narrative review on trans-nasal pulmonary aerosol delivery. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:506. [PMID: 32807226 PMCID: PMC7430014 DOI: 10.1186/s13054-020-03206-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/27/2020] [Indexed: 01/21/2023]
Abstract
The use of trans-nasal pulmonary aerosol delivery via high-flow nasal cannula (HFNC) has expanded in recent years. However, various factors influencing aerosol delivery in this setting have not been precisely defined, and no consensus has emerged regarding the optimal techniques for aerosol delivery with HFNC. Based on a comprehensive literature search, we reviewed studies that assessed trans-nasal pulmonary aerosol delivery with HFNC by in vitro experiments, and in vivo, by radiolabeled, pharmacokinetic and pharmacodynamic studies. In these investigations, the type of nebulizer employed and its placement, carrier gas, the relationship between gas flow and patient’s inspiratory flow, aerosol delivery strategies (intermittent unit dose vs continuous administration by infusion pump), and open vs closed mouth breathing influenced aerosol delivery. The objective of this review was to provide rational recommendations for optimizing aerosol delivery with HFNC in various clinical settings.
Collapse
Affiliation(s)
- Jie Li
- Division of Respiratory Care, Department of Cardiopulmonary Sciences, Rush University Medical Center, 1620 W Harrison St, Tower LL1202, Chicago, IL, 60612, USA.
| | - James B Fink
- Division of Respiratory Care, Department of Cardiopulmonary Sciences, Rush University Medical Center, 1620 W Harrison St, Tower LL1202, Chicago, IL, 60612, USA.,Aerogen Pharma Corp, San Mateo, CA, USA
| | | | - Rajiv Dhand
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| |
Collapse
|
28
|
Ari A. Practical strategies for a safe and effective delivery of aerosolized medications to patients with COVID-19. Respir Med 2020; 167:105987. [PMID: 32421541 PMCID: PMC7172670 DOI: 10.1016/j.rmed.2020.105987] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/19/2020] [Indexed: 01/08/2023]
Abstract
The COVID-19, the disease caused by a novel coronavirus and named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread rapidly across the globe. It has caused outbreaks of illness due to person-to-person transmission of the virus mainly via close contacts and droplets produced by an infected person's cough or sneeze. Exhaled droplets from infected patients with COVID-19 can be inhaled into the lungs and leads to respiratory illness such as pneumonia and acute respiratory distress syndrome. Although aerosol therapy is a mainstay procedure used to treat pulmonary diseases at home and healthcare settings, it has a potential for fugitive emissions during therapy due to the generation of aerosols and droplets as a source of respiratory pathogens. Delivering aerosolized medications to patients with COVID-19 can aggravate the spread of the novel coronavirus. This has been a real concern for caregivers and healthcare professionals who are susceptible to unintended inhalation of fugitive emissions during therapy. Due to a scarcity of information in this area of clinical practice, the purpose of this paper is to explain how to deliver aerosolized medications to mild-, sub-intensive, and intensive-care patients with COVID-19 and how to protect staff from exposure to exhaled droplets during aerosol therapy.
Collapse
Affiliation(s)
- Arzu Ari
- Texas State University, College of Health Professions, Department of Respiratory Care, 200 Bobcat Way, Willow Hall, Suite# 214, Round Rock, TX, 78665, USA.
| |
Collapse
|
29
|
Ishau S, Reichard JF, Maier A, Niang M, Yermakov M, Grinshpun SA. Estimated dermal exposure to nebulized pharmaceuticals for a simulated home healthcare worker scenario. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2020; 17:193-205. [PMID: 32134702 DOI: 10.1080/15459624.2020.1724297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The duties of home healthcare workers are extensive. One important task that is frequently performed by home healthcare workers is administration of nebulized medications, which may lead to significant dermal exposure. In this simulation study conducted in an aerosol exposure chamber, we administered a surrogate of nebulizer-delivered medications (dispersed sodium chloride, NaCl) to a patient mannequin. We measured the amount of NaCl deposited on the exposed surface of the home healthcare worker mannequin, which represented the exposed skin of a home healthcare worker. Factors such as distance and position of the home healthcare worker, room airflow rate and patient's inspiratory rate were varied to determine their effects on dermal exposure. There was a 2.78% reduction in dermal deposition for every centimeter the home healthcare worker moved away from the patient. Increasing the room's air exchange rate by one air change per hour increased dermal deposition by about 2.93%, possibly due to a decrease in near field particle settling. For every 10-degrees of arc the home healthcare worker is positioned from the left side of the patient toward the right and thus moving into the ventilation airflow direction, dermal deposition increased by about 4.61%. An increase in the patient's inspiratory rate from 15-30 L/min resulted in an average of 14.06% reduction in dermal deposition for the home healthcare worker, reflecting a relative increase in the aerosol fraction inhaled by the patient. The findings of this study elucidate the interactions among factors that contribute to dermal exposure to aerosolized pharmaceuticals administered by home healthcare workers. The results presented in this paper will help develop recommendations on mitigating the health risks related to dermal exposure of home healthcare workers.
Collapse
Affiliation(s)
- Simileoluwa Ishau
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - John F Reichard
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | | | - Mamadou Niang
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Michael Yermakov
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Sergey A Grinshpun
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
30
|
Sethi S, Barjaktarevic IZ, Tashkin DP. The use of nebulized pharmacotherapies during the COVID-19 pandemic. Ther Adv Respir Dis 2020; 14:1753466620954366. [PMID: 33167796 PMCID: PMC7675890 DOI: 10.1177/1753466620954366] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/29/2020] [Indexed: 12/30/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the highly contagious novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a worldwide pandemic and currently represents a major public health issue. COVID-19 has highlighted the need for clear and accurate guidance on the use of aerosol-generating procedures, such as nebulization, for the treatment of patients with respiratory diseases with or without COVID-19. Despite the lack of evidence, there is heightened concern about the potential risk of transmission of SARS-CoV-2 in the form of aerosolized respiratory droplets during the nebulized treatment of patients with COVID-19. Consequently, the use of metered-dose inhalers (MDIs) has risen considerably as an alternative to nebulized therapy, which has led to inadequate supplies of MDIs in some parts of the United States. In this article, we review and discuss the role of nebulization in patients with SARS-CoV-2 and the treatment of noninfected patients with chronic respiratory diseases. The following two important questions are addressed: (1) should nebulized therapy be used in hospital or home settings by patients infected with SARS-CoV-2; and (2) should nebulized therapy be continued in patients already using it for chronic respiratory disease management in hospital or home settings?The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Sanjay Sethi
- University at Buffalo, State University of New York, Clinical and Translational Research Center, 875 Ellicott St., Room 6045A, Buffalo, NY 14215, USA
| | | | | |
Collapse
|