1
|
Alwaleed EA, Alotaibi NM, Mansour AT, Alghamdi MA, Abdelgaliel AS. Assessment of the conceivable inhibitory activity of pathogenic microorganisms extracted from seaweed using phytochemicals, antioxidants, and in-silico molecular dynamic simulation. Sci Rep 2024; 14:23200. [PMID: 39368983 PMCID: PMC11455936 DOI: 10.1038/s41598-024-70620-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/19/2024] [Indexed: 10/07/2024] Open
Abstract
Turbinaria ornata, Polycladia myrica, and Padina pavonica is a perennial Mediterranean-native seaweed that is commonly used for mass display. The principal aims of this reconnaissance were the isolation of various compounds from methanolic seaweeds extraction and screening the potential effect as antibacterial, and antioxidant. The micro-dilution method was used to measure antibacterial activity. Gas chromatography-mass spectrophotometry (GC. Mass) abused to analyze the chemical components of the methanolic seaweed extract. The existence of 19 secondary metabolites was discovered using GC-MS analysis: 8 different compounds for each seaweed's species. Among these bioactive compounds, 4 compounds from P. pavonica extract showed the binding affinity and ability to react with Beta-ketoacyl synthase (PDB ID 1EK4) of Escherichia coli. The phytocompounds' drug-like and poisonous characteristics were predicted. Auto Dock was used to examine the ligand receptor complexes' binding strength. T. ornate and P. pavonica had the highest activity against K. pneumonia, with 22.50 mm (0.78 µg/ml) and 22.23 mm (5.10 µg/ml) obtained, respectively. In a concentration-dependent manner, the extract components demonstrated substantial antioxidant activity. P. pavonica had the highest scavenging activity (78.00%, IC50 = 6.35 µg/ml), while ascorbic acid had a 96.45% scavenging impact. Because the chemicals bind to the Lipinski Ro5, they have drug-like characteristics. The compounds had no hepatotoxic effects. P. pavonica extract has the prospect of being used as a source of medicinal drug-like chemicals. The docking investigation found a strong correlation between the experimental results and the docking results. Finally, brown seaweed extract, particularly P. pavonica extract, demonstrated strong antibacterial, antioxidant, and free radical scavenging properties.
Collapse
Affiliation(s)
- Eman A Alwaleed
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, 83523, Egypt.
| | - Nahaa M Alotaibi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Abdallah Tegeldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mashaill A Alghamdi
- Biology Department, Faculty of Science, King Abdul-Aziz University, 21589, Jeddah, Saudi Arabia
| | - Asmaa S Abdelgaliel
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
2
|
Bhattacharya S, Dutta A, Khanra PK, Gupta N, Dutta R, Tzvetkov NT, Milella L, Ponticelli M. In silico exploration of 4(α-l-rhamnosyloxy)-benzyl isothiocyanate: A promising phytochemical-based drug discovery approach for combating multi-drug resistant Staphylococcus aureus. Comput Biol Med 2024; 179:108907. [PMID: 39033680 DOI: 10.1016/j.compbiomed.2024.108907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Multidrug-resistant (MDR) Staphylococcus aureus infections significantly threaten global health. With rising resistance to current antibiotics and limited solutions, the urgent discovery of new, effective, and affordable antibacterials with low toxicity is imperative to combat diverse MDR S. aureus strains. Hence, in this study, we introduce an in silico phytochemical-based approach for discovering novel antibacterial agents, underscoring the potential of computational approaches in therapeutic discovery. Glucomoringin Isothiocyanate (GMG-ITC) from Moringa oleifera Lam. is one of the phytochemical compounds with several biological activities, including antimicrobial, anti-inflammatory, and antioxidant activities, and is also effective against S. aureus. This study focuses on screening GMG-ITC as a potential drug candidate to combat MDR S. aureus infections through a molecular docking approach. Moreover, interaction amino acid analysis, in silico pharmacokinetics, compound target prediction, pathway enrichment analysis and molecular dynamics (MD) simulations were conducted for further investigation. Molecular docking and interaction analysis showed strong binding affinity towards S. aureus lipase, dihydrofolate reductase, and other MDR S. aureus proteins, including penicillin-binding protein 2a, MepR, D-Ala:D-Ala ligase, and RPP TetM, through hydrophilic and hydrophobic interactions. GMG-ITC also showed a strong binding affinity to cyclooxygenase-2 and FAD-dependent NAD(P)H oxidase, suggesting that it is a potential anti-inflammatory and antioxidant candidate that may eliminate inflammation and oxidative stress associated with S. aureus infections. MD simulations validated the stability of the GMG-ITC molecular interactions determined by molecular docking. In silico pharmacokinetic analysis highlights its potency as a drug candidate, showing strong absorption, distribution, and excretion properties in combination with low toxicity. It acts as an active protease and enzyme inhibitor with moderate activity against GPCR ligands, ion channels, nuclear receptor ligands, and kinases. Enrichment analysis further elucidated its involvement in important biological, molecular, and cellular functions with potential therapeutic applications in diseases like cancer, hepatitis B, and influenza. Results suggest that GMG-ITC is an effective antibacterial agent that could treat MDR S. aureus-associated infections.
Collapse
Affiliation(s)
- Soham Bhattacharya
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, Suchdol, 165 00, Czech Republic
| | - Adrish Dutta
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00, Prague 6, Czech Republic
| | - Pijush Kanti Khanra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 39, Assam, India
| | - Neha Gupta
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00, Prague 6, Czech Republic
| | - Ritesh Dutta
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India
| | - Nikolay T Tzvetkov
- Department of Biochemical Pharmacology & Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences (BAS), Acad. G. Bonchev Str., Bl. 21, 1113, Sofia, Bulgaria
| | - Luigi Milella
- Department of Science, University of Basilicata, Via Dell'Ateneo Lucano 10, 85100, Potenza, Italy.
| | - Maria Ponticelli
- Department of Biochemical Pharmacology & Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences (BAS), Acad. G. Bonchev Str., Bl. 21, 1113, Sofia, Bulgaria; Department of Science, University of Basilicata, Via Dell'Ateneo Lucano 10, 85100, Potenza, Italy
| |
Collapse
|
3
|
Pepin X, Arora S, Borges L, Cano-Vega M, Carducci T, Chatterjee P, Chen G, Cristofoletti R, Dallmann A, Delvadia P, Dressman J, Fotaki N, Gray E, Heimbach T, Holte Ø, Kijima S, Kotzagiorgis E, Lennernäs H, Lindahl A, Loebenberg R, Mackie C, Malamatari M, McAllister M, Mitra A, Moody R, Mudie D, Musuamba Tshinanu F, Polli JE, Rege B, Ren X, Rullo G, Scherholz M, Song I, Stillhart C, Suarez-Sharp S, Tannergren C, Tsakalozou E, Veerasingham S, Wagner C, Seo P. Parameterization of Physiologically Based Biopharmaceutics Models: Workshop Summary Report. Mol Pharm 2024; 21:3697-3731. [PMID: 38946085 PMCID: PMC11304397 DOI: 10.1021/acs.molpharmaceut.4c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
This Article shares the proceedings from the August 29th, 2023 (day 1) workshop "Physiologically Based Biopharmaceutics Modeling (PBBM) Best Practices for Drug Product Quality: Regulatory and Industry Perspectives". The focus of the day was on model parametrization; regulatory authorities from Canada, the USA, Sweden, Belgium, and Norway presented their views on PBBM case studies submitted by industry members of the IQ consortium. The presentations shared key questions raised by regulators during the mock exercise, regarding the PBBM input parameters and their justification. These presentations also shed light on the regulatory assessment processes, content, and format requirements for future PBBM regulatory submissions. In addition, the day 1 breakout presentations and discussions gave the opportunity to share best practices around key questions faced by scientists when parametrizing PBBMs. Key questions included measurement and integration of drug substance solubility for crystalline vs amorphous drugs; impact of excipients on apparent drug solubility/supersaturation; modeling of acid-base reactions at the surface of the dissolving drug; choice of dissolution methods according to the formulation and drug properties with a view to predict the in vivo performance; mechanistic modeling of in vitro product dissolution data to predict in vivo dissolution for various patient populations/species; best practices for characterization of drug precipitation from simple or complex formulations and integration of the data in PBBM; incorporation of drug permeability into PBBM for various routes of uptake and prediction of permeability along the GI tract.
Collapse
Affiliation(s)
- Xavier Pepin
- Regulatory
Affairs, Simulations Plus Inc., 42505 10th Street West, Lancaster, California 93534-7059, United States
| | - Sumit Arora
- Janssen
Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Luiza Borges
- ANVISA, SIA Trecho 5́, Guara, Brasília, Federal District 71205-050, Brazil
| | - Mario Cano-Vega
- Drug
Product Technologies, Amgen Inc., Thousand Oaks, California 91320-1799, United
States
| | - Tessa Carducci
- Analytical
Commercialization Technology, Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Parnali Chatterjee
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Grace Chen
- Takeda
Development Center Americas Inc., 300 Shire Way, Lexington, Massachusetts 02421, United States
| | - Rodrigo Cristofoletti
- College
of Pharmacy, University of Florida, 6550 Sanger Rd., Orlando, Florida 32827, United States
| | - André Dallmann
- Bayer
HealthCare SAS, 59000 Lille, France, on behalf of Bayer
AG, Pharmacometrics/Modeling and Simulation, Systems Pharmacology
& Medicine, PBPK, Leverkusen, Germany
| | - Poonam Delvadia
- Office
of Translational Science, Office of Clinical Pharmacology (OCP), Center
for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United States
| | - Jennifer Dressman
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main 60596, Germany
| | - Nikoletta Fotaki
- University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
| | - Elizabeth Gray
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Tycho Heimbach
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Øyvind Holte
- Norwegian Medical Products Agency, Oslo 0213, Norway
| | - Shinichi Kijima
- Office
of New Drug V, Pharmaceuticals and Medical
Devices Agency (PMDA), Tokyo 100-0013, Japan
| | - Evangelos Kotzagiorgis
- European Medicines Agency (EMA), Domenico Scarlattilaan 6, Amsterdam 1083 HS, The Netherlands
| | - Hans Lennernäs
- Translational
Drug Discovery and Development, Department of Pharmaceutical Bioscience, Uppsala University, Uppsala 751 05, Sweden
| | | | - Raimar Loebenberg
- Faculty
of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmontonton T6G 2E1, Canada
| | - Claire Mackie
- Janssen
Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Maria Malamatari
- Medicines & Healthcare Products Regulatory Agency, 10 S Colonnade, London SW1W 9SZ, United Kingdom
| | - Mark McAllister
- Global
Biopharmaceutics, Drug Product Design, Pfizer, Sandwich CT13 9NJ, United Kingdom
| | - Amitava Mitra
- Clinical
Pharmacology, Kura Oncology Inc., Boston, Massachusetts 02210, United States
| | - Rebecca Moody
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Deanna Mudie
- Global
Research and Development, Small Molecules, Lonza, 63045 NE Corporate
Pl., Bend, Oregon 97701, United States
| | - Flora Musuamba Tshinanu
- Belgian Federal Agency for Medicines and Health Products, Galileelaan 5/03, Brussel 1210, Belgium
| | - James E. Polli
- School
of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Bhagwant Rege
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Xiaojun Ren
- PK
Sciences/Translational Medicine, BioMedical Research, Novartis, One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Gregory Rullo
- Regulatory
CMC, AstraZeneca, 1 Medimmune Way, Gaithersburg, Maryland 20878, United States
| | - Megerle Scherholz
- Pharmaceutical
Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Ivy Song
- Takeda
Development Center Americas Inc., 300 Shire Way, Lexington, Massachusetts 02421, United States
| | - Cordula Stillhart
- Pharmaceutical
R&D, F. Hoffmann-La Roche Ltd., Basel 4070, Switzerland
| | - Sandra Suarez-Sharp
- Regulatory
Affairs, Simulations Plus Inc., 42505 10th Street West, Lancaster, California 93534-7059, United States
| | - Christer Tannergren
- Biopharmaceutics
Science, New Modalities & Parenteral Product Development, Pharmaceutical
Technology & Development, Operations, AstraZeneca, Gothenburg 431 50, Sweden
| | - Eleftheria Tsakalozou
- Division
of Quantitative Methods and Modeling, Office of Research and Standards,
Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20903-1058, United
States
| | - Shereeni Veerasingham
- Pharmaceutical
Drugs Directorate (PDD), Health Canada, 1600 Scott St., Ottawa K1A 0K9, Canada
| | - Christian Wagner
- Global
Drug Product Development, Global CMC Development, the Healthcare Business of Merck KGaA, Darmstadt D-64293, Germany
| | - Paul Seo
- Office
of Translational Science, Office of Clinical Pharmacology (OCP), Center
for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United States
| |
Collapse
|
4
|
Yamin R, Ahmad I, Khalid H, Perveen A, Abbasi SW, Nishan U, Sheheryar S, Moura AA, Ahmed S, Ullah R, Ali EA, Shah M, Chandra Ojha S. Identifying plant-derived antiviral alkaloids as dual inhibitors of SARS-CoV-2 main protease and spike glycoprotein through computational screening. Front Pharmacol 2024; 15:1369659. [PMID: 39086396 PMCID: PMC11288853 DOI: 10.3389/fphar.2024.1369659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/04/2024] [Indexed: 08/02/2024] Open
Abstract
COVID-19 is currently considered the ninth-deadliest pandemic, spreading through direct or indirect contact with infected individuals. It has imposed a consistent strain on both the financial and healthcare resources of many countries. To address this challenge, there is a pressing need for the development of new potential therapeutic agents for the treatment of this disease. To identify potential antiviral agents as novel dual inhibitors of SARS-CoV-2, we retrieved 404 alkaloids from 12 selected medicinal antiviral plants and virtually screened them against the renowned catalytic sites and favorable interacting residues of two essential proteins of SARS-CoV-2, namely, the main protease and spike glycoprotein. Based on docking scores, 12 metabolites with dual inhibitory potential were subjected to drug-likeness, bioactivity scores, and drug-like ability analyses. These analyses included the ligand-receptor stability and interactions at the potential active sites of target proteins, which were analyzed and confirmed through molecular dynamic simulations of the three lead metabolites. We also conducted a detailed binding free energy analysis of pivotal SARS-CoV-2 protein inhibitors using molecular mechanics techniques to reveal their interaction dynamics and stability. Overall, our results demonstrated that 12 alkaloids, namely, adouetine Y, evodiamide C, ergosine, hayatinine, (+)-homoaromoline, isatithioetherin C, N,alpha-L-rhamnopyranosyl vincosamide, pelosine, reserpine, toddalidimerine, toddayanis, and zanthocadinanine, are shortlisted as metabolites based on their interactions with target proteins. All 12 lead metabolites exhibited a higher unbound fraction and therefore greater distribution compared with the standards. Particularly, adouetine Y demonstrated high docking scores but exhibited a nonspontaneous binding profile. In contrast, ergosine and evodiamide C showed favorable binding interactions and superior stability in molecular dynamics simulations. Ergosine demonstrated exceptional performance in several key pharmaceutical metrics. Pharmacokinetic evaluations revealed that ergosine exhibited pronounced bioactivity, good absorption, and optimal bioavailability. Additionally, it was predicted not to cause skin sensitivity and was found to be non-hepatotoxic. Importantly, ergosine and evodiamide C emerged as superior drug candidates for dual inhibition of SARS-CoV-2 due to their strong binding affinity and drug-like ability, comparable to known inhibitors like N3 and molnupiravir. This study is limited by its in silico nature and demands the need for future in vitro and in vivo studies to confirm these findings.
Collapse
Affiliation(s)
- Ramsha Yamin
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Iqra Ahmad
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Hira Khalid
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Asia Perveen
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan
| | - Sheheryar Sheheryar
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| | | | - Sarfraz Ahmed
- Wellman Centre for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Essam A. Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Wang M, Sasaki Y, Sakagami R, Minamikawa T, Tsuda M, Ueno R, Deguchi S, Negoro R, So K, Higuchi Y, Yokokawa R, Takayama K, Yamashita F. Perfluoropolyether-Based Gut-Liver-on-a-Chip for the Evaluation of First-Pass Metabolism and Oral Bioavailability of Drugs. ACS Biomater Sci Eng 2024; 10:4635-4644. [PMID: 38822812 DOI: 10.1021/acsbiomaterials.4c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
In the evolving field of drug discovery and development, multiorgans-on-a-chip and microphysiological systems are gaining popularity owing to their ability to emulate in vivo biological environments. Among the various gut-liver-on-a-chip systems for studying oral drug absorption, the chip developed in this study stands out with two distinct features: incorporation of perfluoropolyether (PFPE) to effectively mitigate drug sorption and a unique enterohepatic single-passage system, which simplifies the analysis of first-pass metabolism and oral bioavailability. By introducing a bolus drug injection into the liver compartment, hepatic extraction alone could be evaluated, further enhancing our estimation of intestinal availability. In a study on midazolam (MDZ), PFPE-based chips showed more than 20-times the appearance of intact MDZ in the liver compartment effluent compared to PDMS-based counterparts. Notably, saturation of hepatic metabolism at higher concentrations was confirmed by observations when the dose was reduced from 200 μM to 10 μM. This result was further emphasized when the metabolism was significantly inhibited by the coadministration of ketoconazole. Our chip, which is designed to minimize the dead volume between the gut and liver compartments, is adept at sensitively observing the saturation of metabolism and the effect of inhibitors. Using genome-edited CYP3A4/UGT1A1-expressing Caco-2 cells, the estimates for intestinal and hepatic availabilities were 0.96 and 0.82, respectively; these values are higher than the known human in vivo values. Although the metabolic activity in each compartment can be further improved, this gut-liver-on-a-chip can not only be used to evaluate oral bioavailability but also to carry out individual assessment of both intestinal and hepatic availability.
Collapse
Affiliation(s)
- Mengyang Wang
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yuko Sasaki
- Department of Applied Pharmaceutics and Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Rena Sakagami
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Tomotaka Minamikawa
- Department of Applied Pharmaceutics and Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Masahiro Tsuda
- Department of Applied Pharmaceutics and Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Ryohei Ueno
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Sayaka Deguchi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Ryosuke Negoro
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Kanako So
- Department of Applied Pharmaceutics and Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yuriko Higuchi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Department of Applied Pharmaceutics and Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
6
|
Chen T, Li Q, Ai G, Huang Z, Liu J, Zeng L, Su Z, Dou Y. Enhancing hepatoprotective action: oxyberberine amorphous solid dispersion system targeting TLR4. Sci Rep 2024; 14:14924. [PMID: 38942824 PMCID: PMC11213902 DOI: 10.1038/s41598-024-65190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024] Open
Abstract
Oxyberberine (OBB) is a significant natural compound, with excellent hepatoprotective properties. However, the poor water solubility of OBB hinders its release and absorption thus resulting in low bioavailability. To overcome these drawbacks of OBB, amorphous spray-dried powders (ASDs) of OBB were formulated. The dissolution, characterizations, and pharmacokinetics of OBB-ASDs formulation were investigated, and its hepatoprotective action was disquisitive in the D-GalN/LPS-induced acute liver injury (ALI) mouse model. The characterizations of OBB-ASDs indicated that the crystalline form of OBB active pharmaceutical ingredients (API) was changed into an amorphous form in OBB-ASDs. More importantly, OBB-ASDs showed a higher bioavailability than OBB API. In addition, OBB-ASDs treatment restored abnormal histopathological changes, improved liver functions, and relieved hepatic inflammatory mediators and oxidative stress in ALI mice. The spray drying techniques produced an amorphous form of OBB, which could significantly enhance the bioavailability and exhibit excellent hepatoprotective effects, indicating that the OBB-ASDs can exhibit further potential in hepatoprotective drug delivery systems. Our results provide guidance for improving the bioavailability and pharmacological activities of other compounds, especially insoluble natural compounds. Meanwhile, the successful development of OBB-ASDs could shed new light on the research process of poorly soluble medicine.
Collapse
Affiliation(s)
- Tingting Chen
- Meizhou Hospital of Guangzhou University of Chinese Medicine (Meizhou Hospital of Traditional Chinese Medicine), 3 Huanan Avenue, Meijiang District, Meizhou, Guangdong, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Qingguo Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gaoxiang Ai
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural sciences, Nanchang, China
| | - Ziwei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Liu
- Guangdong Second Traditional Chinese Medicine Hospital (Guangdong Province Enginering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Lingfeng Zeng
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine/Post-Doctoral Research Station, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaoxing Dou
- Meizhou Hospital of Guangzhou University of Chinese Medicine (Meizhou Hospital of Traditional Chinese Medicine), 3 Huanan Avenue, Meijiang District, Meizhou, Guangdong, China.
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine/Post-Doctoral Research Station, Guangzhou, China.
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.
| |
Collapse
|
7
|
Revanasiddappa PD, Gowtham HG, G. S. C, Gangadhar S, A. S, Murali M, Shivamallu C, Achar RR, Silina E, Stupin V, Manturova N, Shati AA, Alfaifi MY, Elbehairi SEI, Kollur SP, Amruthesh KN. Exploration of Type III effector Xanthomonas outer protein Q (XopQ) inhibitor from Picrasma quassioides as an antibacterial agent using chemoinformatics analysis. PLoS One 2024; 19:e0302105. [PMID: 38889115 PMCID: PMC11185476 DOI: 10.1371/journal.pone.0302105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/27/2024] [Indexed: 06/20/2024] Open
Abstract
The present study was focused on exploring the efficient inhibitors of closed state (form) of type III effector Xanthomonas outer protein Q (XopQ) (PDB: 4P5F) from the 44 phytochemicals of Picrasma quassioides using cutting-edge computational analysis. Among them, Kumudine B showed excellent binding energy (-11.0 kcal/mol), followed by Picrasamide A, Quassidine I and Quassidine J with the targeted closed state of XopQ protein compared to the reference standard drug (Streptomycin). The molecular dynamics (MD) simulations performed at 300 ns validated the stability of top lead ligands (Kumudine B, Picrasamide A, and Quassidine I)-bound XopQ protein complex with slightly lower fluctuation than Streptomycin. The MM-PBSA calculation confirmed the strong interactions of top lead ligands (Kumudine B and QuassidineI) with XopQ protein, as they offered the least binding energy. The results of absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis confirmed that Quassidine I, Kumudine B and Picrasamide A were found to qualify most of the drug-likeness rules with excellent bioavailability scores compared to Streptomycin. Results of the computational studies suggested that Kumudine B, Picrasamide A, and Quassidine I could be considered potential compounds to design novel antibacterial drugs against X. oryzae infection. Further in vitro and in vivo antibacterial activities of Kumudine B, Picrasamide A, and Quassidine I are required to confirm their therapeutic potentiality in controlling the X. oryzae infection.
Collapse
Affiliation(s)
| | - H. G. Gowtham
- Department of Studies and Research in Food Science and Nutrition, KSOU, Mysuru, Karnataka, India
| | - Chikkanna G. S.
- Department of Home Science, ICAR Krishi Vigyan Kendra, Kolar, India
| | - Suchithra Gangadhar
- Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, India
| | - Satish A.
- Department of Clinical Nutrition and Dietetics, Sri Devaraj Urs Academy of Higher Education and Research, Kolar, Karnataka, India
| | - M. Murali
- Department of Studies in Botany, University of Mysore, Mysuru, Karnataka, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ekaterina Silina
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Hospital Surgery, NI. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Victor Stupin
- Department of Hospital Surgery, NI. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Natalia Manturova
- Department of Hospital Surgery, NI. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Tissue Culture and Cancer Biology Research Laborotory, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Tissue Culture and Cancer Biology Research Laborotory, King Khalid University, Abha, Saudi Arabia
| | - Serag Eldin I. Elbehairi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Tissue Culture and Cancer Biology Research Laborotory, King Khalid University, Abha, Saudi Arabia
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka, India
| | | |
Collapse
|
8
|
Figueiredo J, Mendes M, Pais A, Sousa J, Vitorino C. Microfluidics-on-a-chip for designing celecoxib-based amorphous solid dispersions: when the process shapes the product. Drug Deliv Transl Res 2024:10.1007/s13346-024-01633-7. [PMID: 38861140 DOI: 10.1007/s13346-024-01633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
The fundamental idea underlying the use of amorphous solid dispersions (ASDs) is to make the most of the solubility advantage of the amorphous form of a drug. However, the drug stability becomes compromised due to the higher free energy and disorder of molecular packing in the amorphous phase, leading to crystallization. Polymers are used as a matrix to form a stable homogeneous amorphous system to overcome the stability concern. The present work aims to design ASD-based formulations under the umbrella of quality by design principles for improving oral drug bioavailability, using celecoxib (CXB) as a model drug. ASDs were prepared from selected polymers and tested both individually and in combinations, using various manufacturing techniques: high-shear homogenization, high-pressure homogenization, microfluidics-on-a-chip, and spray drying. The resulting dispersions were further optimized, resorting to a 32 full-factorial design, considering the drug:polymers ratio and the total solid content as variables. The formulated products were evaluated regarding analytical centrifugation and the influence of the different polymers on the intrinsic dissolution rate of the CXB-ASDs. Microfluidics-on-a-chip led to the amorphous status of the formulation. The in vitro evaluation demonstrated a remarkable 26-fold enhancement in the intrinsic dissolution rate, and the translation of this formulation into tablets as the final dosage form is consistent with the observed performance enhancement. These findings are supported by ex vivo assays, which exhibited a two-fold increase in permeability compared to pure CXB. This study tackles the bioavailability hurdles encountered with diverse active compounds, offering insights into the development of more effective drug delivery platforms.
Collapse
Affiliation(s)
- Joana Figueiredo
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Maria Mendes
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Alberto Pais
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - João Sousa
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
9
|
Pumkathin S, Hanlumyuang Y, Wattanathana W, Laomettachit T, Liangruksa M. Investigating pharmacokinetic profiles of Centella asiatica using machine learning and PBPK modelling. J Biopharm Stat 2024:1-16. [PMID: 38860461 DOI: 10.1080/10543406.2024.2358797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/12/2024] [Indexed: 06/12/2024]
Abstract
Physiologically based pharmacokinetic (PBPK) modeling serves as a valuable tool for determining the distribution and disposition of substances in the body of an organism. It involves a mathematical representation of the interrelationships among crucial physiological, biochemical, and physicochemical parameters. A lack of the values of pharmacokinetic parameters can be challenging in constructing a PBPK model. Herein, we propose an artificial intelligence framework to evaluate a key pharmacokinetic parameter, the intestinal effective permeability (Peff). The publicly available Peff dataset was utilized to develop regression machine learning models. The XGBoost model demonstrates the best test accuracy of R-squared (R2, coefficient of determination) of 0.68. The model is then applied to compute the Peff of asiaticoside and madecassoside, the parent compounds found in Centella asiatica. Subsequently, PBPK modeling was conducted to evaluate the biodistribution of the herbal substances following oral administration in a rat model. The simulation results were evaluated and validated, which agreed with the existing in vivo studies in rats. This in silico pipeline presents a potential approach for investigating the pharmacokinetic parameters and profiles of drugs or herbal substances, which can be used independently or integrated into other modeling systems.
Collapse
Affiliation(s)
- Siriwan Pumkathin
- Department of Sustainable Energy and Resources Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
| | - Yuranan Hanlumyuang
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
| | - Worawat Wattanathana
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
| | - Teeraphan Laomettachit
- Theoretical and Computational Physics Group, Center of Excellence in Theoretical and Computational Science (TaCS-CoE), King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Monrudee Liangruksa
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| |
Collapse
|
10
|
Acuña-Guzman V, Montoya-Alfaro ME, Negrón-Ballarte LP, Solis-Calero C. A Machine Learning Approach for Predicting Caco-2 Cell Permeability in Natural Products from the Biodiversity in Peru. Pharmaceuticals (Basel) 2024; 17:750. [PMID: 38931417 PMCID: PMC11206960 DOI: 10.3390/ph17060750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Peru is one of the most biodiverse countries in the world, which is reflected in its wealth of knowledge about medicinal plants. However, there is a lack of information regarding intestinal absorption and the permeability of natural products. The human colon adenocarcinoma cell line (Caco-2) is an in vitro assay used to measure apparent permeability. This study aims to develop a quantitative structure-property relationship (QSPR) model using machine learning algorithms to predict the apparent permeability of the Caco-2 cell in natural products from Peru. METHODS A dataset of 1817 compounds, including experimental log Papp values and molecular descriptors, was utilized. Six QSPR models were constructed: a multiple linear regression (MLR) model, a partial least squares regression (PLS) model, a support vector machine regression (SVM) model, a random forest (RF) model, a gradient boosting machine (GBM) model, and an SVM-RF-GBM model. RESULTS An evaluation of the testing set revealed that the MLR and PLS models exhibited an RMSE = 0.47 and R2 = 0.63. In contrast, the SVM, RF, and GBM models showcased an RMSE = 0.39-0.40 and R2 = 0.73-0.74. Notably, the SVM-RF-GBM model demonstrated superior performance, with an RMSE = 0.38 and R2 = 0.76. The model predicted log Papp values for 502 natural products falling within the applicability domain, with 68.9% (n = 346) showing high permeability, suggesting the potential for intestinal absorption. Additionally, we categorized the natural products into six metabolic pathways and assessed their drug-likeness. CONCLUSIONS Our results provide insights into the potential intestinal absorption of natural products in Peru, thus facilitating drug development and pharmaceutical discovery efforts.
Collapse
Affiliation(s)
| | | | | | - Christian Solis-Calero
- Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru
| |
Collapse
|
11
|
Eltanameli B, Piñeiro-Llanes J, Cristofoletti R. Recent advances in cell-based in vitro models for predicting drug permeability across brain, intestinal, and pulmonary barriers. Expert Opin Drug Metab Toxicol 2024; 20:439-458. [PMID: 38850058 DOI: 10.1080/17425255.2024.2366390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/06/2024] [Indexed: 06/09/2024]
Abstract
INTRODUCTION Recent years have witnessed remarkable progress in the development of cell-based in vitro models aimed at predicting drug permeability, particularly focusing on replicating the barrier properties of the blood-brain barrier (BBB), intestinal epithelium, and lung epithelium. AREA COVERED This review provides an overview of 2D in vitro platforms, including monocultures and co-culture systems, highlighting their respective advantages and limitations. Additionally, it discusses tools and techniques utilized to overcome these limitations, paving the way for more accurate predictions of drug permeability. Furthermore, this review delves into emerging technologies, particularly microphysiological systems (MPS), encompassing static platforms such as organoids and dynamic platforms like microfluidic devices. Literature searches were performed using PubMed and Google Scholar. We focus on key terms such as in vitro permeability models, MPS, organoids, intestine, BBB, and lungs. EXPERT OPINION The potential of these MPS to mimic physiological conditions more closely offers promising avenues for drug permeability assessment. However, transitioning these advanced models from bench to industry requires rigorous validation against regulatory standards. Thus, there is a pressing need to validate MPS to industry and regulatory agency standards to exploit their potential in drug permeability prediction fully. This review underscores the importance of such validation processes to facilitate the translation of these innovative technologies into routine pharmaceutical practice.
Collapse
Affiliation(s)
- Bassma Eltanameli
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Janny Piñeiro-Llanes
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Rodrigo Cristofoletti
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| |
Collapse
|
12
|
Revanasiddappa PD, H. G. G, K. P. C, Natarajamurthy S, K. N, Pradeep S, Shivamallu C, Elossaily GM, Achar RR, Silina E, Stupin V, Manturova N, A. Shati A, Y. Alfaifi M, I. Elbehairi SE, Kestur Nagaraj A, Mahadevamurthy M, Kollur SP. Computational exploration of Picrasma quassioides compounds as CviR-mediated quorum sensing inhibitors against Chromobacterium violaceum. Front Chem 2024; 12:1286675. [PMID: 38867763 PMCID: PMC11167448 DOI: 10.3389/fchem.2024.1286675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/17/2024] [Indexed: 06/14/2024] Open
Abstract
Chromobacterium violaceum an opportunistic human pathogenic bacterium, exhibits resistance to conventional antibiotics by exploiting its quorum sensing mechanism to regulate virulence factor expression. In light of this, disrupting the quorum sensing mechanism presents a promising avenue for treating infections caused by this pathogen. The study focused on using the cytoplasmic quorum sensing receptor CviR from C. violaceum as a model target to identify novel quorum sensing inhibitors from P. quassioides through in silico computational approaches. Molecular docking analyses unveiled that several phytochemicals derived from Picrasma quassioides exhibit the potential to inhibit quorum sensing by binding to CviR protein. Notably, the compounds such as Quassidine I (- 8.8 kcal/mol), Quassidine J (- 8.8 kcal/mol), Kumudine B (- 9.1 kcal/mol) and Picrasamide A (- 8.9 kcal/mol) exhibited high docking scores, indicating strong binding affinity to the CviR protein. The native ligand C6-HSL (N-hexanoyl-L-homoserine lactone) as a positive control/co-crystal inhibitor also demonstrated a significant binding energy of-7.7 kcal/mol. The molecular dynamics simulation for 200 ns showed the thermodynamic stability and binding affinity refinement of the top-ranked CviR inhibitor (Kumudine B) with its stable binding and minor fluctuations compared to positive control (C6-HSL). Pharmacokinetic predictions indicated that Kumudine B possesses favourable drug-like properties, which suggest its potential as a drug candidate. The study highlight Kumudine B as a potential agent for inhibiting the CviR protein in C. violaceum. The comprehensive evaluation of Kumudine B provides valuable insights into its pharmacological profiles, facilitating its assessment for diverse therapeutic applications and guiding future research activities, particularly as antibacterial agents for clinical drug development.
Collapse
Affiliation(s)
| | - Gowtham H. G.
- Department of Studies and Research in Food Science and Nutrition, Karnataka State Open University, Mysuru, India
| | - Chandana K. P.
- Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, India
| | | | - Nataraj K.
- Department of Studies in Botany, University of Mysore, Mysore, India
| | - Sushma Pradeep
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Ekaterina Silina
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Victor Stupin
- Department of Hospital Surgery, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Natalia Manturova
- Department of Hospital Surgery, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | | | | | | | |
Collapse
|
13
|
Rath M, Wellnitz J, Martin HJ, Melo-Filho C, Hochuli JE, Silva GM, Beasley JM, Travis M, Sessions ZL, Popov KI, Zakharov AV, Cherkasov A, Alves V, Muratov EN, Tropsha A. Pharmacokinetics Profiler (PhaKinPro): Model Development, Validation, and Implementation as a Web Tool for Triaging Compounds with Undesired Pharmacokinetics Profiles. J Med Chem 2024; 67:6508-6518. [PMID: 38568752 DOI: 10.1021/acs.jmedchem.3c02446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Computational models that predict pharmacokinetic properties are critical to deprioritize drug candidates that emerge as hits in high-throughput screening campaigns. We collected, curated, and integrated a database of compounds tested in 12 major end points comprising over 10,000 unique molecules. We then employed these data to build and validate binary quantitative structure-activity relationship (QSAR) models. All trained models achieved a correct classification rate above 0.60 and a positive predictive value above 0.50. To illustrate their utility in drug discovery, we used these models to predict the pharmacokinetic properties for drugs in the NCATS Inxight Drugs database. In addition, we employed the developed models to predict the pharmacokinetic properties of all compounds in the DrugBank. All models described in this paper have been integrated and made publicly available via the PhaKinPro Web-portal that can be accessed at https://phakinpro.mml.unc.edu/.
Collapse
Affiliation(s)
- Marielle Rath
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - James Wellnitz
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Holli-Joi Martin
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Cleber Melo-Filho
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Joshua E Hochuli
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Guilherme Martins Silva
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jon-Michael Beasley
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Maxfield Travis
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Zoe L Sessions
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Konstantin I Popov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Alexey V Zakharov
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia V6H3Z6, Canada
| | - Vinicius Alves
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Eugene N Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
14
|
Djuris J, Cvijic S, Djekic L. Model-Informed Drug Development: In Silico Assessment of Drug Bioperformance following Oral and Percutaneous Administration. Pharmaceuticals (Basel) 2024; 17:177. [PMID: 38399392 PMCID: PMC10892858 DOI: 10.3390/ph17020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 02/25/2024] Open
Abstract
The pharmaceutical industry has faced significant changes in recent years, primarily influenced by regulatory standards, market competition, and the need to accelerate drug development. Model-informed drug development (MIDD) leverages quantitative computational models to facilitate decision-making processes. This approach sheds light on the complex interplay between the influence of a drug's performance and the resulting clinical outcomes. This comprehensive review aims to explain the mechanisms that control the dissolution and/or release of drugs and their subsequent permeation through biological membranes. Furthermore, the importance of simulating these processes through a variety of in silico models is emphasized. Advanced compartmental absorption models provide an analytical framework to understand the kinetics of transit, dissolution, and absorption associated with orally administered drugs. In contrast, for topical and transdermal drug delivery systems, the prediction of drug permeation is predominantly based on quantitative structure-permeation relationships and molecular dynamics simulations. This review describes a variety of modeling strategies, ranging from mechanistic to empirical equations, and highlights the growing importance of state-of-the-art tools such as artificial intelligence, as well as advanced imaging and spectroscopic techniques.
Collapse
Affiliation(s)
- Jelena Djuris
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (S.C.); (L.D.)
| | | | | |
Collapse
|
15
|
Shah M, Yamin R, Ahmad I, Wu G, Jahangir Z, Shamim A, Nawaz H, Nishan U, Ullah R, Ali EA, Sheheryar, Chen K. In-silico evaluation of natural alkaloids against the main protease and spike glycoprotein as potential therapeutic agents for SARS-CoV-2. PLoS One 2024; 19:e0294769. [PMID: 38175855 PMCID: PMC10766191 DOI: 10.1371/journal.pone.0294769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024] Open
Abstract
Severe Acute Respiratory Syndrome Corona Virus (SARS-CoV-2) is the causative agent of COVID-19 pandemic, which has resulted in global fatalities since late December 2019. Alkaloids play a significant role in drug design for various antiviral diseases, which makes them viable candidates for treating COVID-19. To identify potential antiviral agents, 102 known alkaloids were subjected to docking studies against the two key targets of SARS-CoV-2, namely the spike glycoprotein and main protease. The spike glycoprotein is vital for mediating viral entry into host cells, and main protease plays a crucial role in viral replication; therefore, they serve as compelling targets for therapeutic intervention in combating the disease. From the selection of alkaloids, the top 6 dual inhibitory compounds, namely liensinine, neferine, isoliensinine, fangchinoline, emetine, and acrimarine F, emerged as lead compounds with favorable docked scores. Interestingly, most of them shared the bisbenzylisoquinoline alkaloid framework and belong to Nelumbo nucifera, commonly known as the lotus plant. Docking analysis was conducted by considering the key active site residues of the selected proteins. The stability of the top three ligands with the receptor proteins was further validated through dynamic simulation analysis. The leads underwent ADMET profiling, bioactivity score analysis, and evaluation of drug-likeness and physicochemical properties. Neferine demonstrated a particularly strong affinity for binding, with a docking score of -7.5025 kcal/mol for main protease and -10.0245 kcal/mol for spike glycoprotein, and therefore a strong interaction with both target proteins. Of the lead alkaloids, emetine and fangchinoline demonstrated the lowest toxicity and high LD50 values. These top alkaloids, may support the body's defense and reduce the symptoms by their numerous biological potentials, even though some properties naturally point to their direct antiviral nature. These findings demonstrate the promising anti-COVID-19 properties of the six selected alkaloids, making them potential candidates for drug design. This study will be beneficial in effective drug discovery and design against COVID-19 with negligible side effects.
Collapse
Affiliation(s)
- Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Ramsha Yamin
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Iqra Ahmad
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Gang Wu
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zainab Jahangir
- Department of Computer Science, University of Agriculture Faisalabad, Punjab, Pakistan
| | - Amen Shamim
- Department of Computer Science, University of Agriculture Faisalabad, Punjab, Pakistan
| | - Haq Nawaz
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Essam A. Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheheryar
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
| | - Ke Chen
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
16
|
Fine-Shamir N, Dahan A. Solubility-enabling formulations for oral delivery of lipophilic drugs: considering the solubility-permeability interplay for accelerated formulation development. Expert Opin Drug Deliv 2024; 21:13-29. [PMID: 38124383 DOI: 10.1080/17425247.2023.2298247] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION Tackling low water solubility of drug candidates is a major challenge in today's pharmaceutics/biopharmaceutics, especially by means of modern solubility-enabling formulations. However, drug absorption from these formulations oftentimes remains unchanged or even decreases, despite substantial solubility enhancement. AREAS COVERED In this article, we overview the simultaneous effects of the formulation on the solubility and the apparent permeability of the drug, and analyze the contribution of this solubility-permeability interplay to the success/failure of the formulation to increase the overall absorption and bioavailability. Three different patterns of interplay were identified: (1) solubility-permeability tradeoff in which every solubility gain comes with a price of concomitant permeability loss; (2) an advantageous interplay pattern in which the permeability remains unchanged alongside the solubility gain; and (3) an optimal interplay pattern in which the formulation increases both the solubility and the permeability. Passive vs. active intestinal permeability considerations in the context of the solubility-permeability interplay are also thoroughly discussed. EXPERT OPINION The solubility-permeability interplay pattern of a given formulation has a critical effect on its overall success/failure, and hence, taking into account both parameters in solubility-enabling formulation development is prudent and highly recommended.
Collapse
Affiliation(s)
- Noa Fine-Shamir
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
17
|
Khare S, Jog R, Bright A, Burgess DJ, Chakder SK, Gokulan K. Evaluation of mucosal immune profile associated with Zileuton nanocrystal-formulated BCS-II drug upon oral administration in Sprague Dawley rats. Nanotoxicology 2023; 17:583-603. [PMID: 38146991 DOI: 10.1080/17435390.2023.2289940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/23/2023] [Indexed: 12/27/2023]
Abstract
Nanocrystal drug formulation involves several critical manufacturing procedures that result in complex structures to improve drug solubility, dissolution, bioavailability, and consequently the efficacy of poorly soluble Biopharmaceutics Classification System (BCS) II and IV drugs. Nanocrystal formulation of an already approved oral drug may need additional immunotoxic assessment due to changes in the physical properties of the active pharmaceutical ingredient (API). In this study, we selected Zileuton, an FDA-approved drug that belongs to BCS-II for nanocrystal formulation. To evaluate the efficacy and mucosal immune profile of the nanocrystal drug, 10-week-old rats were dosed using capsules containing either API alone or nanocrystal formulated Zileuton (NDZ), or with a physical mixture (PM) using flexible oral gavage syringes. Control groups consisted of untreated, or placebo treated animals. Test formulations were administrated to rats at a dose of 30 mg/kg body weight (bw) once a day for 15 days. The rats treated with NDZ or PM had approximately 4.0 times lower (7.5 mg/kg bw) API when compared to the micron sized API treated rats. At the end of treatment, mucosal (intestinal tissue) and circulating cytokines were measured. The immunological response revealed that NDZ decreased several proinflammatory cytokines in the ileal mucosa (Interleukin-18, Tumor necrosis Factor-α and RANTES [regulated upon activation, normal T cell expressed and secreted]). A similar pattern in the cytokine profile was also observed for the micron sized API and PM treated rats. The cytokine production revealed that there was a significant increase in the production of IL-1β and IL-10 in the females in all experimental groups. Additionally, NDZ showed an immunosuppressive effect on proinflammatory cytokines both locally and systemically, which was similar to the response in micron sized API treated rats. These findings indicate that NDZ significantly decreased several proinflammatory cytokines and it displays less immunotoxicity, probably due to the nanocrystal formulation. Thus, the nanocrystal formulation is more suitable for oral drug delivery, as it exhibited better efficacy, safety, and reduced toxicity.
Collapse
Affiliation(s)
- Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Rajan Jog
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Anshel Bright
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Diane J Burgess
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Sushanta K Chakder
- Center for Drug Evaluation Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
18
|
Marcelino HR, Solgadi A, Chéron M, do Egito EST, Ponchel G. Exploring the permeability of Amphotericin B trough serum albumin dispersions and lipid nanocarriers for oral delivery. Int J Pharm 2023; 646:123444. [PMID: 37757958 DOI: 10.1016/j.ijpharm.2023.123444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/12/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Amphotericin B (AmB) is a potent polyenic antifungal agent with leishmanicidal activity. Due to its low solubility and permeability in the gastrointestinal tract, AmB is usually administered intravenously. In this context, various approaches have been used to try to improve these properties. Some of the systems developed have shown proven successful, but there is still a lack of knowledge about the pathways AmB takes after oral administration. Therefore, the aim of this work was not only to obtain aqueous dispersions containing AmB at different aggregation states, but also to entrap this molecule in nanocarriers, and evaluate the influence of these conditions on the jejunal permeability of AmB. To observe the aggregation states of AmB, physicochemical characterization of AmB-albumin complexes and AmB-loaded formulations was performed. Different degrees of AmB aggregation states were obtained. Thus, permeability tests were performed in the Ussing chamber and a decrease in AmB concentration in the donor compartment was observed. Electrophysiological measurements showed different responses depending on the AmB formulation. In conclusion, although control of the AmB aggregation state was observed by physicochemical characterization, this approach does not seem to have a sufficient effect on AmB permeability, but on its toxicity. For a complete understanding of AmB-loaded nanocarriers, other pathways, such as lymphatic absorption, should also be investigated.
Collapse
Affiliation(s)
- Henrique Rodrigues Marcelino
- Graduate Program in Health Sciences (PPgCSa), Federal University of Rio Grande do Norte, Natal/RN 59012-570, Brazil; Institut Galien Paris-Saclay, CNRS UMR 8612, Université Paris-Saclay, Orsay 91190, France; College of Pharmacy, Federal University of Bahia, Salvador/BA 40170-115, Brazil (Recent affiliation)
| | - Audrey Solgadi
- SFR IPSIT (Paris-Saclay Institute of Therapeutic Innovation), University Paris-Saclay, Orsay 91190, France
| | - Monique Chéron
- College of Pharmacy, University Paris-Saclay, Orsay 91190, France
| | | | - Gilles Ponchel
- Institut Galien Paris-Saclay, CNRS UMR 8612, Université Paris-Saclay, Orsay 91190, France; College of Pharmacy, University Paris-Saclay, Orsay 91190, France
| |
Collapse
|
19
|
Güngör SA. Synthesis, DNA Binding Properties, Molecular Docking and ADME Studies of Schiff Base Compound Containing Pyridine-Propargyl Group. Chem Biodivers 2023; 20:e202300752. [PMID: 37782576 DOI: 10.1002/cbdv.202300752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
The structure of the pyridine-based Schiff base compound containing the propargyl group was characterized by NMR spectroscopy. Binding of compound 2 with double-stranded fish sperm DNA (Fsds-DNA) was investigated using viscosity measurement studies and UV/VIS and fluorescence spectral techniques. Binding of compound 2 with Fsds-DNA results in minor hypochromism with no change in absorption maxima and fluorescence quenching with almost no shift in emission maxima, which can be attributed to the groove-binding mode of the interaction. The binding constant was found to be 4.7×104 M-1 . The Fsds-DNA viscosity measurement, KI quenching and NaCl quenching studies and the competitive interaction between compound 2 and ethidium bromide with DNA confirm the proposed binding mode. In addition, interactions between compound 2 and the DNA double helix were analysed by molecular docking study in order to determine the binding mode and binding affinity. As a result of molecular docking, the binding affinity of the 2-DNA complex, which has the most stable conformation -8.10 kcal/mol and it is located in its minor groove. In addition, molecular docking and ADME studies for compound 2 were also performed.
Collapse
Affiliation(s)
- Seyit Ali Güngör
- Chemistry Department, Faculty of Science, Kahramanmaras Sütcü Imam University, 46100, Kahramanmaras, Turkey
| |
Collapse
|
20
|
Chauveau A, Geirnaert A, Babst A, Treyer A, Lacroix C, Hamburger M, Potterat O. Alkaloids in commercial preparations of California poppy - Quantification, intestinal permeability and microbiota interactions. Biomed Pharmacother 2023; 166:115420. [PMID: 37673017 DOI: 10.1016/j.biopha.2023.115420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023] Open
Abstract
California poppy products are commonly used for the treatment of nervousness, anxiety and sleeping disorders. Pharmacologically relevant constituents include the main alkaloids californidine, escholtzine and protopine. However, only limited information is available about the alkaloid content in commercial preparations and their intestinal absorption. Moreover, a possible metabolization of these alkaloids by the gut microbiota, and their impact on microbial activity and viability have not been investigated. Californidine, escholtzine and protopine were quantified by UHPLC-MS/MS in eight commercial California poppy products. The intestinal permeability of alkaloids was studied in Caco-2 cell as a model for absorption in the small intestine. The gut microbial biotransformation was explored in artificial gut microbiota from the in vitro PolyFermS model. In addition, the impact of these alkaloids and a California poppy extract on the microbial production of short-chain fatty acids (SCFAs) and the viability of microbiota was investigated. Contents of californidine, escholtzine and protopine in California poppy products were in the ranges of 0.13-2.55, 0.05-0.63 and 0.008-0.200 mg/g, respectively. In the Caco-2 cell model, californidine was low-to-moderately permeable while escholtzine and protopine were highly permeable. An active transport process was potentially involved in the transfer of the three alkaloids. The three compounds were not metabolized by the artificial gut microbiota over 24 h. Neither the California poppy extract nor the alkaloids markedly impacted microbial SCFA production and bacterial viability.
Collapse
Affiliation(s)
- Antoine Chauveau
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Annelies Geirnaert
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Angela Babst
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Andrea Treyer
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Matthias Hamburger
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| | - Olivier Potterat
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
21
|
Koziolek M, Augustijns P, Berger C, Cristofoletti R, Dahlgren D, Keemink J, Matsson P, McCartney F, Metzger M, Mezler M, Niessen J, Polli JE, Vertzoni M, Weitschies W, Dressman J. Challenges in Permeability Assessment for Oral Drug Product Development. Pharmaceutics 2023; 15:2397. [PMID: 37896157 PMCID: PMC10609725 DOI: 10.3390/pharmaceutics15102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Drug permeation across the intestinal epithelium is a prerequisite for successful oral drug delivery. The increased interest in oral administration of peptides, as well as poorly soluble and poorly permeable compounds such as drugs for targeted protein degradation, have made permeability a key parameter in oral drug product development. This review describes the various in vitro, in silico and in vivo methodologies that are applied to determine drug permeability in the human gastrointestinal tract and identifies how they are applied in the different stages of drug development. The various methods used to predict, estimate or measure permeability values, ranging from in silico and in vitro methods all the way to studies in animals and humans, are discussed with regard to their advantages, limitations and applications. A special focus is put on novel techniques such as computational approaches, gut-on-chip models and human tissue-based models, where significant progress has been made in the last few years. In addition, the impact of permeability estimations on PK predictions in PBPK modeling, the degree to which excipients can affect drug permeability in clinical studies and the requirements for colonic drug absorption are addressed.
Collapse
Affiliation(s)
- Mirko Koziolek
- NCE Drug Product Development, Development Sciences, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| | - Patrick Augustijns
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Constantin Berger
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070 Würzburg, Germany;
| | - Rodrigo Cristofoletti
- Department of Pharmaceutics, University of Florida, 6550 Sanger Road, Orlando, FL 32827, USA
| | - David Dahlgren
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden (J.N.)
| | - Janneke Keemink
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland;
| | - Pär Matsson
- Department of Pharmacology and SciLifeLab Gothenburg, University of Gothenburg, 40530 Gothenburg, Sweden;
| | - Fiona McCartney
- School of Veterinary Medicine, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Marco Metzger
- Translational Center for Regenerative Therapies (TLZ-RT) Würzburg, Branch of the Fraunhofer Institute for Silicate Research (ISC), 97082 Würzburg, Germany
| | - Mario Mezler
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany;
| | - Janis Niessen
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden (J.N.)
| | - James E. Polli
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21021, USA;
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, 157 84 Zografou, Greece;
| | - Werner Weitschies
- Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
| | - Jennifer Dressman
- Fraunhofer Institute of Translational Medicine and Pharmacology, 60596 Frankfurt, Germany
| |
Collapse
|
22
|
Murali M, Ahmed F, Gowtham HG, Aribisala JO, Abdulsalam RA, Shati AA, Alfaifi MY, Sayyed RZ, Sabiu S, Amruthesh KN. Exploration of CviR-mediated quorum sensing inhibitors from Cladosporium spp. against Chromobacterium violaceum through computational studies. Sci Rep 2023; 13:15505. [PMID: 37726386 PMCID: PMC10509224 DOI: 10.1038/s41598-023-42833-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023] Open
Abstract
An opportunistic human pathogenic bacterium, Chromobacterium violaceum resists the potency of most antibiotics by exploiting the quorum sensing system within their community to control virulence factor expression. Therefore, blocking the quorum sensing mechanism could help to treat several infectious caused by this organism. The quorum sensing receptor (CviR) of C. violaceum was used as a model target in the current investigation to identify potentially novel quorum sensing inhibitors from Cladosporium spp. through in silico computational approaches. The molecular docking results confirmed the anti-quorum sensing potential of bioactive compounds from Cladosporium spp. through binding to CviR with varying docking scores between - 5.2 and - 9.5 kcal/mol. Relative to the positive control [Azithromycin (- 7.4 kcal/mol)], the top six metabolites of Cladosporium spp. had higher docking scores and were generally greater than - 8.5 kcal/mol. The thermodynamic stability and binding affinity refinement of top-ranked CviR inhibitors were further studied through a 160 ns molecular dynamic (MD) simulation. The Post-MD simulation analysis confirmed the top-ranked compounds' affinity, stability, and biomolecular interactions with CviR at 50 ns, 100 ns, and 160 ns with Coniochaetone K of the Cladosporium spp. having the highest binding free energy (- 30.87 kcal/mol) and best interactions (two consistent hydrogen bond contact) following the 160 ns simulation. The predicted pharmacokinetics properties of top selected compounds point to their drug likeliness, potentiating their chance as a possible drug candidate. Overall, the top-ranked compounds from Cladosporium spp., especially Coniochaetone K, could be identified as potential C. violaceum CviR inhibitors. The development of these compounds as broad-spectrum antibacterial medicines is thus possible in the future following the completion of further preclinical and clinical research.
Collapse
Affiliation(s)
- Mahadevamurthy Murali
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysore, 570006, India
| | - Faiyaz Ahmed
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, 51452, Buraydah, Saudi Arabia
| | | | - Jamiu Olaseni Aribisala
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Rukayat Abiola Abdulsalam
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Ali A Shati
- Faculty of Science, Biology Department, King Khalid University, 9004, Abha, Saudi Arabia
| | - Mohammad Y Alfaifi
- Faculty of Science, Biology Department, King Khalid University, 9004, Abha, Saudi Arabia
| | - R Z Sayyed
- Department of Microbiology, PSGVP Mandal's S I Patil Arts, G B Patel Science and STKV Sangh Commerce College, Shahada, 425409, India.
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa.
| | - Kestur Nagaraj Amruthesh
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysore, 570006, India.
| |
Collapse
|
23
|
Ibrahim MAA, Abdelhamid MMH, Abdeljawaad KAA, Abdelrahman AHM, Mekhemer GAH, Sidhom PA, Sayed SRM, Paré PW, Hegazy MEF, Shoeib T. Pyronaridine as a Bromodomain-Containing Protein 4- N-Terminal Bromodomain (BRD4-BD1) Inhibitor: In Silico Database Mining, Molecular Docking, and Molecular Dynamics Simulation. Molecules 2023; 28:5713. [PMID: 37570684 PMCID: PMC10420099 DOI: 10.3390/molecules28155713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
BRD4 (bromodomain-containing protein 4) is an epigenetic reader that realizes histone proteins and promotes the transcription of genes linked to cancer progression and non-cancer diseases such as acute heart failure and severe inflammation. The highly conserved N-terminal bromodomain (BD1) recognizes acylated lysine residues to organize the expression of genes. As such, BD1 is essential for disrupting BRD4 interactions and is a promising target for cancer treatment. To identify new BD1 inhibitors, a SuperDRUG2 database that contains more than 4600 pharmaceutical compounds was screened using in silico techniques. The efficiency of the AutoDock Vina1.1.2 software to anticipate inhibitor-BRD4-BD1 binding poses was first evaluated based on the co-crystallized R6S ligand in complex with BRD4-BD1. From database screening, the most promising BRD4-BD1 inhibitors were subsequently submitted to molecular dynamics (MD) simulations integrated with an MM-GBSA approach. MM-GBSA computations indicated promising BD1 binding with a benzonaphthyridine derivative, pyronaridine (SD003509), with an energy prediction (ΔGbinding) of -42.7 kcal/mol in comparison with -41.5 kcal/mol for a positive control inhibitor (R6S). Pharmacokinetic properties predicted oral bioavailability for both ligands, while post-dynamic analyses of the BRD4-BD1 binding pocket demonstrated greater stability for pyronaridine. These results confirm that in silico studies can provide insight into novel protein-ligand regulators, specifically that pyronaridine is a potential cancer drug candidate.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Mahmoud M. H. Abdelhamid
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Khlood A. A. Abdeljawaad
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Alaa H. M. Abdelrahman
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Gamal A. H. Mekhemer
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Peter A. Sidhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Shaban R. M. Sayed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Paul W. Paré
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Mohamed-Elamir F. Hegazy
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Tamer Shoeib
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
24
|
Cuffaro D, Pinto D, Silva AM, Bertolini A, Bertini S, Saba A, Macchia M, Rodrigues F, Digiacomo M. Insights into the Antioxidant/Antiradical Effects and In Vitro Intestinal Permeation of Oleocanthal and Its Metabolites Tyrosol and Oleocanthalic Acid. Molecules 2023; 28:5150. [PMID: 37446813 PMCID: PMC10343523 DOI: 10.3390/molecules28135150] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
(1) Background: In recent years, numerous studies have highlighted the beneficial effects of extra virgin olive oil (EVOO) as an active ingredient against chronic diseases. The properties of EVOO are due to its peculiar composition, mainly to its rich content of polyphenols. In fact, polyphenols may contribute to counteract oxidative stress, which often accompanies chronic diseases. In this work, the antioxidant effects of high-value polyphenol oleocanthal (OC) and its main metabolites, tyrosol (Tyr) and oleocanthalic acid (OA), respectively, have been investigated along with their impact on cell viability. (2) Methods: OC, Tyr, and OA have been evaluated regarding antiradical properties in term of scavenging capacity towards biologically relevant reactive species, including O2●-, HOCl, and ROO●, as well as their antioxidant/antiradical capacity (FRAP, DPPH●, ABTS●+). Moreover, the ability to permeate the intestinal membrane was assessed by an intestinal co-culture model composed by Caco-2 and HT29-MTX cell lines. (3) Results: The capacity of OC and Tyr as radical oxygen species (ROS) scavengers, particularly regarding HOCl and O2●-, was clearly demonstrated. Furthermore, the ability to permeate the intestinal co-culture model was plainly proved by the good permeations (>50%) achieved by all compounds. (4) Conclusions: OC, OA, and Tyr revealed promising properties against oxidative diseases.
Collapse
Affiliation(s)
- Doretta Cuffaro
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Diana Pinto
- REQUIMTE/LAQV, ISEP, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal; (D.P.); (A.M.S.)
| | - Ana Margarida Silva
- REQUIMTE/LAQV, ISEP, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal; (D.P.); (A.M.S.)
| | - Andrea Bertolini
- Department of Surgery, Medical, Molecular and Critical Area Pathology, University of Pisa, 56126 Pisa, Italy; (A.B.); (A.S.)
| | - Simone Bertini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
| | - Alessandro Saba
- Department of Surgery, Medical, Molecular and Critical Area Pathology, University of Pisa, 56126 Pisa, Italy; (A.B.); (A.S.)
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Francisca Rodrigues
- REQUIMTE/LAQV, ISEP, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal; (D.P.); (A.M.S.)
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
25
|
El-Tantawy AI, Elmongy EI, Elsaeed SM, Abdel Aleem AAH, Binsuwaidan R, Eisa WH, Salman AU, Elharony NE, Attia NF. Synthesis, Characterization, and Docking Study of Novel Thioureidophosphonate-Incorporated Silver Nanocomposites as Potent Antibacterial Agents. Pharmaceutics 2023; 15:1666. [PMID: 37376114 DOI: 10.3390/pharmaceutics15061666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Newly synthesized mono- and bis-thioureidophosphonate (MTP and BTP) analogues in eco-friendly conditions were employed as reducing/capping cores for 100, 500, and 1000 mg L-1 of silver nitrate. The physicochemical properties of silver nanocomposites (MTP(BTP)/Ag NCs) were fully elucidated using spectroscopic and microscopic tools. The antibacterial activity of the nanocomposites was screened against six multidrug-resistant pathogenic strains, comparable to ampicillin and ciprofloxacin commercial drugs. The antibacterial performance of BTP was more substantial than MTP, notably with the best minimum inhibitory concentration (MIC) of 0.0781 mg/mL towards Bacillus subtilis, Salmonella typhi, and Pseudomonas aeruginosa. Among all, BTP provided the clearest zone of inhibition (ZOI) of 35 ± 1.00 mm against Salmonella typhi. After the dispersion of silver nanoparticles (AgNPs), MTP/Ag NCs offered dose-dependently distinct advantages over the same nanoparticle with BTP; a more noteworthy decline by 4098 × MIC to 0.1525 × 10-3 mg/mL was recorded for MTP/Ag-1000 against Pseudomonas aeruginosa over BTP/Ag-1000. Towards methicillin-resistant Staphylococcus aureus (MRSA), the as-prepared MTP(BTP)/Ag-1000 displayed superior bactericidal ability in 8 h. Because of the anionic surface of MTP(BTP)/Ag-1000, they could effectively resist MRSA (ATCC-43300) attachment, achieving higher antifouling rates of 42.2 and 34.4% at most optimum dose (5 mg/mL), respectively. The tunable surface work function between MTP and AgNPs promoted the antibiofilm activity of MTP/Ag-1000 by 1.7 fold over BTP/Ag-1000. Lastly, the molecular docking studies affirmed the eminent binding affinity of BTP over MTP-besides the improved binding energy of MTP/Ag NC by 37.8%-towards B. subtilis-2FQT protein. Overall, this study indicates the immense potential of TP/Ag NCs as promising nanoscale antibacterial candidates.
Collapse
Affiliation(s)
- Ahmed I El-Tantawy
- Department of Chemistry, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Elshaymaa I Elmongy
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Shimaa M Elsaeed
- Department of Analysis and Evaluation, Egyptian Petroleum Research Institute, Cairo 11727, Egypt
| | | | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Wael H Eisa
- Spectroscopy Department, Physics Division, National Research Centre (NRC), Cairo 12622, Egypt
| | - Ayah Usama Salman
- Department of Botany and Microbiology, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Noura Elsayed Elharony
- Department of Chemistry, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Nour F Attia
- Gas Analysis and Fire Safety Laboratory, Chemistry Division, National Institute for Standards, 136, Giza 12211, Egypt
| |
Collapse
|
26
|
Azad I, Khan T, Ahmad N, Khan AR, Akhter Y. Updates on drug designing approach through computational strategies: a review. Future Sci OA 2023; 9:FSO862. [PMID: 37180609 PMCID: PMC10167725 DOI: 10.2144/fsoa-2022-0085] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
The drug discovery and development (DDD) process in pursuit of novel drug candidates is a challenging procedure requiring lots of time and resources. Therefore, computer-aided drug design (CADD) methodologies are used extensively to promote proficiency in drug development in a systematic and time-effective manner. The point in reference is SARS-CoV-2 which has emerged as a global pandemic. In the absence of any confirmed drug moiety to treat the infection, the science fraternity adopted hit and trial methods to come up with a lead drug compound. This article is an overview of the virtual methodologies, which assist in finding novel hits and help in the progression of drug development in a short period with a specific medicinal solution.
Collapse
Affiliation(s)
- Iqbal Azad
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Naseem Ahmad
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, UP, 2260025, India
| |
Collapse
|
27
|
Ejaz S, Ali SMA, Zarif B, Shahid R, Ihsan A, Noor T, Imran M. Surface engineering of chitosan nanosystems and the impact of functionalized groups on the permeability of model drug across intestinal tissue. Int J Biol Macromol 2023; 242:124777. [PMID: 37169055 DOI: 10.1016/j.ijbiomac.2023.124777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Surface attributes of nanocarriers are crucial to determine their fate in the gastrointestinal (GI) tract. Herein, we have functionalized chitosan with biochemical moieties including rhamnolipid (RL), curcumin (Cur) and mannose (M). FTIR spectra of functionalized chitosan nanocarriers (FCNCs) demonstrated successful conjugation of M, Cur and RL. The functional moieties influenced the entrapment of model drug i.e., coumarin-6 (C6) in FCNCs with payload-hosting and non-leaching behavior i.e., >91 ± 2.5 % with negligible cumulative release of <2 % for 5 h in KREB, which was further verified in the simulated gastric and intestinal fluids. Consequently, substantial difference in the size and zeta potential was observed for FCNCs with different biochemical moieties. Scanning electron microscopy and atomic force microscopy of FCNCs displayed well-dispersed and spherical morphology. In addition, in vitro cytotoxicity results of FCNCs confirmed their hemocompatibility. In the ex-vivo rat intestinal models, FCNCs displayed a time-dependent-phenomenon in cellular-uptake and adherence. However, apparent-permeability-coefficient and flux values were in the order of C6-RL-FCNCs > C6-M-FCNCs > C6-Cur-FCNCs = C6-CNCs > Free-C6. Furthermore, the transepithelial electrical resistance revealed the FCNCs mediated recovery of membrane-integrity with reversible tight junctions opening. Thus, FCNCs have the potential to overcome the poor solubility and/or permeability issues of active pharmaceutical ingredients and transform the impact of functionalized-nanomedicines in the biomedical industry.
Collapse
Affiliation(s)
- Sadaf Ejaz
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Syed Muhammad Afroz Ali
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Bina Zarif
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Ramla Shahid
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Ayesha Ihsan
- Nanobiotechnology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Imran
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan.
| |
Collapse
|
28
|
Esquivel SV, Bhatt HN, Diwan R, Habib A, Lee WY, Khatun Z, Nurunnabi M. β-Glucan and Fatty Acid Based Mucoadhesive Carrier for Gastrointestinal Tract Specific Local and Sustained Drug Delivery. Biomolecules 2023; 13:biom13050768. [PMID: 37238639 DOI: 10.3390/biom13050768] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The oral route is considered the most convenient route of drug administration for both systemic and local delivery. Besides stability and transportation, another unmet but important issue regarding oral medication is retention duration within the specific region of the gastrointestinal (GI) tract. We hypothesize that an oral vehicle that can adhere and maintain retention within the stomach for a longer duration can be more effective to treat stomach-related diseases. Therefore, in this project, we developed a carrier that is highly specific to the stomach and maintains its retention for a longer duration. We developed a vehicle composed of β-Glucan And Docosahexaenoic Acid (GADA) to observe its affinity and specificity to the stomach. GADA forms a spherical-shaped particle with negative zeta potential values that vary based on the feed ratio of docosahexaenoic acid. Docosahexaenoic acid is an omega-3 fatty acid that has transporters and receptors throughout the GI tract, such as CD36, plasma membrane-associated fatty acid-binding protein (FABP (pm)), and a family of fatty acid transport proteins (FATP1-6). The in vitro studies and characterization data showed that GADA has the capability to carry a payload of hydrophobic molecules and specifically deliver the payload to the GI tract, exert its therapeutic effects, and help to maintain stability for more than 12 h in the gastric and intestinal fluid. The particle size and surface plasmon resonance (SPR) data showed that GADA has a strong binding affinity with mucin in the presence of simulated gastric fluids. We observed a comparatively higher drug release of lidocaine in gastric juice than that in intestinal fluids, demonstrating the influence of the pH values of the media on drug-release kinetics. In vivo and ex vivo imaging of mice demonstrated that GADA maintains its retention within the stomach for at least 4 hr. This stomach-specific oral vehicle holds strong promise to translate various injectable therapeutic drugs to oral form upon further optimizations.
Collapse
Affiliation(s)
- Stephanie Vargas Esquivel
- Aerospace Center (cSETR), University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Aerospace & Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Himanshu N Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
- Biomedical Engineering Program, College of Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Rimpy Diwan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
- Biomedical Engineering Program, College of Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Ahsan Habib
- Department of Chemistry and Biochemistry, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Wen-Yee Lee
- Department of Chemistry and Biochemistry, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Zehedina Khatun
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Md Nurunnabi
- Aerospace Center (cSETR), University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
- Biomedical Engineering Program, College of Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
29
|
Sahoo DK, Martinez MN, Dao K, Gabriel V, Zdyrski C, Jergens AE, Atherly T, Iennarella-Servantez CA, Burns LE, Schrunk D, Volpe DA, Allenspach K, Mochel JP. Canine Intestinal Organoids as a Novel In Vitro Model of Intestinal Drug Permeability: A Proof-of-Concept Study. Cells 2023; 12:cells12091269. [PMID: 37174669 PMCID: PMC10177590 DOI: 10.3390/cells12091269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
A key component of efforts to identify the biological and drug-specific aspects contributing to therapeutic failure or unexpected exposure-associated toxicity is the study of drug-intestinal barrier interactions. While methods supporting such assessments are widely described for human therapeutics, relatively little information is available for similar evaluations in support of veterinary pharmaceuticals. There is, therefore, a critical need to develop novel approaches for evaluating drug-gut interactions in veterinary medicine. Three-dimensional (3D) organoids can address these difficulties in a reasonably affordable system that circumvents the need for more invasive in vivo assays in live animals. However, a first step in developing such systems is understanding organoid interactions in a 2D monolayer. Given the importance of orally administered medications for meeting the therapeutic need of companion animals, we demonstrate growth conditions under which canine-colonoid-derived intestinal epithelial cells survive, mature, and differentiate into confluent cell systems with high monolayer integrity. We further examine the applicability of this canine-colonoid-derived 2D model to assess the permeability of three structurally diverse, passively absorbed β-blockers (e.g., propranolol, metoprolol, and atenolol). Both the absorptive and secretive apparent permeability (Papp) of these drugs at two different pH conditions were evaluated in canine-colonoid-derived monolayers and compared with that of Caco-2 cells. This proof-of-concept study provides promising preliminary results with regard to the utility of canine-derived organoid monolayers for species-specific assessments of therapeutic drug passive permeability.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Marilyn N Martinez
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, Food and Drug Administration, Rockville, MD 20852, USA
| | - Kimberly Dao
- 3D Health Solutions, Iowa State University, Ames, IA 50011, USA
| | - Vojtech Gabriel
- Department of Biomedical Sciences, SMART Pharmacology, Iowa State University, Ames, IA 50011, USA
| | - Christopher Zdyrski
- 3D Health Solutions, Iowa State University, Ames, IA 50011, USA
- Department of Biomedical Sciences, SMART Pharmacology, Iowa State University, Ames, IA 50011, USA
| | - Albert E Jergens
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Todd Atherly
- 3D Health Solutions, Iowa State University, Ames, IA 50011, USA
| | | | - Laura E Burns
- Veterinary Diagnostic Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Dwayne Schrunk
- Veterinary Diagnostic Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Donna A Volpe
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20852, USA
| | - Karin Allenspach
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA
- 3D Health Solutions, Iowa State University, Ames, IA 50011, USA
| | - Jonathan P Mochel
- 3D Health Solutions, Iowa State University, Ames, IA 50011, USA
- Department of Biomedical Sciences, SMART Pharmacology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
30
|
Kumari K, Kumar A, Manjur AT, Rakshit S. Bioactives Promiscuity of Mucin: Insight from Multi-Spectroscopic, Thermodynamic, and Molecular Dynamic Simulation Analyses. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4589-4600. [PMID: 36917549 DOI: 10.1021/acs.langmuir.2c03268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Mucosal drug delivery plays an increasing role in the clinical setting owing to mucin's advantageous biochemical and pharmacological properties. However, how this transport system recognizes different substrates remains unclear. In this study, we explore the mechanism of bioactive (quercetin and berberine) promiscuity of mucin using various spectroscopic techniques and molecular dynamics simulations. The UV-visible spectroscopy results and the decreased fluorescence intensity of mucin in the presence of the bioactive compounds via a static quenching mechanism confirmed ground-state complex formation between the bioactives and mucin. The binding constants (Kb) were evaluated at different temperatures to afford Kb values of ∼104 Lmol-1, demonstrating the moderate and reasonable affinity of the bioactives for mucin, yielding greater diffusion into the tissues. Thermodynamic analysis and molecular dynamics (MD) simulations demonstrate that mucin-bioactive complex formation occurs primarily because of electrostatic/ionic interactions, while hydrophobic interactions were also crucial in stabilizing the complex. Far-UV circular dichroism spectroscopy showed that bioactive binding induced secondary structural changes in mucin. Sitemap and MD simulation indicated the principal binding site of mucin for the bioactives. This study also provides insight into the bioactives promiscuity of mucin in the presence of a crowded environment, which is relevant to the biological activity of mucin in vivo. An in vitro drug release study revealed that crowding assisted drug release in an enhanced burst manner compared with that in a dilute buffer system. This work thus provides fresh insight into drug absorption and distribution in the native cellular environment and helps direct new drug design and use in pharmaceutical and pharmacological fields.
Collapse
Affiliation(s)
- Komal Kumari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Avinash Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, MAHE, Madhav Nagar, Manipal, Karnataka 576104, India
| | - Ahamad Tamanna Manjur
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Surajit Rakshit
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
31
|
Zou P, Vaidyanathan J, Tran D, Raines K, Chatterjee P, Madabushi R, Seo SK. Predicting Food Effects on Oral Extended-Release Drug Products: A Retrospective Evaluation. AAPS J 2023; 25:33. [PMID: 36991196 DOI: 10.1208/s12248-023-00804-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Theoretically, the risk of food effects for extended-release (ER) products compared to IR products may be less because: (1) postprandial physiological changes are usually transient and last for 2-3 h only; and (2) the percentage of drug release from an ER product within the first 2-3 h post dose is usually small under both fasted and fed states. The major postprandial physiological changes that can affect oral absorption of ER drugs are delayed gastric emptying and prolonged intestinal transit. Oral absorption of ER drugs under fasted state mainly occurs in large intestine (colon and rectum) while the absorption of ER drugs under fed state occurs in both small and large intestines. We hypothesized that food effects for ER products are mainly caused by intestinal region-dependent absorption and food intake is more likely to increase rather than decrease the exposure of ER products due to a longer transit time and improved absorption in small intestine. For drugs with good absorption from large intestine, food effects on the area under the curve (AUC) of ER products are usually not expected. Our survey of oral drugs approved by the US FDA between 1998-2021 identified 136 oral ER drug products. Among the 136 ER drug products, 31, 6 and 99 products exhibited increased, decreased, and unchanged AUC under fed conditions, respectively. In general, when an ER product exhibits a fasted bioavailability (BA) relative to its corresponding immediate-release (IR) product between 80-125%, regardless the solubility or permeability of drug substances, substantial food effects on the AUC of ER product are generally not expected. If the fasted relative BA data are not available, a high in vitro permeability (i.e., Caco-2 or MDCK cell permeability comparable or higher than that of metoprolol) may inform no food effect on the AUC of an ER product of high-solubility (BCS class I and III) drug.
Collapse
Affiliation(s)
- Peng Zou
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA.
- Quantitative Clinical Pharmacology, Daiichi Sankyo, Inc., 211 Mt. Airy Road, Basking Ridge, New Jersey, 07920, USA.
| | - Jayabharathi Vaidyanathan
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Doanh Tran
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Kimberly Raines
- Office of New Drug Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Parnali Chatterjee
- Office of New Drug Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Rajanikanth Madabushi
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Shirley K Seo
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| |
Collapse
|
32
|
Boonnop R, Meetam P, Siangjong L, Tuchinda P, Thongphasuk P, Soodvilai S, Soodvilai S. Black ginger extract and its active compound, 5,7-dimethoxyflavone, increase intestinal drug absorption via efflux drug transporter inhibitions. Drug Metab Pharmacokinet 2023; 50:100500. [PMID: 36948091 DOI: 10.1016/j.dmpk.2023.100500] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023]
Abstract
Black ginger is used as an herbal medicine for self-care and health promotion. Black ginger extract has been shown to alter the function of transporters in several cell types. This study demonstrates the interaction between the extract and 5,7-dimethoxyflavone (DMF) on drug efflux mediated by breast cancer resistance proteins (BCRP) and P-glycoprotein (P-gp) in Caco-2 cells and heterologous cell systems [Madin-Darby canine kidney type II (MDCKII) stably transfected with human BCRP (MDCKII/BCRP) or human P-gp (MDCKII/P-gp)]. The transepithelial flux of 3H-Digoxin and 3H-Estrone sulfate, prototypic substrates of P-gp, and BCRP, respectively, across Caco-2 cell monolayers, MDCKII/BCRP, and MDCKII/P-gp cells were determined. The results demonstrate that black ginger extract (10 μg/ml) significantly increases 3H-Digoxin and 3H-Estrone sulfate transport from the apical to basolateral side while decreasing transport from the basolateral to apical side of Caco-2 cells and MDCKII cell overexpression of BCRP or P-gp. The effect of the extract on 3H-Digoxin and 3H-Estrone sulfate transport was related to a decrease in efflux ratio. Likewise, DMF (5 μM) significantly increased 3H-Digoxin and 3H-Estrone sulfate absorption with a decreased efflux ratio compared to the control. Interestingly, the extract also significantly increased absorption of paclitaxel, an anti-cancer drug, which has poor oral absorption. Taken together, co-administration of drugs as substrates of BCRP and P-gp, with the black ginger extract containing DMF, might alter the pharmacokinetic profiles of the medicine.
Collapse
Affiliation(s)
- Rattiporn Boonnop
- Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Paranee Meetam
- Department of Biopharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Lawan Siangjong
- Department of Biopharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Patoomratana Tuchinda
- Excellent Center for Drug Discovery, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Piyanut Thongphasuk
- Department of Pharmacognosy, College of Pharmacy, Rangsit University, Pathumthani, 12000, Thailand
| | - Sunhapas Soodvilai
- Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Sirima Soodvilai
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Pathumthani, 12000, Thailand.
| |
Collapse
|
33
|
Gousiadou C, Doganis P, Sarimveis H. Development of artificial neural network models to predict the PAMPA effective permeability of new, orally administered drugs active against the coronavirus SARS-CoV-2. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2023; 12:16. [PMID: 36778642 PMCID: PMC9901841 DOI: 10.1007/s13721-023-00410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 02/08/2023]
Abstract
Responding to the pandemic caused by SARS-CoV-2, the scientific community intensified efforts to provide drugs effective against the virus. To strengthen these efforts, the "COVID Moonshot" project has been accepting public suggestions for computationally triaged, synthesized, and tested molecules. The project aimed to identify molecules of low molecular weight with activity against the virus, for oral treatment. The ability of a drug to cross the intestinal cell membranes and enter circulation decisively influences its bioavailability, and hence the need to optimize permeability in the early stages of drug discovery. In our present work, as a contribution to the ongoing scientific efforts, we employed artificial neural network algorithms to develop QSAR tools for modelling the PAMPA effective permeability (passive diffusion) of orally administered drugs. We identified a set of 61 features most relevant in explaining drug cell permeability and used them to develop a stacked regression ensemble model, subsequently used to predict the permeability of molecules included in datasets made available through the COVID Moonshot project. Our model was shown to be robust and may provide a promising framework for predicting the potential permeability of molecules not yet synthesized, thus guiding the process of drug design. Supplementary Information The online version contains supplementary material available at 10.1007/s13721-023-00410-9.
Collapse
Affiliation(s)
- Chrysoula Gousiadou
- School of Chemical Engineering, National Technical University of Athens, Heroon Polytechneiou 9, 15780 Zografou, Athens, Greece
| | - Philip Doganis
- School of Chemical Engineering, National Technical University of Athens, Heroon Polytechneiou 9, 15780 Zografou, Athens, Greece
| | - Haralambos Sarimveis
- School of Chemical Engineering, National Technical University of Athens, Heroon Polytechneiou 9, 15780 Zografou, Athens, Greece
| |
Collapse
|
34
|
Laskar YB, Mazumder PB, Talukdar AD. Hibiscus sabdariffa anthocyanins are potential modulators of estrogen receptor alpha activity with favourable toxicology: a computational analysis using molecular docking, ADME/Tox prediction, 2D/3D QSAR and molecular dynamics simulation. J Biomol Struct Dyn 2023; 41:611-633. [PMID: 34854367 DOI: 10.1080/07391102.2021.2009914] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The estrogen hormone receptor (ER) mediated gene expression mainly regulate the development and physiology of the primary and secondary reproductive system alongside bone-forming, metabolism and behaviour. Over-expressed ER is associated with several pathological conditions and play a crucial role in breast cancer occurrence, progression and metastasis. Hibiscus sabdariffa L. or roselle is a rich source of naturally occurring polyphenolic compounds that reportedly have robust estrogenic activity. However, the estrogen-like ingredient of the plant remains ambiguous. This study has screened a library of already recorded and less-explored compounds of Hibiscus sabdariffa for their estrogen receptor binding affinity and safety using a suite of computational methods that include protein-ligand docking, ADME and Toxicity prediction, and 2D/3D QSAR. The study revealed that the estrogen-receptor binding potential of Pelargonidin, Delphinidin, Cyanidin, and Hibiscetin are more efficient than popular breast cancer drugs, Tamoxifen and Raloxifene. Besides, the compounds exhibited favourable toxicological parameters with potent bioactivity towards binding ER-α subunit. Thus, these compounds can serve as prototypes for designing novel Selective Estrogen Receptor Modulator molecules with a few structural modifications. This is the first report exploring the phytochemical basis of estrogenic activity of Hibiscus sabdariffa L.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yahyea Baktiar Laskar
- Natural Product and Biomedicine Research Laboratory, Department of Biotechnology, Assam University, Silchar, India
| | - Pranab Behari Mazumder
- Natural Product and Biomedicine Research Laboratory, Department of Biotechnology, Assam University, Silchar, India
| | - Anupam Das Talukdar
- Ethnobotany and Medicinal Plants Research Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar, India
| |
Collapse
|
35
|
Ibrahim MAA, Abdelrahman AHM, Mohamed DEM, Abdeljawaad KAA, Naeem MA, Gabr GA, Shawky AM, Soliman MES, Sidhom PA, Paré PW, Hegazy MEF. Chetomin, a SARS-CoV-2 3C-like Protease (3CL pro) Inhibitor: In Silico Screening, Enzyme Docking, Molecular Dynamics and Pharmacokinetics Analysis. Viruses 2023; 15:250. [PMID: 36680290 PMCID: PMC9866112 DOI: 10.3390/v15010250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The emergence of the Coronavirus Disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to over 6 million deaths. The 3C-like protease (3CLpro) enzyme of the SARS-CoV-2 virus is an attractive druggable target for exploring therapeutic drug candidates to combat COVID-19 due to its key function in viral replication. Marine natural products (MNPs) have attracted considerable attention as alternative sources of antiviral drug candidates. In looking for potential 3CLpro inhibitors, the MNP database (>14,000 molecules) was virtually screened against 3CLpro with the assistance of molecular docking computations. The performance of AutoDock and OEDocking software in anticipating the ligand-3CLpro binding mode was first validated according to the available experimental data. Based on the docking scores, the most potent MNPs were further subjected to molecular dynamics (MD) simulations, and the binding affinities of those molecules were computed using the MM-GBSA approach. According to MM-GBSA//200 ns MD simulations, chetomin (UMHMNP1403367) exhibited a higher binding affinity against 3CLpro than XF7, with ΔGbinding values of −55.5 and −43.7 kcal/mol, respectively. The steadiness and tightness of chetomin with 3CLpro were evaluated, revealing the high stabilization of chetomin (UMHMNP1403367) inside the binding pocket of 3CLpro throughout 200 ns MD simulations. The physicochemical and pharmacokinetic features of chetomin were also predicted, and the oral bioavailability of chetomin was demonstrated. Furthermore, the potentiality of chetomin analogues −namely, chetomin A-D− as 3CLpro inhibitors was investigated. These results warrant further in vivo and in vitro assays of chetomin (UMHMNP1403367) as a promising anti-COVID-19 drug candidate.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| | - Alaa H. M. Abdelrahman
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Dina E. M. Mohamed
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Khlood A. A. Abdeljawaad
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mohamed Ahmed Naeem
- Ain Shams University Specialized Hospital, Ain Shams University, Cairo 11588, Egypt
| | - Gamal A. Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza 12619, Egypt
| | - Ahmed M. Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mahmoud E. S. Soliman
- Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| | - Peter A. Sidhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Paul W. Paré
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Mohamed-Elamir F. Hegazy
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
36
|
Almansour NM, Allemailem KS, Abd El Aty AA, Ismail EIF, Ibrahim MAA. In Silico Mining of Natural Products Atlas (NPAtlas) Database for Identifying Effective Bcl-2 Inhibitors: Molecular Docking, Molecular Dynamics, and Pharmacokinetics Characteristics. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020783. [PMID: 36677841 PMCID: PMC9864825 DOI: 10.3390/molecules28020783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
The Bcl-2 protein has a vital function in controlling the programmed cell doom of mitochondria. If programmed cell death signals are obstructed, an imbalance between cell survival and death will occur, which is a significant reason for cancer. Therefore, the Bcl-2 protein was identified as a possible therapeutic target for carcinoma treatment. Herein, the Natural Products Atlas (NPAtlas) compounds were virtually screened, seeking potent inhibitors towards the Bcl-2 protein. The performance of AutoDock Vina software to predict the docking score and pose of the investigated compounds was first validated according to the available experimental data. Based on the validated AutoDock Vina parameters, the NPAtlas database was filtered against the Bcl-2 protein. The natural compounds with docking scores less than that of the venetoclax (calc. -10.6 kcal/mol) were submitted to MD simulations, followed by MM-GBSA binding energy calculations. According to MM-GBSA//200 ns MD simulations, saquayamycin F (NPA002200) demonstrated promising binding affinity with a ΔGbinding value of -53.9 kcal/mol towards the Bcl-2 protein when compared to venetoclax (ΔGbinding = -50.6 kcal/mol). The energetical and structural analyses showed a great constancy of the saquayamycin F inside the Bcl-2 protein active site. Moreover, the ADMET and drug-likeness features of the saquayamycin F were anticipated, indicating its good oral bioavailability. According to in silico computations, saquayamycin F is proposed to be used as a therapeutic agent against the wild-type Bcl-2 protein and warrants further experimental assays.
Collapse
Affiliation(s)
- Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 1803, Saudi Arabia
- Correspondence: (N.M.A.); (M.A.A.I.)
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Abeer Abas Abd El Aty
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 1803, Saudi Arabia
| | | | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
- Correspondence: (N.M.A.); (M.A.A.I.)
| |
Collapse
|
37
|
Purohit HS, Zhang GGZ, Gao Y. Detecting Crystallinity in Amorphous Solid Dispersions Using Dissolution Testing: Considerations on Properties of Drug Substance, Drug Product, and Selection of Dissolution Media. J Pharm Sci 2023; 112:290-303. [PMID: 36306864 DOI: 10.1016/j.xphs.2022.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
Abstract
Dissolution testing has long been used to monitor product quality. Its role in quality control of amorphous solid dispersion (ASD) formulations is relatively new. In the presence of the crystalline phase, the dissolution of ASDs is determined by the dynamics between the dissolution rate of the amorphous solids and the rate of crystal growth. The detection of crystalline phase by dissolution test has not been well understood in the context of drug properties, formulation characteristics and dissolution test variables. This study systematically evaluated the impact of key parameters such as intrinsic crystallization tendency of the API, drug loading, extent of dissolution sink conditions and level of crystallinity on the ASD dissolution behavior. The results indicated diverse dissolution behaviors due to the differences in the intrinsic crystallization propensity of the drug, the drug loading, the ASD polymers and the dissolution sink index. Each of the complex dissolution profiles were interpreted based on visual observations during dissolution, the appropriate sink index based on the amorphous solubility, and the competition between drug dissolution versus crystallization. The findings of this study provide insights towards the various considerations that should be taken into account towards rationally developing a discriminatory dissolution method.
Collapse
Affiliation(s)
- Hitesh S Purohit
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, IL, USA
| | - Geoff G Z Zhang
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, IL, USA.
| | - Yi Gao
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, IL, USA.
| |
Collapse
|
38
|
Spencer CE, Duckett CJ, Rumbelow S, Clench MR. The Adaptation of the QV600 LLI Milli-Fluidics System to House Ex Vivo Gastrointestinal Tissue Suitable for Drug Absorption and Permeation Studies, Utilizing MALDI MSI and LC-MS/MS. Methods Mol Biol 2023; 2688:71-82. [PMID: 37410285 DOI: 10.1007/978-1-0716-3319-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Careful formulation of pharmaceuticals for oral delivery is essential to ensure that the optimal amount of the active ingredient reaches its intended site of action. This chapter demonstrates how mass spectrometry can be used in conjunction with ex vivo tissue and an adapted milli-fluidics system to carry out a drug absorption study. MALDI MSI is used to visualize the drug within the small intestine tissue from the absorption experimentation. LC-MS/MS is used to complete a mass balance of the experiment and quantify the amount of drug that has permeated through the tissue.
Collapse
Affiliation(s)
- Chloe E Spencer
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Catherine J Duckett
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | | | - Malcolm R Clench
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK.
| |
Collapse
|
39
|
New Au(III)- and Fe(III)-based complexes of bio-pharmacological interest: DFT and in silico studies. Theor Chem Acc 2023. [DOI: 10.1007/s00214-022-02940-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Valcheva V, Simeonova R, Mileva M, Philipov S, Petrova R, Dimitrov S, Georgieva A, Tsvetanova E, Teneva Y, Angelova VT. In Vivo Toxicity, Redox-Modulating Capacity and Intestinal Permeability of Novel Aroylhydrazone Derivatives as Anti-Tuberculosis Agents. Pharmaceutics 2022; 15:pharmaceutics15010079. [PMID: 36678708 PMCID: PMC9862026 DOI: 10.3390/pharmaceutics15010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The emergence and spread of Mycobacterium tuberculosis strains resistant to many or all anti-tuberculosis (TB) drugs require the development of new compounds both efficient and with minimal side effects. Structure-activity-toxicity relationships of such novel, structurally diverse compounds must be thoroughly elucidated before further development. Here, we present the aroylhydrazone compounds (3a and 3b) regarding their: (i) acute and subacute toxicity in mice; (ii) redox-modulating in vivo and in vitro capacity; (iii) pathomorphology in the liver, kidney, and small intestine tissue specimens; and (iv) intestinal permeability. The acute toxicity test showed that the two investigated compounds exhibited low toxicity by oral and intraperitoneal administration. Changes in behavior, food amount, and water intake were not observed during 14 days of the oral administration at two doses of 1/10 and 1/20 of the LD50. The histological examination of the different tissue specimens did not show toxic changes. The in vitro antioxidant assays confirmed the ex vivo results. High gastrointestinal tract permeability at all tested pH values were demonstrated for both compounds. To conclude, both compounds 3a and 3b are highly permeable with low toxicity and can be considered for further evaluation and/or lead optimization.
Collapse
Affiliation(s)
- Violeta Valcheva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence:
| | - Rumyana Simeonova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Milka Mileva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Stanislav Philipov
- Department of Human Anatomy, Histology, General and Clinical Pathology and Forensic Medicine, Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria
| | - Reneta Petrova
- National Diagnostic and Research Veterinary Medical Institute, 1000 Sofia, Bulgaria
| | - Simeon Dimitrov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Almira Georgieva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Laboratory of Free Radical Processes, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Elina Tsvetanova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Laboratory of Free Radical Processes, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Yoana Teneva
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Violina T. Angelova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
41
|
Adhikari N, Choudhury AAK, Shakya A, Ghosh SK, Patgiri SJ, Singh UP, Bhat HR. Molecular docking and antimalarial evaluation of novel N-(4-aminobenzoyl)-l-glutamic acid conjugated 1,3,5-triazine derivatives as Pf-DHFR inhibitors. 3 Biotech 2022; 12:347. [PMID: 36386564 PMCID: PMC9649585 DOI: 10.1007/s13205-022-03400-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 10/12/2022] [Indexed: 11/12/2022] Open
Abstract
Malaria has been a source of concern for humans for millennia; therefore in the present study we have utilized in-silico approach to generate diverse anti-malarial hit. Towards this, Molinspiration cheminformatics and Biovia Discovery Studio (DS) 2020 were used to conduct molecular modelling studies on 120 designed compounds. Furthermore, the TOPKAT module was used to evaluate the toxicity of the screened compounds. The CDOCKER docking technology was used to investigate protein-ligand docking against the Pf-DHFR-TS protein (PDB ID: 1J3I and 1J3K). These compounds were synthesized using a conventional and microwave-assisted nucleophilic substitution reaction, and they were characterized using a variety of physicochemical and spectroscopic methods. Among the ten compounds tested, Df3 had the highest antimalarial activity against the chloroquine-resistant (Dd2) strain, with an IC50 value of 9.54 μg mL-1 and further demonstrate, molecular dynamics (MD) simulation studies and estimation of MM-PBSA-based free binding energies of docked complexes with 1J3I and 1J3K were carried out. The discovery of a novel class of Pf-DHFR inhibitors can be accomplished using this hybrid scaffold. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03400-2.
Collapse
Affiliation(s)
- Nayana Adhikari
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | | | - Anshul Shakya
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Saurav Jyoti Patgiri
- Regional Medical Research Centre, Indian Council of Medical Research (ICMR), Dibrugarh, Assam 786001 India
| | - Udaya Pratap Singh
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh 211007 India
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
42
|
In Vitro and In Silico Assessment of Bioactivity Properties and Pharmacokinetic Studies of New 3,5-Disubstituted-1,2,4-Triazoles. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
43
|
Ziesenitz VC, Welzel T, van Dyk M, Saur P, Gorenflo M, van den Anker JN. Efficacy and Safety of NSAIDs in Infants: A Comprehensive Review of the Literature of the Past 20 Years. Paediatr Drugs 2022; 24:603-655. [PMID: 36053397 PMCID: PMC9592650 DOI: 10.1007/s40272-022-00514-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used in infants, children, and adolescents worldwide; however, despite sufficient evidence of the beneficial effects of NSAIDs in children and adolescents, there is a lack of comprehensive data in infants. The present review summarizes the current knowledge on the safety and efficacy of various NSAIDs used in infants for which data are available, and includes ibuprofen, dexibuprofen, ketoprofen, flurbiprofen, naproxen, diclofenac, ketorolac, indomethacin, niflumic acid, meloxicam, celecoxib, parecoxib, rofecoxib, acetylsalicylic acid, and nimesulide. The efficacy of NSAIDs has been documented for a variety of conditions, such as fever and pain. NSAIDs are also the main pillars of anti-inflammatory treatment, such as in pediatric inflammatory rheumatic diseases. Limited data are available on the safety of most NSAIDs in infants. Adverse drug reactions may be renal, gastrointestinal, hematological, or immunologic. Since NSAIDs are among the most frequently used drugs in the pediatric population, safety and efficacy studies can be performed as part of normal clinical routine, even in young infants. Available data sources, such as (electronic) medical records, should be used for safety and efficacy analyses. On a larger scale, existing data sources, e.g. adverse drug reaction programs/networks, spontaneous national reporting systems, and electronic medical records should be assessed with child-specific methods in order to detect safety signals pertinent to certain pediatric age groups or disease entities. To improve the safety of NSAIDs in infants, treatment needs to be initiated with the lowest age-appropriate or weight-based dose. Duration of treatment and amount of drug used should be regularly evaluated and maximum dose limits and other recommendations by the manufacturer or expert committees should be followed. Treatment for non-chronic conditions such as fever and acute (postoperative) pain should be kept as short as possible. Patients with chronic conditions should be regularly monitored for possible adverse effects of NSAIDs.
Collapse
Affiliation(s)
- Victoria C Ziesenitz
- Pediatric Cardiology and Congenital Heart Diseases, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
- Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel, University of Basel, Basel, Switzerland.
| | - Tatjana Welzel
- Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel, University of Basel, Basel, Switzerland
- Pediatric Rheumatology and Autoinflammatory Reference Center, University Hospital Tuebingen, Tuebingen, Germany
| | - Madelé van Dyk
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Patrick Saur
- Pediatric Cardiology and Congenital Heart Diseases, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Matthias Gorenflo
- Pediatric Cardiology and Congenital Heart Diseases, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Johannes N van den Anker
- Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel, University of Basel, Basel, Switzerland
- Division of Clinical Pharmacology, Children's National Hospital, Washington DC, USA
- Intensive Care and Department of Pediatric Surgery, Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
44
|
Swain SS, Hussain T. Combined Bioinformatics and Combinatorial Chemistry Tools to Locate Drug-Able Anti-TB Phytochemicals: A Cost-Effective Platform for Natural Product-Based Drug Discovery. Chem Biodivers 2022; 19:e202200267. [PMID: 36307750 DOI: 10.1002/cbdv.202200267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022]
Abstract
Based on extensive experimental studies, a huge number of phytochemicals showed potential activity against tuberculosis (TB) at a lower minimum inhibitory concentration (MIC) and fewer toxicity profiles. However, these promising drugs have not been able to convert from 'lead' to 'mainstream' due to inadequate drug-ability profiles. Thus, early drug-prospective analyses are required at the primary stage to accelerate natural-product-based drug discovery with limited resources and time. In the present study, we have selected seventy-three potential anti-TB phytochemicals (MIC value ≤10 μg/mL) and assessed the drug-ability profiles using bioinformatics and combinatorial chemistry tools, systematically. Primarily, the molecular docking study was done against two putative drug targets, catalase-peroxidase enzyme (katG) and RNA polymerase subunit-β (rpoB) of Mycobacterium tuberculosis (Mtb) using AutoDock 4.2 software. Further, assessed the drug-ability score from Molsoft, toxicity profiles from ProTox, pharmacokinetics from SwisADME, hierarchical cluster analysis (HCA) by ChemMine tools and frontier molecular orbitals (FMOs) with Avogadro and structural activity relationships (SAR) analysis with ChemDraw 18.0 software. Above analyses indicated that, lower MIC exhibited anti-TB phytochemicals, abietane, 12-demethylmulticaulin exhibited poor docking and drug-ability scores, while tiliacorinine, 2-nortiliacorinine showed higher binding energy and drug-ability profiles. Overall, tiliacorinine, 2-nortiliacorinine, 7α-acetoxy-6β-hydroxyroyleanone (AHR), (2S)-naringenin and isovachhalcone were found as the most active and drug-able anti-TB candidates from 73 candidates. Phytochemicals are always a vital source of mainstream drugs, but the MIC value of a phytochemical is not sufficient for it to be promoted. An ideal drug-ability profile is therefore essential for achieving clinical success, where advanced bioinformatics tools help to assess and analyse that profile. Additionally, several natural pharmacophores found in existing anti-TB drugs in SAR analyses also provide crucial information for developing potential anti-TB drug. As a conclusion, combined bioinformatics and combinatorial chemistry are the most effective strategies to locate potent-cum-drug-able candidates in the current drug-development module.
Collapse
Affiliation(s)
- Shasank S Swain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Center, Bhubaneswar, 751023, Odisha, India
| | - Tahziba Hussain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Center, Bhubaneswar, 751023, Odisha, India
| |
Collapse
|
45
|
An outlook on permeability escalation through cocrystallization for developing pharmaceuticals with improved biopharmaceutical properties. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Swain SS, Singh SR, Sahoo A, Panda PK, Hussain T, Pati S. Integrated bioinformatics-cheminformatics approach toward locating pseudo-potential antiviral marine alkaloids against SARS-CoV-2-Mpro. Proteins 2022; 90:1617-1633. [PMID: 35384056 PMCID: PMC9111047 DOI: 10.1002/prot.26341] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 12/17/2022]
Abstract
The emergence of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) with the most contagious variants, alpha (B.1.1.7), beta (B.1.351), delta (B.1.617.2), and Omicron (B.1.1.529) has continuously added a higher number of morbidity and mortality, globally. The present integrated bioinformatics-cheminformatics approach was employed to locate potent antiviral marine alkaloids that could be used against SARS-CoV-2. Initially, 57 antiviral marine alkaloids and two repurposing drugs were selected from an extensive literature review. Then, the putative target enzyme SARS-CoV-2 main protease (SARS-CoV-2-Mpro) was retrieved from the protein data bank and carried out a virtual screening-cum-molecular docking study with all candidates using PyRx 0.8 and AutoDock 4.2 software. Further, the molecular dynamics (MD) simulation of the two most potential alkaloids and a drug docking complex at 100 ns (with two ligand topology files from PRODRG and ATB server, separately), the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) free energy, and contributions of entropy were investigated. Then, the physicochemical-toxicity-pharmacokinetics-drug-likeness profiles, the frontier molecular orbitals energies (highest occupied molecular orbital, lowest unoccupied molecular orbital, and ΔE), and structural-activity relationship were assessed and analyzed. Based on binding energy, 8-hydroxymanzamine (-10.5 kcal/mol) and manzamine A (-10.1 kcal/mol) from all alkaloids with darunavir (-7.9 kcal/mol) and lopinavir (-7.4 kcal/mol) against SARS-CoV-2-Mpro were recorded. The MD simulation (RMSD, RMSF, Rg, H-bond, MM/PBSA binding energy) illustrated that the 8-hydroxymanzamine exhibits a static thermodynamic feature than the other two complexes. The predicted physicochemical, toxicity, pharmacokinetics, and drug-likeness profiles also revealed that the 8-hydroxymanzamine could be used as a potential lead candidate individually and/or synergistically with darunavir or lopinavir to combat SARS-CoV-2 infection after some pharmacological validation.
Collapse
Affiliation(s)
- Shasank S Swain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Satya R Singh
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| | - Alaka Sahoo
- Department of Skin & VD, Institute of Medical Sciences & SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Tahziba Hussain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Sanghamitra Pati
- Division of Public Health and Research, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| |
Collapse
|
47
|
Antibacterial activity and molecular studies of non-symmetric POCOP-Pd(II) pincer complexes derived from 2,4-dihydroxybenzaldehyde (2,4-DHBA). Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Mohi-Ud-Din R, Mir RH, Mir PA, Banday N, Shah AJ, Sawhney G, Bhat MM, Batiha GE, Pottoo FH, Pottoo FH. Dysfunction of ABC Transporters at the Surface of BBB: Potential Implications in Intractable Epilepsy and Applications of Nanotechnology Enabled Drug Delivery. Curr Drug Metab 2022; 23:735-756. [PMID: 35980054 DOI: 10.2174/1389200223666220817115003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/10/2022] [Accepted: 05/31/2022] [Indexed: 01/05/2023]
Abstract
Epilepsy is a chronic neurological disorder affecting 70 million people globally. One of the fascinating attributes of brain microvasculature is the (BBB), which controls a chain of distinct features that securely regulate the molecules, ions, and cells movement between the blood and the parenchyma. The barrier's integrity is of paramount importance and essential for maintaining brain homeostasis, as it offers both physical and chemical barriers to counter pathogens and xenobiotics. Dysfunction of various transporters in the (BBB), mainly ATP binding cassette (ABC), is considered to play a vital role in hampering the availability of antiepileptic drugs into the brain. ABC (ATP-binding cassette) transporters constitute a most diverse protein superfamily, which plays an essential part in various biological processes, including cell homeostasis, cell signaling, uptake of nutrients, and drug metabolism. Moreover, it plays a crucial role in neuroprotection by out-flowing various internal and external toxic substances from the interior of a cell, thus decreasing their buildup inside the cell. In humans, forty-eight ABC transporters have been acknowledged and categorized into subfamilies A to G based on their phylogenetic analysis. ABC subfamilies B, C, and G, impart a vital role at the BBB in guarding the brain against the entrance of various xenobiotic and their buildup. The illnesses of the central nervous system have received a lot of attention lately Owing to the existence of the BBB, the penetration effectiveness of most CNS medicines into the brain parenchyma is very limited (BBB). In the development of neurological therapies, BBB crossing for medication delivery to the CNS continues to be a major barrier. Nanomaterials with BBB cross ability have indeed been extensively developed for the treatment of CNS diseases due to their advantageous properties. This review will focus on multiple possible factors like inflammation, oxidative stress, uncontrolled recurrent seizures, and genetic polymorphisms that result in the deregulation of ABC transporters in epilepsy and nanotechnology-enabled delivery across BBB in epilepsy.
Collapse
Affiliation(s)
- Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu & Kashmir, 190011, India.,Department of Pharmaceutical Sciences, School of Applied Sciences & Technology, University of Kashmir, Hazratbal, Srinagar-190006, Jammu & Kashmir, India
| | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Chandigarh College of Pharmacy, Landran, Punjab-140301, India.,Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Prince Ahad Mir
- Department of Pharmaceutical Sciences, Khalsa College of Pharmacy, G.T. Road, Amritsar-143002, Punjab, India
| | - Nazia Banday
- Department of Pharmaceutical Sciences, School of Applied Sciences & Technology, University of Kashmir, Hazratbal, Srinagar-190006, Jammu & Kashmir, India
| | - Abdul Jalil Shah
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Gifty Sawhney
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu 180001, India
| | - Mudasir Maqbool Bhat
- Department of Pharmaceutical Sciences, Pharmacy Practice Division, University of Kashmir, Hazratbal, Srinagar-190006, Jammu & Kashmir, India
| | - Gaber E Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| |
Collapse
|
49
|
Ton AT, Pandey M, Smith JR, Ban F, Fernandez M, Cherkasov A. Targeting SARS-CoV-2 Papain-Like Protease in the Post-Vaccine Era. Trends Pharmacol Sci 2022; 43:906-919. [PMID: 36114026 PMCID: PMC9399131 DOI: 10.1016/j.tips.2022.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022]
Abstract
While vaccines remain at the forefront of global healthcare responses, pioneering therapeutics against SARS-CoV-2 are expected to fill the gaps for waning immunity. Rapid development and approval of orally available direct-acting antivirals targeting crucial SARS-CoV-2 proteins marked the beginning of the era of small-molecule drugs for COVID-19. In that regard, the papain-like protease (PLpro) can be considered a major SARS-CoV-2 therapeutic target due to its dual biological role in suppressing host innate immune responses and in ensuring viral replication. Here, we summarize the challenges of targeting PLpro and innovative early-stage PLpro-specific small molecules. We propose that state-of-the-art computer-aided drug design (CADD) methodologies will play a critical role in the discovery of PLpro compounds as a novel class of COVID-19 drugs.
Collapse
Affiliation(s)
- Anh-Tien Ton
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Mohit Pandey
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Jason R Smith
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada; Department of Chemistry, Simon Fraser University, Burnaby, Canada
| | - Fuqiang Ban
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Michael Fernandez
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
50
|
Aljurbui S, Hussain A, Yusuf M, Ramzan M, Afzal O, Almohaywi B, Yasmin S, Altamimi ASA. Impact of Composition and Morphology of Ketoconazole-Loaded Solid Lipid Nanoparticles on Intestinal Permeation and Gastroplus-Based Prediction Studies. ACS OMEGA 2022; 7:22406-22420. [PMID: 35811933 PMCID: PMC9260901 DOI: 10.1021/acsomega.2c01272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/01/2022] [Indexed: 05/30/2023]
Abstract
Ketoconazole (KTZ) is a potential oral antifungal agent to control systemic and local infections. This study addresses the impact of composition (tween 80 and compritol as CATO) and morphology on permeation (stomach, jejunum, and ileum) profiles of KTZ-loaded solid lipid nanoparticles (SLNs) in rats followed by in vivo pharmacokinetic prediction and simulation using GastroPlus. The selected formulations were characterized for size, size distribution, zeta potential, entrapment efficiency, total drug content, morphology, in vitro drug release, ex vivo permeation and drug deposition, penetration potential, and GastroPlus-based in vivo prediction in rats. The results showed that there was considerable impact of pH, composition (CATO and tween 80), size, total drug content, and entrapment efficiency on in vitro drug release and permeation across the stomach, jejunum, and ileum. Ex vivo findings suggested pH, composition, size, and permeability coefficient-dependent permeation of SLNs across the stomach, jejunum, and ileum. Confocal laser scanning microscopy (CLSM) confirmed a relatively high degree of penetration of the optimized formulation "K-SLN4" (66.1% across the stomach, 51.5% across the jejunum, and 47.9% across the ileum) as compared to KSUS (corresponding values of 21.7%, 18.2%, and 17.4%). Finally, GastroPlus predicted in vivo dissolution/absorption as 0.012 μg/mL of K-SLN4 as compared to KSUS (the drug suspension with 0.0058 μg/mL) and a total regional absorption of 80.0% by K-SLN4 as compared to 60.1% of KSUS. There was only an impact of dose on C max (maximum plasma concentration) and area under the curve (AUC) in rats. Thus, the present strategy could be a promising alternative to parenteral and topical delivery systems for long-term therapy against systemic and local mycoses with high patient compliance.
Collapse
Affiliation(s)
- Shaya
Jubran Aljurbui
- Department
of Pharmacy, Riyadh Military Hospital, P.O. Box 7897, Riyadh 11159, Saudi Arabia
| | - Afzal Hussain
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Yusuf
- Department
of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohhammad Ramzan
- Department
of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, Punjab 160014, India
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Basmah Almohaywi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University (KKU), Abha 61421, Saudi
Arabia
| | - Sabina Yasmin
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University (KKU), Abha 61421, Saudi
Arabia
| | | |
Collapse
|