1
|
Asri NA, Sezali NAA, Ong HL, Mohd Pisal MH, Lim YH, Fang J. Review on Biodegradable Aliphatic Polyesters: Development and Challenges. Macromol Rapid Commun 2024; 45:e2400475. [PMID: 39445644 DOI: 10.1002/marc.202400475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Biodegradable polymers are gaining attention as alternatives to non-biodegradable plastics to address environmental issues. With the rising global demand for plastic products, the development of non-toxic, biodegradable plastics is a significant topic of research. Aliphatic polyester, the most common biodegradable polyester, is notable for its semi-crystalline structure and can be synthesized from fossil fuels, microbial fermentation, and plants. Due to great properties like being lightweight, biodegradable, biocompatible, and non-toxic, aliphatic polyesters are used in packaging, medical, agricultural, wearable devices, sensors, and textile applications. The biodegradation rate, crucial for biodegradable polymers, is discussed in this review as it is influenced by their structural properties and environmental conditions. This review discusses currently available biodegradable polyesters, their emerging applications, and the challenges in their commercialization. As research in this area grows, this review emphasizes the innovation in biodegradable aliphatic polyesters and their role in advancing environmental sustainability.
Collapse
Affiliation(s)
- Nur Asnani Asri
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Nur Atirah Afifah Sezali
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Hui Lin Ong
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
- Centre of Excellence for Biomass Utilization and Taiwan-Malaysia Innovation Centre for Clean Water and Sustainable Energy (WISE Centre), Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Mohd Hanif Mohd Pisal
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
- Centre of Excellence for Biomass Utilization and Taiwan-Malaysia Innovation Centre for Clean Water and Sustainable Energy (WISE Centre), Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Ye Heng Lim
- Platinum Phase Sdn. Bhd., Plot 155, Jalan PKNK Utama, Kawasan Perusahaan Taman Ria Jaya, Sungai Petani, Kedah, 08000, Malaysia
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| |
Collapse
|
2
|
Malekmohammadi S, Jamshidi R, Sadowska JM, Meng C, Abeykoon C, Akbari M, Gong RH. Stimuli-Responsive Codelivery System-Embedded Polymeric Nanofibers with Synergistic Effects of Growth Factors and Low-Intensity Pulsed Ultrasound to Enhance Osteogenesis Properties. ACS APPLIED BIO MATERIALS 2024; 7:4293-4306. [PMID: 38917363 PMCID: PMC11253091 DOI: 10.1021/acsabm.4c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
The present work aims to develop optimized scaffolds for bone repair by incorporating mesoporous nanoparticles into them, thereby combining bioactive factors for cell growth and preventing rapid release or loss of effectiveness. We synthesized biocompatible and biodegradable scaffolds designed for the controlled codelivery of curcumin (CUR) and recombinant human bone morphogenic protein-2 (rhBMP-2). Active agents in dendritic silica/titania mesoporous nanoparticles (DSTNs) were incorporated at different weight percentages (0, 2, 5, 7, 9, and 10 wt %) into a matrix of polycaprolactone (PCL) and polyethylene glycol (PEG) nanofibers, forming the CUR-BMP-2@DSTNs/PCL-PEG delivery system (S0, S2, S5, S7, S9, and S10, respectively, with the number showing the weight percentage). To enhance the formation process, the system was treated using low-intensity pulsed ultrasound (LIPUS). Different advanced methods were employed to assess the physical, chemical, and mechanical characteristics of the fabricated scaffolds, all confirming that incorporating the nanoparticles improves their mechanical and structural properties. Their hydrophilicity increased by approximately 25%, leading to ca. 53% enhancement in their water absorption capacity. Furthermore, we observed a sustained release of approximately 97% for CUR and 70% for BMP-2 for the S7 (scaffold with 7 wt % DSTNs) over 28 days, which was further enhanced using ultrasound. In vitro studies demonstrated accelerated scaffold biodegradation, with the highest level observed in S7 scaffolds, approximately three times higher than the control group. Moreover, the cell viability and proliferation on DSTNs-containing scaffolds increased when compared to the control group. Overall, our study presents a promising nanocomposite scaffold design with notable improvements in structural, mechanical, and biological properties compared to the control group, along with controlled and sustained drug release capabilities. This makes the scaffold a compelling candidate for advanced bone tissue engineering and regenerative therapies.
Collapse
Affiliation(s)
- Samira Malekmohammadi
- Department
of Materials, Engineering Building A, University
of Manchester, Manchester M13 9PL, U.K.
| | - Rashid Jamshidi
- Department
of Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
| | - Joanna M. Sadowska
- Advanced
Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin D02 YN77, Ireland
- Tissue
Engineering Research Group, Department of Anatomy & Regenerative
Medicine, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Chen Meng
- Department
of Materials, Engineering Building A, University
of Manchester, Manchester M13 9PL, U.K.
| | - Chamil Abeykoon
- Department
of Materials, Engineering Building A, University
of Manchester, Manchester M13 9PL, U.K.
| | - Mohsen Akbari
- Laboratory
for Innovations in Microengineering (LiME), Department of Mechanical
Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Terasaki
Institute for Biomedical Innovations, Los Angeles, California 90024, United States
| | - R. Hugh Gong
- Department
of Materials, Engineering Building A, University
of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
3
|
Stellpflug A, Walls J, Hansen C, Joshi A, Wang B. From bone to nanoparticles: development of a novel generation of bone derived nanoparticles for image guided orthopedic regeneration. Biomater Sci 2024; 12:3633-3648. [PMID: 38856671 PMCID: PMC11238765 DOI: 10.1039/d4bm00391h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Bone related diseases such as osteoporosis, osteoarthritis, metastatic bone cancer, osteogenesis imperfecta, and Paget's disease, are primarily treated with pharmacologic therapies that often exhibit limited efficacy and substantial side effects. Bone injuries or fractures are primarily repaired with biocompatible materials that produce mixed results in sufficiently regenerating healthy and homogenous bone tissue. Each of these bone conditions, both localized and systemic, use different strategies with the same goal of achieving a healthy and homeostatic bone environment. In this study, we developed a new type of bone-based nanoparticle (BPs) using the entire organic extracellular matrix (ECM) of decellularized porcine bone, additionally encapsulating indocyanine green dye (ICG) for an in vivo monitoring capability. Utilizing the regenerative capability of bone ECM and the functionality of nanoparticles, the ICG encapsulated BPs (ICG/BPs) have been demonstrated to be utilized as a therapeutic option for localized and systemic orthopedic conditions. Additionally, ICG enables an in situ monitoring capability in the Short-Wave Infrared (SWIR) spectrum, capturing the degradation or the biodistribution of the ICG/BPs after both local implantation and intravenous administration, respectively. The efficacy and safety of the ICG/BPs shown within this study lay the foundation for future investigations, which will delve into optimization for clinical translation.
Collapse
Affiliation(s)
- Austin Stellpflug
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Jacob Walls
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Christopher Hansen
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Amit Joshi
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Bo Wang
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
4
|
Babu S, Shanmugavadivu A, Selvamurugan N. Tunable mechanical properties of chitosan-based biocomposite scaffolds for bone tissue engineering applications: A review. Int J Biol Macromol 2024; 272:132820. [PMID: 38825286 DOI: 10.1016/j.ijbiomac.2024.132820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Bone tissue engineering (BTE) aims to develop implantable bone replacements for severe skeletal abnormalities that do not heal. In the field of BTE, chitosan (CS) has become a leading polysaccharide in the development of bone scaffolds. Although CS has several excellent properties, such as biodegradability, biocompatibility, and antibacterial properties, it has limitations for use in BTE because of its poor mechanical properties, increased degradation, and minimal bioactivity. To address these issues, researchers have explored other biomaterials, such as synthetic polymers, ceramics, and CS coatings on metals, to produce CS-based biocomposite scaffolds for BTE applications. These CS-based biocomposite scaffolds demonstrate superior properties, including mechanical characteristics, such as compressive strength, Young's modulus, and tensile strength. In addition, they are compatible with neighboring tissues, exhibit a controlled rate of degradation, and promote cell adhesion, proliferation, and osteoblast differentiation. This review provides a brief outline of the recent progress in making different CS-based biocomposite scaffolds and how to characterize them so that their mechanical properties can be tuned using crosslinkers for bone regeneration.
Collapse
Affiliation(s)
- Sushma Babu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
5
|
de Oliveira BEG, Maia FLM, Massimino LC, Garcia CF, Plepis AMDG, Martins VDCA, Reis CHB, Silva VR, Bezerra AA, Pauris CC, Buchaim DV, Silva YBE, Buchaim RL, da Cunha MR. Use of Plant Extracts in Polymeric Scaffolds in the Regeneration of Mandibular Injuries. Pharmaceutics 2024; 16:491. [PMID: 38675152 PMCID: PMC11053713 DOI: 10.3390/pharmaceutics16040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/25/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
Severe loss of bone mass may require grafting, and, among the alternatives available, there are natural biomaterials that can act as scaffolds for the cell growth necessary for tissue regeneration. Collagen and elastin polymers are a good alternative due to their biomimetic properties of bone tissue, and their characteristics can be improved with the addition of polysaccharides such as chitosan and bioactive compounds such as jatoba resin and pomegranate extract due to their antigenic actions. The aim of this experimental protocol was to evaluate bone neoformation in experimentally made defects in the mandible of rats using polymeric scaffolds with plant extracts added. Thirty rats were divided into group 1, with a mandibular defect filled with a clot from the lesion and no graft implant (G1-C, n = 10); group 2, filled with collagen/chitosan/jatoba resin scaffolds (G2-CCJ, n = 10); and group 3, with collagen/nanohydroxyapatite/elastin/pomegranate extract scaffolds (G3-CHER, n = 10). Six weeks after surgery, the animals were euthanized and samples from the surgical areas were submitted to macroscopic, radiological, histological, and morphometric analysis of the mandibular lesion repair process. The results showed no inflammatory infiltrates in the surgical area, indicating good acceptance of the scaffolds in the microenvironment of the host area. In the control group (G1), there was a predominance of reactive connective tissue, while in the grafted groups (G2 and G3), there was bone formation from the margins of the lesion, but it was still insufficient for total bone repair of the defect within the experimental period standardized in this study. The histomorphometric analysis showed that the mean percentage of bone volume formed in the surgical area of groups G1, G2, and G3 was 17.17 ± 2.68, 27.45 ± 1.65, and 34.07 ± 0.64 (mean ± standard deviation), respectively. It can be concluded that these scaffolds with plant extracts added can be a viable alternative for bone repair, as they are easily manipulated, have a low production cost, and stimulate the formation of new bone by osteoconduction.
Collapse
Affiliation(s)
| | | | - Lívia Contini Massimino
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil; (L.C.M.); (A.M.d.G.P.); (M.R.d.C.)
| | - Claudio Fernandes Garcia
- São Carlos Institute of Chemistry, University of São Paulo, USP, São Carlos 13566-590, Brazil; (C.F.G.); (V.d.C.A.M.)
| | - Ana Maria de Guzzi Plepis
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil; (L.C.M.); (A.M.d.G.P.); (M.R.d.C.)
- São Carlos Institute of Chemistry, University of São Paulo, USP, São Carlos 13566-590, Brazil; (C.F.G.); (V.d.C.A.M.)
| | | | - Carlos Henrique Bertoni Reis
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil; (C.H.B.R.); (D.V.B.)
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru 17012-901, Brazil
| | - Vinícius Rodrigues Silva
- Department of Human Anatomy, University of San Francisco (USF), Bragança Paulista 12916-900, Brazil;
| | - Andre Alves Bezerra
- Orthopedics and Traumatology Sector, Faculty of Medicine of Jundiaí, Jundiaí 13202-550, Brazil; (B.E.G.d.O.)
| | - Carolina Chen Pauris
- Postgraduate Program in Health Sciences, Faculty of Medicine of Jundiaí, Jundiaí 13202-550, Brazil; (C.C.P.); (Y.B.e.S.)
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil; (C.H.B.R.); (D.V.B.)
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), São Paulo 05508-270, Brazil
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Yggor Biloria e Silva
- Postgraduate Program in Health Sciences, Faculty of Medicine of Jundiaí, Jundiaí 13202-550, Brazil; (C.C.P.); (Y.B.e.S.)
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru 17012-901, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), São Paulo 05508-270, Brazil
| | - Marcelo Rodrigues da Cunha
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil; (L.C.M.); (A.M.d.G.P.); (M.R.d.C.)
- Postgraduate Program in Health Sciences, Faculty of Medicine of Jundiaí, Jundiaí 13202-550, Brazil; (C.C.P.); (Y.B.e.S.)
| |
Collapse
|
6
|
Aoki K, Ideta H, Komatsu Y, Tanaka A, Kito M, Okamoto M, Takahashi J, Suzuki S, Saito N. Bone-Regeneration Therapy Using Biodegradable Scaffolds: Calcium Phosphate Bioceramics and Biodegradable Polymers. Bioengineering (Basel) 2024; 11:180. [PMID: 38391666 PMCID: PMC10886059 DOI: 10.3390/bioengineering11020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Calcium phosphate-based synthetic bone is broadly used for the clinical treatment of bone defects caused by trauma and bone tumors. Synthetic bone is easy to use; however, its effects depend on the size and location of the bone defect. Many alternative treatment options are available, such as joint arthroplasty, autologous bone grafting, and allogeneic bone grafting. Although various biodegradable polymers are also being developed as synthetic bone material in scaffolds for regenerative medicine, the clinical application of commercial synthetic bone products with comparable performance to that of calcium phosphate bioceramics have yet to be realized. This review discusses the status quo of bone-regeneration therapy using artificial bone composed of calcium phosphate bioceramics such as β-tricalcium phosphate (βTCP), carbonate apatite, and hydroxyapatite (HA), in addition to the recent use of calcium phosphate bioceramics, biodegradable polymers, and their composites. New research has introduced potential materials such as octacalcium phosphate (OCP), biologically derived polymers, and synthetic biodegradable polymers. The performance of artificial bone is intricately related to conditions such as the intrinsic material, degradability, composite materials, manufacturing method, structure, and signaling molecules such as growth factors and cells. The development of new scaffold materials may offer more efficient bone regeneration.
Collapse
Affiliation(s)
- Kaoru Aoki
- Physical Therapy Division, School of Health Sciences, Shinshu University, Matsumoto 390-8621, Japan
| | - Hirokazu Ideta
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Yukiko Komatsu
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Atsushi Tanaka
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Munehisa Kito
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Masanori Okamoto
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Jun Takahashi
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Shuichiro Suzuki
- Department of Orthopaedic Surgery, Matsumoto Medical Center, Matsumoto 390-8621, Japan
| | - Naoto Saito
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan
| |
Collapse
|
7
|
Zhang F, Gao H, Jiang X, Yang F, Zhang J, Song S, Shen J. Biomedical Application of Decellularized Scaffolds. ACS APPLIED BIO MATERIALS 2023; 6:5145-5168. [PMID: 38032114 DOI: 10.1021/acsabm.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Tissue loss and end-stage organ failure are serious health problems across the world. Natural and synthetic polymer scaffold material based artificial organs play an important role in the field of tissue engineering and organ regeneration, but they are not from the body and may cause side effects such as rejection. In recent years, the biomimetic decellularized scaffold based materials have drawn great attention in the tissue engineering field for their good biocompatibility, easy modification, and excellent organism adaptability. Therefore, in this review, we comprehensively summarize the application of decellularized scaffolds in tissue engineering and biomedicine in recent years. The preparation methods, modification strategies, construction of artificial tissues, and application in biomedical applications are discussed. We hope that this review will provide a useful reference for research on decellularized scaffolds and promote their application tissue engineering.
Collapse
Affiliation(s)
- Fang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Huimin Gao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xuefeng Jiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jun Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Saijie Song
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Dede EÇ, Gizer M, Korkusuz F, Bal Z, Ishiguro H, Yoshikawa H, Kaito T, Korkusuz P. A pilot study: Nano-hydroxyapatite-PEG/PLA containing low dose rhBMP2 stimulates proliferation and osteogenic differentiation of human bone marrow derived mesenchymal stem cells. JOR Spine 2023; 6:e1258. [PMID: 37780828 PMCID: PMC10540822 DOI: 10.1002/jsp2.1258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/29/2023] [Accepted: 04/25/2023] [Indexed: 10/03/2023] Open
Abstract
Background Bone morphogenetic protein 2 (BMP2) can enhance posterolateral spinal fusion (PLSF). The minimum effective dose that may stimulate mesenchymal stem cells however remains unknown. Nano-hydroxyapatite (nHAp) polyethylene glycol (PEG)/polylactic acid (PLA) was combined with recombinant human BMP2 (rhBMP2). We in vitro evaluated proliferation, differentiation, and osteogenic genes of human bone marrow mesenchymal stem cells with 0.5, 1.0, and 3.0 μg/mL rhBMP2 doses in this study. Methods In vitro experimental study was designed to proliferation by a real-time quantitative cell analysis system and the osteogenic differentiation by alkaline phosphatase (ALP) activity and osteogenic marker (Runx2, OPN, and OCN) gene expressions of human derived bone marrow mesenchymal stem cells (hBMMSCs). nHAp was produced by wet chemical process and characterized by Fourier transform infrared spectrophotometer, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. PEG/PLA polymer was produced at a 51:49 molar ratio. 0.5, 1.0, and 3.0 μg/mL rhBMP2 and nHAp was combined with the polymers. hBMMSCs were characterized by multipotency assays and surface markers were assessed by flow cytometer. The hBMMSC-rhBMP2 containing nHAp-PEG/PLA composite interaction was evaluated by transmission electron microscopy. Proliferative effect was evaluated by real-time proliferation analysis, and osteogenic capacity was evaluated by ALP activity assay and qPCR. Results hBMMSC proliferation in the 0.5 μg/mL rhBMP2 + nHAp-PEG/PLA and the 1.0 μg/mL rhBMP2 + nHAp-PEG/PLA groups were higher compared to control. 1.0 μg/mL rhBMP2 + nHAp-PEG/PLA and 3.0 μg/mL rhBMP2 + nHAp-PEG/PLA containing composites induced ALP activity on days 3 and 10. 0.5 μg/mL rhBMP2 + nHAp-PEG/PLA application stimulated Runx2 and OPN gene expressions. Conclusion rhBMP2 + nHAp-PEG/PLA composites stimulate hBMMSC proliferation and differentiation. The nHAp-PEG/PLA composite with low dose of rhBMP2 may enhance bone formation in future clinical PLSF applications.
Collapse
Affiliation(s)
- Eda Çiftci Dede
- Department of Bioengineering, Graduate School of Science and EngineeringHacettepe UniversityAnkaraTurkey
- AO Research Institute DavosDavosSwitzerland
| | - Merve Gizer
- Department of Stem Cell Sciences, Graduate School of Health SciencesHacettepe UniversityAnkaraTurkey
| | - Feza Korkusuz
- Department of Sports Medicine, Faculty of MedicineHacettepe UniversityAnkaraTurkey
| | - Zeynep Bal
- Signal Transduction, Immunology Frontier Research Center (IFReC)Osaka UniversityOsakaJapan
| | - Hiroyuki Ishiguro
- Department of Orthopaedic SurgeryNational Hospital Organization Osaka National HospitalOsakaJapan
| | - Hideki Yoshikawa
- Department of Orthopaedic SurgeryToyonaka Municipal HospitalOsakaJapan
| | | | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of MedicineHacettepe UniversityAnkaraTurkey
| |
Collapse
|
9
|
Rifai A, Weerasinghe DK, Tilaye GA, Nisbet D, Hodge JM, Pasco JA, Williams LJ, Samarasinghe RM, Williams RJ. Biofabrication of functional bone tissue: defining tissue-engineered scaffolds from nature. Front Bioeng Biotechnol 2023; 11:1185841. [PMID: 37614632 PMCID: PMC10444209 DOI: 10.3389/fbioe.2023.1185841] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
Damage to bone leads to pain and loss of movement in the musculoskeletal system. Although bone can regenerate, sometimes it is damaged beyond its innate capacity. Research interest is increasingly turning to tissue engineering (TE) processes to provide a clinical solution for bone defects. Despite the increasing biomimicry of tissue-engineered scaffolds, significant gaps remain in creating the complex bone substitutes, which include the biochemical and physical conditions required to recapitulate bone cells' natural growth, differentiation and maturation. Combining advanced biomaterials with new additive manufacturing technologies allows the development of 3D tissue, capable of forming cell aggregates and organoids based on natural and stimulated cues. Here, we provide an overview of the structure and mechanical properties of natural bone, the role of bone cells, the remodelling process, cytokines and signalling pathways, causes of bone defects and typical treatments and new TE strategies. We highlight processes of selecting biomaterials, cells and growth factors. Finally, we discuss innovative tissue-engineered models that have physiological and anatomical relevance for cancer treatments, injectable stimuli gels, and other therapeutic drug delivery systems. We also review current challenges and prospects of bone TE. Overall, this review serves as guide to understand and develop better tissue-engineered bone designs.
Collapse
Affiliation(s)
- Aaqil Rifai
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - D. Kavindi Weerasinghe
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Gebreselassie Addisu Tilaye
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - David Nisbet
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia
- Laboratory of Advanced Biomaterials, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Aikenhead Centre for Medical Discovery, St. Vincent’s Hospital, Melbourne, VIC, Australia
| | - Jason M. Hodge
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
| | - Julie A. Pasco
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Medicine-Western Health, The University of Melbourne, St Albans, VIC, Australia
| | - Lana J. Williams
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
| | - Rasika M. Samarasinghe
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Richard J. Williams
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St. Vincent’s Hospital, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Shabab T, Bas O, Dargaville BL, Ravichandran A, Tran PA, Hutmacher DW. Microporous/Macroporous Polycaprolactone Scaffolds for Dental Applications. Pharmaceutics 2023; 15:pharmaceutics15051340. [PMID: 37242582 DOI: 10.3390/pharmaceutics15051340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/05/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
This study leverages the advantages of two fabrication techniques, namely, melt-extrusion-based 3D printing and porogen leaching, to develop multiphasic scaffolds with controllable properties essential for scaffold-guided dental tissue regeneration. Polycaprolactone-salt composites are 3D-printed and salt microparticles within the scaffold struts are leached out, revealing a network of microporosity. Extensive characterization confirms that multiscale scaffolds are highly tuneable in terms of their mechanical properties, degradation kinetics, and surface morphology. It can be seen that the surface roughness of the polycaprolactone scaffolds (9.41 ± 3.01 µm) increases with porogen leaching and the use of larger porogens lead to higher roughness values, reaching 28.75 ± 7.48 µm. Multiscale scaffolds exhibit improved attachment and proliferation of 3T3 fibroblast cells as well as extracellular matrix production, compared with their single-scale counterparts (an approximate 1.5- to 2-fold increase in cellular viability and metabolic activity), suggesting that these structures could potentially lead to improved tissue regeneration due to their favourable and reproducible surface morphology. Finally, various scaffolds designed as a drug delivery device were explored by loading them with the antibiotic drug cefazolin. These studies show that by using a multiphasic scaffold design, a sustained drug release profile can be achieved. The combined results strongly support the further development of these scaffolds for dental tissue regeneration applications.
Collapse
Affiliation(s)
- Tara Shabab
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Onur Bas
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Max Planck Queensland Centre, Brisbane, QLD 4000, Australia
| | - Bronwin L Dargaville
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Max Planck Queensland Centre, Brisbane, QLD 4000, Australia
| | - Akhilandeshwari Ravichandran
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Phong A Tran
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Dietmar W Hutmacher
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Max Planck Queensland Centre, Brisbane, QLD 4000, Australia
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
11
|
Hu Y, Zhang H, Zou Q, Liu W, Li W, Yan L, Dai H. The effect of silicon groups on the physicochemical property and bioactivity of L-phenylalanine derived poly(amide-imide). J Biomed Mater Res B Appl Biomater 2023. [PMID: 37081804 DOI: 10.1002/jbm.b.35257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/17/2023] [Accepted: 04/01/2023] [Indexed: 04/22/2023]
Abstract
Poly(amide-imide) (PAI), serving as a synthetic polymer, has been widely used in industry for excellent mechanical properties, chemical resistance and high thermal stability. However, lack of suitable cell niche and biological activity limited the further application of PAI in biomedical engineering. Herein, silicon modified L-phenylalanine derived poly(amide-imide) (PAIS) was synthesized by introducing silica to L-phenylalanine derived PAI to improve physicochemical and biological performances. The influence of silicon amount on physicochemical, immune, and angiogenic performances of PAIS were systemically studied. The results show that PAIS exerts excellent hydrophilic, mechanical, biological activity. PAIS shows no effects on the number of macrophages, but can regulate macrophage polarization and angiogenesis in a dose-dependent manner. This study advanced our understanding of silicon modification in PAI can modulate cell responses via initiating silicon concentration regulation. The acquired knowledge will provide a new strategy to design and optimize biomedical PAI in the future.
Collapse
Affiliation(s)
- Yaping Hu
- Shenzhen Research Institute of Wuhan University of Technology, Shenzhen, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Hongbiao Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Qiying Zou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Wenbin Liu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Lesan Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Honglian Dai
- Shenzhen Research Institute of Wuhan University of Technology, Shenzhen, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
12
|
Enhanced Drug Delivery System Using Mesenchymal Stem Cells and Membrane-Coated Nanoparticles. Molecules 2023; 28:molecules28052130. [PMID: 36903399 PMCID: PMC10004171 DOI: 10.3390/molecules28052130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 03/02/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have newly developed as a potential drug delivery system. MSC-based drug delivery systems (MSCs-DDS) have made significant strides in the treatment of several illnesses, as shown by a plethora of research. However, as this area of research rapidly develops, several issues with this delivery technique have emerged, most often as a result of its intrinsic limits. To increase the effectiveness and security of this system, several cutting-edge technologies are being developed concurrently. However, the advancement of MSC applicability in clinical practice is severely hampered by the absence of standardized methodologies for assessing cell safety, effectiveness, and biodistribution. In this work, the biodistribution and systemic safety of MSCs are highlighted as we assess the status of MSC-based cell therapy at this time. We also examine the underlying mechanisms of MSCs to better understand the risks of tumor initiation and propagation. Methods for MSC biodistribution are explored, as well as the pharmacokinetics and pharmacodynamics of cell therapies. We also highlight various promising technologies, such as nanotechnology, genome engineering technology, and biomimetic technology, to enhance MSC-DDS. For statistical analysis, we used analysis of variance (ANOVA), Kaplan Meier, and log-rank tests. In this work, we created a shared DDS medication distribution network using an extended enhanced optimization approach called enhanced particle swarm optimization (E-PSO). To identify the considerable untapped potential and highlight promising future research paths, we highlight the use of MSCs in gene delivery and medication, also membrane-coated MSC nanoparticles, for treatment and drug delivery.
Collapse
|
13
|
Mansour A, Romani M, Acharya AB, Rahman B, Verron E, Badran Z. Drug Delivery Systems in Regenerative Medicine: An Updated Review. Pharmaceutics 2023; 15:pharmaceutics15020695. [PMID: 36840018 PMCID: PMC9967372 DOI: 10.3390/pharmaceutics15020695] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Modern drug discovery methods led to evolving new agents with significant therapeutic potential. However, their properties, such as solubility and administration-related challenges, may hinder their benefits. Moreover, advances in biotechnology resulted in the development of a new generation of molecules with a short half-life that necessitates frequent administration. In this context, controlled release systems are required to enhance treatment efficacy and improve patient compliance. Innovative drug delivery systems are promising tools that protect therapeutic proteins and peptides against proteolytic degradation where controlled delivery is achievable. The present review provides an overview of different approaches used for drug delivery.
Collapse
Affiliation(s)
- Alaa Mansour
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Maya Romani
- Department of Family Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | | | - Betul Rahman
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence:
| | - Elise Verron
- CNRS, CEISAM, UMR 6230, Nantes Université, F-44000 Nantes, France
| | - Zahi Badran
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
14
|
Recent Developments in Polymer Nanocomposites for Bone Regeneration. Int J Mol Sci 2023; 24:ijms24043312. [PMID: 36834724 PMCID: PMC9959928 DOI: 10.3390/ijms24043312] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Most people who suffer acute injuries in accidents have fractured bones. Many of the basic processes that take place during embryonic skeletal development are replicated throughout the regeneration process that occurs during this time. Bruises and bone fractures, for example, serve as excellent examples. It almost always results in a successful recovery and restoration of the structural integrity and strength of the broken bone. After a fracture, the body begins to regenerate bone. Bone formation is a complex physiological process that requires meticulous planning and execution. A normal healing procedure for a fracture might reveal how the bone is constantly rebuilding as an adult. Bone regeneration is becoming more dependent on polymer nanocomposites, which are composites made up of a polymer matrix and a nanomaterial. This study will review polymer nanocomposites that are employed in bone regeneration to stimulate bone regeneration. As a result, we will introduce the role of bone regeneration nanocomposite scaffolds, and the nanocomposite ceramics and biomaterials that play a role in bone regeneration. Aside from that, recent advances in polymer nanocomposites might be used in a variety of industrial processes to help people with bone defects overcome their challenges will be discussed.
Collapse
|
15
|
Khatami F, Vilamová Š, Cagno E, De Bernardi P, Neri A, Cantino V. Efficiency of consumer behaviour and digital ecosystem in the generation of the plastic waste toward the circular economy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116555. [PMID: 36302300 DOI: 10.1016/j.jenvman.2022.116555] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/08/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
A circular economy can help reduce the impact of plastic waste using reaction, resilient, and digital approaches. In addition, it can facilitate reducing plastic consumption. In this regard, consumer behaviour and digitalization are deemed to be two main factors that play major roles in the implementation of a circular economy of plastic waste. The idea of this paper is to understand the relevance of consumer behaviour and digital ecosystem efficiency on plastic waste at the country level. Hence, the efficiency of eight European countries in the generation of plastic waste was analysed using international databases and the statistical method of receiver operation characteristic (ROC). For this purpose, the dependent actual state variables were defined as plastic waste generations, and the independent test variables were defined as digital ecosystem and consumer behaviour factors. ROC plots for the determination of the area under the curve (AUC) indices were produced between the mentioned state and test variables. The results revealed that consumer behaviour increases the higher generation of plastic waste (AUC >0.6), indicating that consumer behaviours have high effectiveness on the generation of plastic waste in European countries. Furthermore, the results indicated that the digital ecosystem has a controlling role in the generation of plastic waste in the study area (AUC <0.5), indicating the digital ecosystem factors associated with the low generation of plastic waste. The overall consumer behaviour in the selected European countries showed an unskilled role regarding the higher generation of plastic waste, while the digital ecosystem context showed a mitigating role in decreasing plastic pollution. The confirmation of the research hypotheses leads to some managerial propositions for the circular economy of plastic waste in the area of consumer behaviour and digitalization. The results propose an elaborated framework, including a reduction in waste generation, recycling in waste circulation, recovery in waste valorization, and efficiency in resource consumption by the digitalization of design technology and education in consumer behaviour for the circular management of plastic waste.
Collapse
Affiliation(s)
- Fahimeh Khatami
- Department of Management, University of Torino, Turin, Italy.
| | - Šárka Vilamová
- Department of Industrial Systems Management, Faculty of Materials Science and Technology, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Czech Republic.
| | - Enrico Cagno
- Dept. Management, Economics and Industrial Engineering, POLITECNICO DI MILANO, Via Lambruschini 4/b - Building 26/B, 20156, Milano, Italy.
| | | | - Alessandra Neri
- Dept. Management, Economics and Industrial Engineering, POLITECNICO DI MILANO, Via Lambruschini 4/b - Building 26/B, 20156, Milano, Italy.
| | - Valter Cantino
- Department of Management, University of Torino, Turin, Italy.
| |
Collapse
|
16
|
Soozanipour A, Ejeian F, Boroumand Y, Rezayat A, Moradi S. Biotechnological advancements towards water, food and medical healthcare: A review. CHEMOSPHERE 2023; 312:137185. [PMID: 36368538 DOI: 10.1016/j.chemosphere.2022.137185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/21/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The global health status is highly affected by the growing pace of urbanization, new lifestyles, climate changes, and resource exploitation. Modern technologies pave a promising way to deal with severe concerns toward sustainable development. Herein, we provided a comprehensive review of some popular biotechnological advancements regarding the progress achieved in water, food, and medicine, as the most substantial fields related to public health. The emergence of novel organic/inorganic materials has brought about significant improvement in conventional water treatment techniques, anti-fouling approaches, anti-microbial agents, food processing, biosensors, drug delivery systems, and implants. Particularly, a growing interest has been devoted to nanomaterials and their application for developing novel structures or improving the characteristics of standard components. Also, bioinspired materials have been widely used to improve the performance, efficiency, accuracy, stability, safety, and cost-effectiveness of traditional systems. On the other side, the fabrication of innovative devices for precisely monitoring and managing various ecosystem and human health issues is of great importance. Above all, exceptional advancements in designing ion-selective electrodes (ISEs), microelectromechanical systems (MEMs), and implantable medical devices have altered the future landscape of environmental and biomedical research. This review paper aimed to shed light on the wide-ranging materials and devices that have been developed for health applications and mainly focused on the impact of nanotechnology in this field.
Collapse
Affiliation(s)
- Asieh Soozanipour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Fatemeh Ejeian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Yasaman Boroumand
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Azam Rezayat
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran; Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, 68151-44316, Iran
| | - Sina Moradi
- School of Chemical Engineering, University of New South Wales, Sydney, 2052, Australia; Artificial Intelligence Centre of Excellence (AI CoE), NCSI Australia, Sydney, NSW, 2113, Australia.
| |
Collapse
|
17
|
Management of bone diseases: looking at scaffold-based strategies for drug delivery. Drug Deliv Transl Res 2023; 13:79-104. [PMID: 35816230 DOI: 10.1007/s13346-022-01191-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 12/13/2022]
Abstract
The bone tissue can regenerate itself completely and continuously; however, large-scale bone defects may overpower this self-regenerative process. Furthermore, the aging population, the increment in obesity incidence, and the sedentary lifestyles are serious risk factors for bone diseases' development which are associated with the self-regenerative process's failure, high morbidity, and mortality rates. Thus, there is an ever-growing need for strategic approaches targeting bone replacement, its remodelling, and its regeneration. Bone scaffolds have successfully been used as synthetic bone grafts for many years, yet recent bone tissue engineering strategies attempt to explore their multifunctionality by investigating them as drug delivery systems. Bone diseases' treatments can be substantially difficult due to the avascular nature of the surrounding cartilage; thus, targeted drug delivery to the bone can be advantageous: it provides local high drug concentrations and minimizes adverse effects while securing a space for new, healthy tissue growth. Despite the promising scientific progress, studies underlining bone scaffolds' use as local drug delivery systems are not abundant. Hence, this work reviews bone scaffolds' therapeutic interest for local drug delivery in five distinct bone disorders-osteomyelitis, osteoporosis, osteoarthritis, osteosarcoma, and cancer bone metastasis. Additionally, it presents the challenges of this possible therapeutic approach and its future perspectives. Albeit bone scaffolds present therapeutic benefits by acting as drug delivery systems, further pre-clinical and clinical assessments are needed to strengthen their understanding and enable research evidence translation into clinical practice. The mismatch between scientific evolution and regulatory frameworks remains one of the major future challenges.
Collapse
|
18
|
Yoosefi S, Esfandyari-Manesh M, Ghorbani-Bidkorpeh F, Ahmadi M, Moraffah F, Dinarvand R. Novel biodegradable molecularly imprinted polymer nanoparticles for drug delivery of methotrexate anti-cancer; synthesis, characterization and cellular studies. Daru 2022; 30:289-302. [PMID: 36087235 PMCID: PMC9715907 DOI: 10.1007/s40199-022-00447-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 08/09/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Recently biodegradable nanoparticles are the center of attention for the development of drug delivery systems. Molecularly imprinted polymer (MIP) is an interesting candidate for designing drug nano-carriers. MIP-based nanoparticles could be used for cancer treatment and exhibited the potential to fill gaps regarding to ligand-based nanomaterials. Also, the presence of a cross-linker can play an essential role in nanoparticle stability and physicochemical properties of nanoparticles after synthesis. OBJECTIVES In this research, a biodegradable drug delivery system based on MIP nanoparticles was prepared using a biodegradable cross-linker (dimethacryloyl hydroxylamine, DMHA) for methotrexate (MTX). A hydrolysable functional group CO-O-NH-CO was added to the crosslinking agent to increase the final biodegradability of the polymer. METHODS Firstly, a biodegradable cross-linker was synthesized. Then, the non-imprinted polymers were prepared through mini-emulsion polymerization in the absence of a template; and efficient particle size distribution was determined. Finally, methotrexate was placed in imprinted polymers to achieve the desired MIP. Different types of MIPs were synthesized using different molar ratios of template, cross-linker, and functional monomer, and the optimal molar ratio was obtained at 1:4:20, respectively. RESULTS HNMR successfully confirmed the chemical structure of the cross-linker. According to SEM images, nanoparticles had a spherical shape with a smooth surface. The imprinted nanoparticles showed a narrow size distribution with an average of 120 nm at a high ratio of cross-linker. The drug loading and entrapment efficiency were 6.4% and 92%, respectively. The biodegradability studies indicated that the nanoparticles prepared by DMHA had a more degradability rate than ethylene glycol dimethacrylate as a conventional cross-linker. Also, the polymer degradation rate was higher in alkaline environments. Release studies in physiological and alkaline buffer showed an initial burst release of a quarter of loaded MTX during the day and a 70% release during a week. The Korsmeyer-Peppas model described the release pattern. The cytotoxicity of MTX loaded in nanoparticles was studied on the MCF-7 cell line, and the IC50 was 3.54 μg/ml. CONCLUSION It was demonstrated that nanoparticles prepared by DMHA have the potential to be used as biodegradable drug carriers for anticancer delivery. Synthesis schema of molecular imprinting of methotrexate in biodegradable polymer based on dimethacryloyl hydroxylamine cross-linker, for use as nanocarrier anticancer delivery to breast tumor.
Collapse
Affiliation(s)
- Sepideh Yoosefi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Esfandyari-Manesh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahnaz Ahmadi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moraffah
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Stepanova M, Dobrodumov A, Averianov I, Gofman I, Nashchekina J, Guryanov I, Klyukin I, Zhdanov A, Korzhikova-Vlakh E, Zhizhin K. Design, Fabrication and Characterization of Biodegradable Composites Containing Closo-Borates as Potential Materials for Boron Neutron Capture Therapy. Polymers (Basel) 2022; 14:polym14183864. [PMID: 36146012 PMCID: PMC9506383 DOI: 10.3390/polym14183864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 12/04/2022] Open
Abstract
Boron neutron capture therapy (BNCT) has been recognized as a very promising approach for cancer treatment. In the case of osteosarcoma, boron-containing scaffolds can be a powerful tool to combine boron delivery to the tumor cells and the repair of postoperative bone defects. Here we describe the fabrication and characterization of novel biodegradable polymer composites as films and 3D-printed matrices based on aliphatic polyesters containing closo-borates (CB) for BNCT. Different approaches to the fabrication of composites have been applied, and the mechanical properties of these composites, kinetics of their degradation, and the release of closo-borate have been studied. The most complex scaffold was a 3D-printed poly(ε-caprolactone) matrix filled with CB-containing alginate/gelatin hydrogel to enhance biocompatibility. The results obtained allowed us to confirm the high potential of the developed composite materials for application in BNCT and bone tissue regeneration.
Collapse
Affiliation(s)
- Mariia Stepanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
- Correspondence: (M.S.); (I.G.)
| | - Anatoliy Dobrodumov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Ilia Averianov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Iosif Gofman
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Juliya Nashchekina
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Ivan Guryanov
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg 198504, Russia
- Correspondence: (M.S.); (I.G.)
| | - Ilya Klyukin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Andrey Zhdanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg 198504, Russia
| | - Konstantin Zhizhin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
20
|
Anjum S, Rahman F, Pandey P, Arya DK, Alam M, Rajinikanth PS, Ao Q. Electrospun Biomimetic Nanofibrous Scaffolds: A Promising Prospect for Bone Tissue Engineering and Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23169206. [PMID: 36012473 PMCID: PMC9408902 DOI: 10.3390/ijms23169206] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Skeletal-related disorders such as arthritis, bone cancer, osteosarcoma, and osteoarthritis are among the most common reasons for mortality in humans at present. Nanostructured scaffolds have been discovered to be more efficient for bone regeneration than macro/micro-sized scaffolds because they sufficiently permit cell adhesion, proliferation, and chemical transformation. Nanofibrous scaffolds mimicking artificial extracellular matrices provide a natural environment for tissue regeneration owing to their large surface area, high porosity, and appreciable drug loading capacity. Here, we review recent progress and possible future prospective electrospun nanofibrous scaffolds for bone tissue engineering. Electrospun nanofibrous scaffolds have demonstrated promising potential in bone tissue regeneration using a variety of nanomaterials. This review focused on the crucial role of electrospun nanofibrous scaffolds in biological applications, including drug/growth factor delivery to bone tissue regeneration. Natural and synthetic polymeric nanofibrous scaffolds are extensively inspected to regenerate bone tissue. We focused mainly on the significant impact of nanofibrous composite scaffolds on cell adhesion and function, and different composites of organic/inorganic nanoparticles with nanofiber scaffolds. This analysis provides an overview of nanofibrous scaffold-based bone regeneration strategies; however, the same concepts can be applied to other organ and tissue regeneration tactics.
Collapse
Affiliation(s)
- Shabnam Anjum
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| | - Farheen Rahman
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Mahmood Alam
- Department of Clinical Medicine, China Medical University, Shenyang 110122, China
| | - Paruvathanahalli Siddalingam Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
- Correspondence: (P.S.R.); (Q.A.)
| | - Qiang Ao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Correspondence: (P.S.R.); (Q.A.)
| |
Collapse
|
21
|
Zhang S, Shah SAUM, Basharat K, Qamar SA, Raza A, Mohamed A, Bilal M, Iqbal HM. Silk-based nano-hydrogels for futuristic biomedical applications. J Drug Deliv Sci Technol 2022; 72:103385. [DOI: 10.1016/j.jddst.2022.103385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Wu H, Yin G, Pu X, Wang J, Liao X, Huang Z. Coordination of Osteoblastogenesis and Osteoclastogenesis by the Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Matrix To Promote Bone Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:2913-2927. [DOI: 10.1021/acsabm.2c00264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Huan Wu
- College of Biomedical Engineering, Sichuan University, No.24, South 1st Section, 1st Ring Road, Chengdu 610064, P. R. China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, No.24, South 1st Section, 1st Ring Road, Chengdu 610064, P. R. China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, No.24, South 1st Section, 1st Ring Road, Chengdu 610064, P. R. China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, No.24, South 1st Section, 1st Ring Road, Chengdu 610064, P. R. China
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, No.24, South 1st Section, 1st Ring Road, Chengdu 610064, P. R. China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, No.24, South 1st Section, 1st Ring Road, Chengdu 610064, P. R. China
| |
Collapse
|
23
|
Basanth A, Mayilswamy N, Kandasubramanian B. Bone regeneration by biodegradable polymers. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2029886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Abina Basanth
- Biopolymer Science, Cipet: Ipt, Hil Colony, Kochi, India
| | - Neelaambhigai Mayilswamy
- Department Of Metallurgical And Materials Engineering, Diat(D.U.), Ministry Of Defence, Girinagar, Pune, India
| | | |
Collapse
|
24
|
Comparison of Physicochemical, Mechanical, and (Micro-)Biological Properties of Sintered Scaffolds Based on Natural- and Synthetic Hydroxyapatite Supplemented with Selected Dopants. Int J Mol Sci 2022; 23:ijms23094692. [PMID: 35563084 PMCID: PMC9101299 DOI: 10.3390/ijms23094692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
The specific combinations of materials and dopants presented in this work have not been previously described. The main goal of the presented work was to prepare and compare the different properties of newly developed composite materials manufactured by sintering. The synthetic- (SHAP) or natural- (NHAP) hydroxyapatite serves as a matrix and was doped with: (i) organic: multiwalled carbon nanotubes (MWCNT), fullerenes C60, (ii) inorganic: Cu nanowires. Research undertaken was aimed at seeking novel candidates for bone replacement biomaterials based on hydroxyapatite—the main inorganic component of bone, because bone reconstructive surgery is currently mostly carried out with the use of autografts; titanium or other non-hydroxyapatite -based materials. The physicomechanical properties of the developed biomaterials were tested by Scanning Electron Microscopy (SEM), Dielectric Spectroscopy (BSD), Nuclear Magnetic Resonance (NMR), and Differential Scanning Calorimetry (DSC), as well as microhardness using Vickers method. The results showed that despite obtaining porous sinters. The highest microhardness was achieved for composite materials based on NHAP. Based on NMR spectroscopy, residue organic substances could be observed in NHAP composites, probably due to the organic structures that make up the tooth. Microbiology investigations showed that the selected samples exhibit bacteriostatic properties against Gram-positive reference bacterial strain S. epidermidis (ATCC 12228); however, the property was much less pronounced against Gram-negative reference strain E. coli (ATCC 25922). Both NHAP and SHAP, as well as their doped derivates, displayed in good general compatibility, with the exception of Cu-nanowire doped derivates.
Collapse
|
25
|
Wang C, Ma Z, Yuan K, Ji T. Using scaffolds as drug delivery systems to treat bone tumor. NANOTECHNOLOGY 2022; 33:212002. [PMID: 35092950 DOI: 10.1088/1361-6528/ac5017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Surgery is the principal strategy to treat osteosarcoma and other types of bone tumors, but it causes bone defects that cannot be healed spontaneously. After surgery, patients still need to receive radiotherapy and/or chemotherapy to prevent tumor recurrence and metastasis, which leads to systemic side effects. Bone scaffolds exhibit the potentials to load cargos (drugs or growth factors) and act as drug delivery systems (DDSs) in the osteosarcoma postoperative treatment. This review introduces current types of bone scaffolds and highlights representative works using scaffolds as DDSs to treat osteosarcomas. Challenges and perspectives in the scaffold-based DDSs are also discussed. This review may provide references to develop effective and safe strategies for osteosarcoma postoperative treatment.
Collapse
Affiliation(s)
- Caifeng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zijiu Ma
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Kemeng Yuan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
26
|
Park SY, Yun YH, Park BJ, Seo HI, Chung I. Fabrication and Biological Activities of Plasmid DNA Gene Carrier Nanoparticles Based on Biodegradable l-Tyrosine Polyurethane. Pharmaceuticals (Basel) 2021; 15:ph15010017. [PMID: 35056074 PMCID: PMC8780858 DOI: 10.3390/ph15010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 12/04/2022] Open
Abstract
Gene therapy is a suitable alternative to chemotherapy due to the complications of drug resistance and toxicity of drugs, and is also known to reduce the occurrence of cellular mutation through the use of gene carriers. In this study, gene carrier nanoparticles with minimal toxicity and high transfection efficiency were fabricated from a biocompatible and biodegradable polymer, l-tyrosine polyurethane (LTU), which was polymerized from presynthesized desaminotyrosyl tyrosine hexyl ester (DTH) and polyethylene glycol (PEG), by using double emulsion and solvent evaporation techniques, resulting in the formation of porous nanoparticles, and then used to evaluate their potential biological activities through molecular controlled release and transfection studies. To assess cellular uptake and transfection efficiency, two model drugs, fluorescently labeled bovine serum albumin (FITC-BSA) and plasmid DNA-linear polyethylenimine (LPEI) complex, were successfully encapsulated in nanoparticles, and their transfection properties and cytotoxicities were evaluated in LX2 as a normal cell and in HepG2 and MCF7 as cancer cells. The morphology and average diameter of the LTU nanoparticles were confirmed using light microscopy, transmission electron microscopy, and dynamic light scattering, while confocal microscopy was used to validate the cellular uptake of FITC-BSA-encapsulated LTU nanoparticles. Moreover, the successful cellular uptake of LTU nanoparticles encapsulated with pDNA-LPEI and the high transfection efficiency, confirmed by gel electrophoresis and X-gal assay transfection, indicated that LTU nanoparticles had excellent cell adsorption ability, facilitated gene encapsulation, and showed the sustained release tendency of genes through transfection experiments, with an optimal concentration ratio of pDNA and LPEI of 1:10. All the above characteristics are ideal for gene carriers designed to transport and release drugs into the cytoplasm, thus facilitating effective gene therapy.
Collapse
Affiliation(s)
- Soo-Yong Park
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea;
| | - Yang H. Yun
- Department of Biomedical Engineering, College of Engineering, The University of Akron, Akron, OH 44325, USA;
| | - Bum-Joon Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46241, Korea;
| | - Hyung-Il Seo
- Department of Surgery, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea;
| | - Ildoo Chung
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea;
- Correspondence:
| |
Collapse
|
27
|
Demirdogen RE, Emen FM, Karaçolak AI, Kılıç D, Kutlu E, Meral O. Preparation of novel CaMoO4:Eu3+-MCM-41 nanocomposites and their applications and monitoring as drug release systems. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Cellulose Acetate Nanofibers: Incorporating Hydroxyapatite (HA), HA/Berberine or HA/Moghat Composites, as Scaffolds to Enhance In Vitro Osteoporotic Bone Regeneration. Polymers (Basel) 2021; 13:polym13234140. [PMID: 34883645 PMCID: PMC8659966 DOI: 10.3390/polym13234140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 12/19/2022] Open
Abstract
The specific objective of this study was to stabilize a simple valid method to prepare pure nanorod hydroxyapatite (HA) mixed with berberine chloride (BER) and Moghat water extract (ME) as composites for incorporation into cellulose acetate (CA) nanofibers to be used as novel bone scaffolds and to determine their efficacy in bone regeneration process In Vitro. Preparation of HA/BER and HA/ME composites were performed by mixing powders using the ball-milling machine. The HA, HA/BER, and HA/ME composites at a concentration of 6.25, 12.5, 25, 50, 100, and 200 mg were mixed with CA solution (13%), then the fiber was formed using electrospinning technique. The properties of the obtained CA fibers were investigated (SEM, TEM, EDX, FTIR, TGA, water uptake, porosity, and mechanical tests). The efficacy of HA and HA composites loaded into CA nanofiber on osteoblast and osteoclast differentiation were measured by tacking ALP, osteocalcin, TRAcP, calcium, and total protein concentration. Moreover, their effects on cell differentiation (CD90 and PARP- ɣ) and death markers (GSK3b, MAPK, Wnt-5 and β-catenin) were evaluated by using ELISA and qPCR. The obtained TEM results indicated that the continuous CA and CA/HA composites electrospun fibers have ultrafine fiber diameters of about 200 nm and uniform distribution of discrete n-HA clusters throughout. In addition, hydrocortisone (HCT) was found to increase the formation of adipocytes and osteoclastic markers CD90 and p38-MAPK which indicated the bone lose process take placed. Treatment with CA loaded with HA, HA/BER or HA/ME decreased CD90, Wnt-5, PARP- ɣ, GSK3b and p38-MAPK associated elevation of osteogenic markers: ALP and osteocalcin. Moreover, HCT overexpressed RANKL and down expressed Osterix gene. Treatment with CA/HA/BER or CA/HA/ME downregulated RANKL and upregulated Osterix associated with a reduction in RANKL/OPG ratio, at p < 0.05. In conclusion, novel CA composite nanofibers (CA/HA/BER and CA/HA/ME) reversed the HCT adverse effect on osteoblast cell death through canonical and non-canonical pathways regulated by Wnt/β-catenin and Wnt/Ca(2+) pathways. Furthermore, our data confirmed that the novel scaffolds create a crosstalk between RUNX-2, RANKL, p38-MAPK, and Wnt signals which positively impact bone regeneration process. Treatment with CA/HA/BER is better compared to the treatment with CA/HA/ME. Nevertheless, both are considered as alternative biomaterial scaffolds with a potential for biomedical applications in the field of bone tissue engineering.
Collapse
|
29
|
Yu Z, Ren H, Zhang Y, Qiao Y, Wang C, Yang T, Wu H. Improved Synthesis of a Novel Biodegradable Tunable Micellar Polymer Based on Partially Hydrogenated Poly(β-malic Acid-co-benzyl Malate). Molecules 2021; 26:molecules26237169. [PMID: 34885750 PMCID: PMC8658956 DOI: 10.3390/molecules26237169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 01/20/2023] Open
Abstract
Poly(benzyl malate) (PBM), together with its derivatives, have been studied as nanocarriers for biomedical applications due to their superior biocompatibility and biodegradability. The acquisition of PBM is primarily from chemical routes, which could offer polymer-controlled molecular weight and a unique controllable morphology. Nowadays, the frequently used synthesis from L-aspartic acid gives an overall yield of 4.5%. In this work, a novel synthesis route with malic acid as the initiator was successfully designed and optimized, increasing the reaction yield up to 31.2%. Furthermore, a crystalline form of PBM (PBM-2) that polymerized from high optical purity benzyl-β-malolactonate (MLABn) was discovered during the optimization process. X-ray diffraction (XRD) patterns revealed that the crystalline PBM-2 had obvious diffraction peaks, demonstrating that its internal atoms were arranged in a more orderly manner and were different from the amorphous PBM-1 prepared from the racemic MLABn. The differential scanning calorimetry (DSC) curves and thermogravimetric curves elucidated the diverse thermal behaviors between PBM-1 and PBM-2. The degradation curves and scanning electron microscopy (SEM) images further demonstrated the biodegradability of PBM, which have different crystal structures. The hardness of PBM-2 implied the potential application in bone regeneration, while it resulted in the reduction of solubility when compared with PBM-1, which made it difficult to be dissolved and hydrogenated. The solution was therefore heated up to 75 °C to achieve benzyl deprotection, and a series of partially hydrogenated PBM was sequent prepared. Their optimal hydrogenation rates were screened to determine the optimal conditions for the formation of micelles suitable for drug-carrier applications. In summary, the synthesis route from malic acid facilitated the production of PBM for a shorter time and with a higher yield. The biodegradability, biosafety, mechanical properties, and adjustable hydrogenation widen the application of PBM with tunable properties as drug carriers.
Collapse
Affiliation(s)
- Zhe Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi’an 710032, China; (Z.Y.); (Y.Z.); (Y.Q.); (C.W.)
| | - Haozhe Ren
- Health Science Center, Xi’an Jiaotong University, Xi’an 710032, China;
| | - Yu Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi’an 710032, China; (Z.Y.); (Y.Z.); (Y.Q.); (C.W.)
| | - Youbei Qiao
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi’an 710032, China; (Z.Y.); (Y.Z.); (Y.Q.); (C.W.)
| | - Chaoli Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi’an 710032, China; (Z.Y.); (Y.Z.); (Y.Q.); (C.W.)
| | - Tiehong Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi’an 710032, China; (Z.Y.); (Y.Z.); (Y.Q.); (C.W.)
- Correspondence: (T.Y.); (H.W.)
| | - Hong Wu
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi’an 710032, China; (Z.Y.); (Y.Z.); (Y.Q.); (C.W.)
- Correspondence: (T.Y.); (H.W.)
| |
Collapse
|
30
|
Sukpaita T, Chirachanchai S, Pimkhaokham A, Ampornaramveth RS. Chitosan-Based Scaffold for Mineralized Tissues Regeneration. Mar Drugs 2021; 19:551. [PMID: 34677450 PMCID: PMC8540467 DOI: 10.3390/md19100551] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 12/20/2022] Open
Abstract
Conventional bone grafting procedures used to treat bone defects have several limitations. An important aspect of bone tissue engineering is developing novel bone substitute biomaterials for bone grafts to repair orthopedic defects. Considerable attention has been given to chitosan, a natural biopolymer primarily extracted from crustacean shells, which offers desirable characteristics, such as being biocompatible, biodegradable, and osteoconductive. This review presents an overview of the chitosan-based biomaterials for bone tissue engineering (BTE). It covers the basic knowledge of chitosan in terms of biomaterials, the traditional and novel strategies of the chitosan scaffold fabrication process, and their advantages and disadvantages. Furthermore, this paper integrates the relevant contributions in giving a brief insight into the recent research development of chitosan-based scaffolds and their limitations in BTE. The last part of the review discusses the next-generation smart chitosan-based scaffold and current applications in regenerative dentistry and future directions in the field of mineralized tissue regeneration.
Collapse
Affiliation(s)
- Teerawat Sukpaita
- Research Unit on Oral Microbiology and Immunology, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Suwabun Chirachanchai
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand;
- Bioresources Advanced Materials (B2A), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Atiphan Pimkhaokham
- Bioresources Advanced Materials (B2A), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | | |
Collapse
|
31
|
Impacts of Plastic Pollution on Ecosystem Services, Sustainable Development Goals, and Need to Focus on Circular Economy and Policy Interventions. SUSTAINABILITY 2021. [DOI: 10.3390/su13179963] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Plastic pollution is ubiquitous in terrestrial and aquatic ecosystems. Plastic waste exposed to the environment creates problems and is of significant concern for all life forms. Plastic production and accumulation in the natural environment are occurring at an unprecedented rate due to indiscriminate use, inadequate recycling, and deposits in landfills. In 2019, the global production of plastic was at 370 million tons, with only 9% of it being recycled, 12% being incinerated, and the remaining left in the environment or landfills. The leakage of plastic wastes into terrestrial and aquatic ecosystems is occurring at an unprecedented rate. The management of plastic waste is a challenging problem for researchers, policymakers, citizens, and other stakeholders. Therefore, here, we summarize the current understanding and concerns of plastics pollution (microplastics or nanoplastics) on natural ecosystems. The overall goal of this review is to provide background assessment on the adverse effects of plastic pollution on natural ecosystems; interlink the management of plastic pollution with sustainable development goals; address the policy initiatives under transdisciplinary approaches through life cycle assessment, circular economy, and sustainability; identify the knowledge gaps; and provide current policy recommendations. Plastic waste management through community involvement and socio-economic inputs in different countries are presented and discussed. Plastic ban policies and public awareness are likely the major mitigation interventions. The need for life cycle assessment and circularity to assess the potential environmental impacts and resources used throughout a plastic product’s life span is emphasized. Innovations are needed to reduce, reuse, recycle, and recover plastics and find eco-friendly replacements for plastics. Empowering and educating communities and citizens to act collectively to minimize plastic pollution and use alternative options for plastics must be promoted and enforced. Plastic pollution is a global concern that must be addressed collectively with the utmost priority.
Collapse
|
32
|
Bădilă AE, Rădulescu DM, Niculescu AG, Grumezescu AM, Rădulescu M, Rădulescu AR. Recent Advances in the Treatment of Bone Metastases and Primary Bone Tumors: An Up-to-Date Review. Cancers (Basel) 2021; 13:4229. [PMID: 34439383 PMCID: PMC8392383 DOI: 10.3390/cancers13164229] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/14/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
In the last decades, the treatment of primary and secondary bone tumors has faced a slow-down in its development, being mainly based on chemotherapy, radiotherapy, and surgical interventions. However, these conventional therapeutic strategies present a series of disadvantages (e.g., multidrug resistance, tumor recurrence, severe side effects, formation of large bone defects), which limit their application and efficacy. In recent years, these procedures were combined with several adjuvant therapies, with different degrees of success. To overcome the drawbacks of current therapies and improve treatment outcomes, other strategies started being investigated, like carrier-mediated drug delivery, bone substitutes for repairing bone defects, and multifunctional scaffolds with bone tissue regeneration and antitumor properties. Thus, this paper aims to present the types of bone tumors and their current treatment approaches, further focusing on the recent advances in new therapeutic alternatives.
Collapse
Affiliation(s)
- Adrian Emilian Bădilă
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.E.B.); (D.M.R.); (A.R.R.)
- Department of Orthopedics and Traumatology, Bucharest University Hospital, 050098 Bucharest, Romania
| | - Dragoș Mihai Rădulescu
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.E.B.); (D.M.R.); (A.R.R.)
- Department of Orthopedics and Traumatology, Bucharest University Hospital, 050098 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.-G.N.); (A.M.G.)
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.-G.N.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 50044 Bucharest, Romania
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Adrian Radu Rădulescu
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.E.B.); (D.M.R.); (A.R.R.)
- Department of Orthopedics and Traumatology, Bucharest University Hospital, 050098 Bucharest, Romania
| |
Collapse
|
33
|
Obireddy SR, Lai WF. Preparation and characterization of 2-hydroxyethyl starch microparticles for co-delivery of multiple bioactive agents. Drug Deliv 2021; 28:1562-1568. [PMID: 34286634 PMCID: PMC8297403 DOI: 10.1080/10717544.2021.1955043] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The present study reports the generation of 2-hydroxyethyl starch microparticles for co-delivery and controlled release of multiple agents. The obtained microparticles are characterized by using Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction analysis, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. By using ofloxacin and ketoprofen as drug models, the release sustainability of the microparticles is examined at pH 1.2, 5.4, and 6.8 at 37 °C, with Fickian diffusion being found to be the major mechanism controlling the kinetics of drug release. Upon being loaded with the drug models, the microparticles show high efficiency in acting against Escherichia coli and Bacillus cereus. The results suggest that our reported microparticles warrant further development for applications in which co-administration of multiple bioactive agents is required.
Collapse
Affiliation(s)
| | - Wing-Fu Lai
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China.,Ciechanover Institute of Precision and Regenerative Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China.,School of Education, University of Bristol, Bristol, UK
| |
Collapse
|
34
|
Antibacterial Poly(ε-CL)/Hydroxyapatite Electrospun Fibers Reinforced by Poly(ε-CL)- b-poly(ethylene phosphoric acid). Int J Mol Sci 2021; 22:ijms22147690. [PMID: 34299308 PMCID: PMC8303461 DOI: 10.3390/ijms22147690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
In bone surgery and orthopedics, bioresorbable materials can be helpful in bone repair and countering post-op infections. Explicit antibacterial activity, osteoinductive and osteoconductive effects are essential to achieving this objective. Nonwoven electrospun (ES) fibers are receiving the close attention of physicians as promising materials for wound dressing and tissue engineering; potentially, in high contrast with dense materials, ES mats hamper regeneration of the bone extracellular matrix to a lesser extent. The use of the compositions of inherently biodegradable polyesters (poly(ε-caprolactone) PCL, poly(lactoglycolide), etc.), calcium phosphates and antibiotics is highly prospective, but the task of forming ES fibers from such compositions is complicated by the incompatibility of the main organic and inorganic ingredients, polyesters and calcium phosphates. In the present research we report the synthesis of hydroxyapatite (HAp) nanoparticles with uniform morphology, and demonstrate high efficiency of the block copolymer of PCL and poly(ethylene phosphoric acid) (PEPA) as an efficient compatibilizer for PCL/HAp mixtures that are able to form ES fibers with improved mechanical characteristics. The materials obtained in the presence of vancomycin exhibited incremental drug release against Staphylococcus aureus (St. aureus).
Collapse
|
35
|
Bjelić D, Finšgar M. The Role of Growth Factors in Bioactive Coatings. Pharmaceutics 2021; 13:1083. [PMID: 34371775 PMCID: PMC8309025 DOI: 10.3390/pharmaceutics13071083] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022] Open
Abstract
With increasing obesity and an ageing population, health complications are also on the rise, such as the need to replace a joint with an artificial one. In both humans and animals, the integration of the implant is crucial, and bioactive coatings play an important role in bone tissue engineering. Since bone tissue engineering is about designing an implant that maximally mimics natural bone and is accepted by the tissue, the search for optimal materials and therapeutic agents and their concentrations is increasing. The incorporation of growth factors (GFs) in a bioactive coating represents a novel approach in bone tissue engineering, in which osteoinduction is enhanced in order to create the optimal conditions for the bone healing process, which crucially affects implant fixation. For the application of GFs in coatings and their implementation in clinical practice, factors such as the choice of one or more GFs, their concentration, the coating material, the method of incorporation, and the implant material must be considered to achieve the desired controlled release. Therefore, the avoidance of revision surgery also depends on the success of the design of the most appropriate bioactive coating. This overview considers the integration of the most common GFs that have been investigated in in vitro and in vivo studies, as well as in human clinical trials, with the aim of applying them in bioactive coatings. An overview of the main therapeutic agents that can stimulate cells to express the GFs necessary for bone tissue development is also provided. The main objective is to present the advantages and disadvantages of the GFs that have shown promise for inclusion in bioactive coatings according to the results of numerous studies.
Collapse
Affiliation(s)
| | - Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
| |
Collapse
|
36
|
Li H, Li P, Yang Z, Gao C, Fu L, Liao Z, Zhao T, Cao F, Chen W, Peng Y, Yuan Z, Sui X, Liu S, Guo Q. Meniscal Regenerative Scaffolds Based on Biopolymers and Polymers: Recent Status and Applications. Front Cell Dev Biol 2021; 9:661802. [PMID: 34327197 PMCID: PMC8313827 DOI: 10.3389/fcell.2021.661802] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Knee menisci are structurally complex components that preserve appropriate biomechanics of the knee. Meniscal tissue is susceptible to injury and cannot heal spontaneously from most pathologies, especially considering the limited regenerative capacity of the inner avascular region. Conventional clinical treatments span from conservative therapy to meniscus implantation, all with limitations. There have been advances in meniscal tissue engineering and regenerative medicine in terms of potential combinations of polymeric biomaterials, endogenous cells and stimuli, resulting in innovative strategies. Recently, polymeric scaffolds have provided researchers with a powerful instrument to rationally support the requirements for meniscal tissue regeneration, ranging from an ideal architecture to biocompatibility and bioactivity. However, multiple challenges involving the anisotropic structure, sophisticated regenerative process, and challenging healing environment of the meniscus still create barriers to clinical application. Advances in scaffold manufacturing technology, temporal regulation of molecular signaling and investigation of host immunoresponses to scaffolds in tissue engineering provide alternative strategies, and studies have shed light on this field. Accordingly, this review aims to summarize the current polymers used to fabricate meniscal scaffolds and their applications in vivo and in vitro to evaluate their potential utility in meniscal tissue engineering. Recent progress on combinations of two or more types of polymers is described, with a focus on advanced strategies associated with technologies and immune compatibility and tunability. Finally, we discuss the current challenges and future prospects for regenerating injured meniscal tissues.
Collapse
Affiliation(s)
- Hao Li
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Pinxue Li
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Zhen Yang
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Cangjian Gao
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Liwei Fu
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Zhiyao Liao
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Tianyuan Zhao
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Fuyang Cao
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Wei Chen
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Yu Peng
- School of Medicine, Nankai University, Tianjin, China
| | - Zhiguo Yuan
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Sui
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Shuyun Liu
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Quanyi Guo
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
37
|
Khoeini R, Nosrati H, Akbarzadeh A, Eftekhari A, Kavetskyy T, Khalilov R, Ahmadian E, Nasibova A, Datta P, Roshangar L, Deluca DC, Davaran S, Cucchiarini M, Ozbolat IT. Natural and Synthetic Bioinks for 3D Bioprinting. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000097] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Roghayeh Khoeini
- Department of Medicinal Chemistry Faculty of Pharmacy Tabriz University of Medical Sciences P.O. Box: 51664-14766 Tabriz Iran
- Drug Applied Research Center Tabriz University of Medical Sciences P.O. Box: 51656-65811 Tabriz Iran
| | - Hamed Nosrati
- Drug Applied Research Center Tabriz University of Medical Sciences P.O. Box: 51656-65811 Tabriz Iran
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 24, I. Franko Str. 82100 Drohobych Ukraine
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 9 B.Vahabzade Str. 1143 Baku Azerbaijan
| | - Abolfazl Akbarzadeh
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 24, I. Franko Str. 82100 Drohobych Ukraine
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 9 B.Vahabzade Str. 1143 Baku Azerbaijan
- Department of Medical Nanotechnology Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences P.O. Box: 516615731 Tabriz Iran
| | - Aziz Eftekhari
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 24, I. Franko Str. 82100 Drohobych Ukraine
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 9 B.Vahabzade Str. 1143 Baku Azerbaijan
- Russian Institute for Advanced Study Moscow State Pedagogical University 1/1, Malaya Pirogovskaya Street Moscow 119991 Russian Federation
- Pharmacology and Toxicology Department Maragheh University of Medical Sciences 78151-55158 Maragheh Iran
- Department of Synthesis and Characterization of Polymers Polymer Institute Slovak Academy of Sciences (SAS) Dúbravská cesta 9 845 41 Bratislava Slovakia
| | - Taras Kavetskyy
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 24, I. Franko Str. 82100 Drohobych Ukraine
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 9 B.Vahabzade Str. 1143 Baku Azerbaijan
- Department of Biology and Chemistry Drohobych Ivan Franko State Pedagogical University 24, I. Franko Str. 82100 Drohobych Ukraine
- Department of Surface Engineering The John Paul II Catholic University of Lublin 20-950 Lublin Poland
| | - Rovshan Khalilov
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 24, I. Franko Str. 82100 Drohobych Ukraine
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 9 B.Vahabzade Str. 1143 Baku Azerbaijan
- Russian Institute for Advanced Study Moscow State Pedagogical University 1/1, Malaya Pirogovskaya Street Moscow 119991 Russian Federation
- Department of Biophysics and Biochemistry Faculty of Biology Baku State University Baku AZ 1143 Azerbaijan
- Institute of Radiation Problems National Academy of Sciences of Azerbaijan Baku AZ 1143 Azerbaijan
| | - Elham Ahmadian
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 24, I. Franko Str. 82100 Drohobych Ukraine
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 9 B.Vahabzade Str. 1143 Baku Azerbaijan
- Kidney Research Center Tabriz University of Medical Sciences P.O. Box: 5166/15731 Tabriz Iran
| | - Aygun Nasibova
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 24, I. Franko Str. 82100 Drohobych Ukraine
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 9 B.Vahabzade Str. 1143 Baku Azerbaijan
- Institute of Radiation Problems National Academy of Sciences of Azerbaijan Baku AZ 1143 Azerbaijan
| | - Pallab Datta
- Department of Pharmaceutics National Institute of Pharmaceutical Education and Research Kolkata West Bengal 700054 India
| | - Leila Roshangar
- Stem Cell Research Center Tabriz University of Medical Sciences P.O. Box: 5166/15731 Tabriz Iran
| | - Dante C. Deluca
- Agricultural and Biological Engineering Department Penn State University University Park 16802 PA USA
| | - Soodabeh Davaran
- Department of Medicinal Chemistry Faculty of Pharmacy Tabriz University of Medical Sciences P.O. Box: 51664-14766 Tabriz Iran
- Drug Applied Research Center Tabriz University of Medical Sciences P.O. Box: 51656-65811 Tabriz Iran
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 24, I. Franko Str. 82100 Drohobych Ukraine
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems 9 B.Vahabzade Str. 1143 Baku Azerbaijan
- Department of Medical Nanotechnology Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences P.O. Box: 516615731 Tabriz Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics Saarland University Medical Center Kirrbergerstr. Bldg 37 D-66421 Homburg/Saar Germany
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics Department Penn State University University Park 16802 PA USA
- The Huck Institutes of the Life Sciences Penn State University University Park 16802 PA USA
- Biomedical Engineering Department Penn State University University Park 16802 PA USA
- Materials Research Institute Penn State University University Park 16802 PA USA
- Department of Neurosurgery Penn State University Hershey 17033 PA USA
| |
Collapse
|
38
|
Bozorgi A, Khazaei M, Soleimani M, Jamalpoor Z. Application of nanoparticles in bone tissue engineering; a review on the molecular mechanisms driving osteogenesis. Biomater Sci 2021; 9:4541-4567. [PMID: 34075945 DOI: 10.1039/d1bm00504a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The introduction of nanoparticles into bone tissue engineering strategies is beneficial to govern cell fate into osteogenesis and the regeneration of large bone defects. The present study explored the role of nanoparticles to advance osteogenesis with a focus on the cellular and molecular pathways involved. Pubmed, Pubmed Central, Embase, Scopus, and Science Direct databases were explored for those published articles relevant to the involvement of nanoparticles in osteogenic cellular pathways. As multifunctional compounds, nanoparticles contribute to scaffold-free and scaffold-based tissue engineering strategies to progress osteogenesis and bone regeneration. They regulate inflammatory responses and osteo/angio/osteoclastic signaling pathways to generate an osteogenic niche. Besides, nanoparticles interact with biomolecules, enhance their half-life and bioavailability. Nanoparticles are promising candidates to promote osteogenesis. However, the interaction of nanoparticles with the biological milieu is somewhat complicated, and more considerations are recommended on the employment of nanoparticles in clinical applications because of NP-induced toxicities.
Collapse
Affiliation(s)
- Azam Bozorgi
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran and Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran and Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Jamalpoor
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Adamiak K, Lewandowska K, Sionkowska A. The Infuence of Salicin on Rheological and Film-Forming Properties of Collagen. Molecules 2021; 26:molecules26061661. [PMID: 33809811 PMCID: PMC8002410 DOI: 10.3390/molecules26061661] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/04/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022] Open
Abstract
Collagen films are widely used as adhesives in medicine and cosmetology. However, its properties require modification. In this work, the influence of salicin on the properties of collagen solution and films was studied. Collagen was extracted from silver carp skin. The rheological properties of collagen solutions with and without salicin were characterized by steady shear tests. Thin collagen films were prepared by solvent evaporation. The structure of films was researched using infrared spectroscopy. The surface properties of films were investigated using Atomic Force Microscopy (AFM). Mechanical properties were measured as well. It was found that the addition of salicin modified the roughness of collagen films and their mechanical and rheological properties. The above-mentioned parameters are very important in potential applications of collagen films containing salicin.
Collapse
Affiliation(s)
- Katarzyna Adamiak
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87-100 Torun, Poland; (K.A.); (K.L.)
- WellU sp.z.o.o, Wielkopolska 280, 81-531 Gdynia, Poland
| | - Katarzyna Lewandowska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87-100 Torun, Poland; (K.A.); (K.L.)
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87-100 Torun, Poland; (K.A.); (K.L.)
- Correspondence: ; Tel.: +48-56-6114547
| |
Collapse
|
40
|
Montoya C, Du Y, Gianforcaro AL, Orrego S, Yang M, Lelkes PI. On the road to smart biomaterials for bone research: definitions, concepts, advances, and outlook. Bone Res 2021; 9:12. [PMID: 33574225 PMCID: PMC7878740 DOI: 10.1038/s41413-020-00131-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 01/31/2023] Open
Abstract
The demand for biomaterials that promote the repair, replacement, or restoration of hard and soft tissues continues to grow as the population ages. Traditionally, smart biomaterials have been thought as those that respond to stimuli. However, the continuous evolution of the field warrants a fresh look at the concept of smartness of biomaterials. This review presents a redefinition of the term "Smart Biomaterial" and discusses recent advances in and applications of smart biomaterials for hard tissue restoration and regeneration. To clarify the use of the term "smart biomaterials", we propose four degrees of smartness according to the level of interaction of the biomaterials with the bio-environment and the biological/cellular responses they elicit, defining these materials as inert, active, responsive, and autonomous. Then, we present an up-to-date survey of applications of smart biomaterials for hard tissues, based on the materials' responses (external and internal stimuli) and their use as immune-modulatory biomaterials. Finally, we discuss the limitations and obstacles to the translation from basic research (bench) to clinical utilization that is required for the development of clinically relevant applications of these technologies.
Collapse
Affiliation(s)
- Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
| | - Yu Du
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Guangdong Provincial Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Anthony L Gianforcaro
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Maobin Yang
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Peter I Lelkes
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA.
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
41
|
Solvent-Free Processing of Drug-Loaded Poly(ε-Caprolactone) Scaffolds with Tunable Macroporosity by Combination of Supercritical Foaming and Thermal Porogen Leaching. Polymers (Basel) 2021; 13:polym13010159. [PMID: 33406680 PMCID: PMC7795801 DOI: 10.3390/polym13010159] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022] Open
Abstract
Demand of scaffolds for hard tissue repair increases due to a higher incidence of fractures related to accidents and bone-diseases that are linked to the ageing of the population. Namely, scaffolds loaded with bioactive agents can facilitate the bone repair by favoring the bone integration and avoiding post-grafting complications. Supercritical (sc-)foaming technology emerges as a unique solvent-free approach for the processing of drug-loadenu7d scaffolds at high incorporation yields. In this work, medicated poly(ε-caprolactone) (PCL) scaffolds were prepared by sc-foaming coupled with a leaching process to overcome problems of pore size tuning of the sc-foaming technique. The removal of the solid porogen (BA, ammonium bicarbonate) was carried out by a thermal leaching taking place at 37 °C and in the absence of solvents for the first time. Macroporous scaffolds with dual porosity (50-100 µm and 200-400 µm ranges) were obtained and with a porous structure directly dependent on the porogen content used. The processing of ketoprofen-loaded scaffolds using BA porogen resulted in drug loading yields close to 100% and influenced its release profile from the PCL matrix to a relevant clinical scenario. A novel solvent-free strategy has been set to integrate the incorporation of solid porogens in the sc-foaming of medicated scaffolds.
Collapse
|
42
|
Toprak Ö, Topuz B, Monsef YA, Oto Ç, Orhan K, Karakeçili A. BMP-6 carrying metal organic framework-embedded in bioresorbable electrospun fibers for enhanced bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111738. [PMID: 33545881 DOI: 10.1016/j.msec.2020.111738] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022]
Abstract
Biomolecule carrier structures have attracted substantial interest owing to their potential utilizations in the field of bone tissue engineering. In this study, MOF-embedded electrospun fiber scaffold for the controlled release of BMP-6 was developed for the first time, to enrich bone regeneration efficacy. The scaffolds were achieved by first, one-pot rapid crystallization of BMP-6 encapsulated ZIF-8 nanocrystals-as a novel carrier for growth factor molecules- and then electrospinning of the blending solution composed of poly (ε-caprolactone) and BMP-6 encapsulated ZIF-8 nanocrystals. BMP-6 molecule encapsulation efficiency for ZIF-8 nanocrystals was calculated as 98%. The in-vitro studies showed that, the bioactivity of BMP-6 was preserved and the release lasted up to 30 days. The release kinetics fitted the Korsmeyer-Peppas model exhibiting a pseudo-Fickian behavior. The in-vitro osteogenesis studies revealed the superior effect of sustained release of BMP-6 towards osteogenic differentiation of MC3T3-E1 pre-osteoblasts. In-vivo studies also revealed that the sustained slow release of BMP-6 was responsible for the generation of well-mineralized, new bone formation in a rat cranial defect. Our results proved that; MOF-carriers embedded in electrospun scaffolds can be used as an effective platform for bone regeneration in bone tissue engineering applications. The proposed approach can easily be adapted for various growth factor molecules for different tissue engineering applications.
Collapse
Affiliation(s)
- Özge Toprak
- Ankara University, Faculty of Engineering, Chemical Engineering Department, 06100 Ankara, Turkey
| | - Berna Topuz
- Ankara University, Faculty of Engineering, Chemical Engineering Department, 06100 Ankara, Turkey
| | - Yanad Abou Monsef
- Ankara University, Faculty of Veterinary Medicine, Department of Pathology, 06110 Ankara, Turkey
| | - Çağdaş Oto
- Ankara University, Faculty of Veterinary Medicine, Department of Anatomy, 06110 Ankara, Turkey; Ankara University Medical Design Application and Research Center (MEDITAM), Ankara, Turkey
| | - Kaan Orhan
- Ankara University, Faculty of Dentistry, Department of DentoMaxillofacial Radiology, 06100, Ankara, Turkey; Ankara University Medical Design Application and Research Center (MEDITAM), Ankara, Turkey
| | - Ayşe Karakeçili
- Ankara University, Faculty of Engineering, Chemical Engineering Department, 06100 Ankara, Turkey.
| |
Collapse
|
43
|
Physicochemical and Biological Performance of Aloe Vera-Incorporated Native Collagen Films. Pharmaceutics 2020; 12:pharmaceutics12121173. [PMID: 33276436 PMCID: PMC7760042 DOI: 10.3390/pharmaceutics12121173] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Collagen was obtained from porcine skin by mechanical pretreatments with the aim of preserving the triple helix structure of native collagen, which was indirectly corroborated by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) results. Moreover, aloe vera (AV), with inherent biological properties, was incorporated into collagen film formulations, and films were prepared by compression and characterized to assess their suitability for biomedical applications. SEM images showed that the fibrillar structure of collagen changed to a rougher structure with the addition of AV, in accordance with the decrease in the lateral packaging of collagen chains observed by XRD analysis. These results suggested interactions between collagen and AV, as observed by FTIR. Considering that AV content higher than 20 wt % did not promote further interactions, this formulation was employed for biological assays and the suitability of AV/collagen films developed for biomedical applications was confirmed.
Collapse
|
44
|
Ogay V, Mun EA, Kudaibergen G, Baidarbekov M, Kassymbek K, Zharkinbekov Z, Saparov A. Progress and Prospects of Polymer-Based Drug Delivery Systems for Bone Tissue Regeneration. Polymers (Basel) 2020; 12:E2881. [PMID: 33271770 PMCID: PMC7760650 DOI: 10.3390/polym12122881] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the high regenerative capacity of bone tissue, there are some cases where bone repair is insufficient for a complete functional and structural recovery after damage. Current surgical techniques utilize natural and synthetic bone grafts for bone healing, as well as collagen sponges loaded with drugs. However, there are certain disadvantages associated with these techniques in clinical usage. To improve the therapeutic efficacy of bone tissue regeneration, a number of drug delivery systems based on biodegradable natural and synthetic polymers were developed and examined in in vitro and in vivo studies. Recent studies have demonstrated that biodegradable polymers play a key role in the development of innovative drug delivery systems and tissue engineered constructs, which improve the treatment and regeneration of damaged bone tissue. In this review, we discuss the most recent advances in the field of polymer-based drug delivery systems for the promotion of bone tissue regeneration and the physical-chemical modifications of polymers for controlled and sustained release of one or more drugs. In addition, special attention is given to recent developments on polymer nano- and microparticle-based drug delivery systems for bone regeneration.
Collapse
Affiliation(s)
- Vyacheslav Ogay
- Stem Cell Laboratory, National Center for Biotechnology, Nur-Sultan 010000, Kazakhstan; (V.O.); (G.K.)
| | - Ellina A. Mun
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Gulshakhar Kudaibergen
- Stem Cell Laboratory, National Center for Biotechnology, Nur-Sultan 010000, Kazakhstan; (V.O.); (G.K.)
| | - Murat Baidarbekov
- Research Institute of Traumatology and Orthopedics, Nur-Sultan 010000, Kazakhstan;
| | - Kuat Kassymbek
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.K.); (Z.Z.)
| | - Zharylkasyn Zharkinbekov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.K.); (Z.Z.)
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.K.); (Z.Z.)
| |
Collapse
|
45
|
Bal Z, Kushioka J, Kodama J, Kaito T, Yoshikawa H, Korkusuz P, Korkusuz F. BMP and TGFβ use and release in bone regeneration. Turk J Med Sci 2020; 50:1707-1722. [PMID: 32336073 PMCID: PMC7672355 DOI: 10.3906/sag-2003-127] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
A fracture that does not unite in nine months is defined as nonunion. Nonunion is common in fragmented fractures and large bone defects where vascularization is impaired. The distal third of the tibia, the scaphoid bone or the talus fractures are furthermore prone to nonunion. Open fractures and spinal fusion cases also need special monitoring for healing. Bone tissue regeneration can be attained by autografts, allografts, xenografts and synthetic materials, however their limited availability and the increased surgical time as well as the donor site morbidity of autograft use, and lower probability of success, increased costs and disease transmission and immunological reaction probability of allografts oblige us to find better solutions and new grafts to overcome the cons. A proper biomaterial for regeneration should be osteoinductive, osteoconductive, biocompatible and mechanically suitable. Cytokine therapy, where growth factors are introduced either exogenously or triggered endogenously, is one of the commonly used method in bone tissue engineering. Transforming growth factor β (TGFβ) superfamily, which can be divided structurally into two groups as bone morphogenetic proteins (BMPs), growth differentiation factors (GDFs) and TGFβ, activin, Nodal branch, Mullerian hormone, are known to be produced by osteoblasts and other bone cells and present already in bone matrix abundantly, to take roles in bone homeostasis. BMP family, as the biggest subfamily of TGFβ superfamily, is also reported to be the most effective growth factors in bone and development, which makes them one of the most popular cytokines used in bone regeneration. Complications depending on the excess use of growth factors, and pleiotropic functions of BMPs are however the main reasons of why they should be approached with care. In this review, the Smad dependent signaling pathways of TGFβ and BMP families and their relations and the applications in preclinical and clinical studies will be briefly summarized.
Collapse
Affiliation(s)
- Zeynep Bal
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Junichi Kushioka
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Joe Kodama
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Petek Korkusuz
- Department of Histology and Embryology, Medical Faculty, Hacettepe University, Ankara, Turkey
| | - Feza Korkusuz
- Department of Sports Medicine, Medical Faculty, Hacettepe University, Ankara, Turkey
| |
Collapse
|
46
|
Lim HK, Hong SJ, Byeon SJ, Chung SM, On SW, Yang BE, Lee JH, Byun SH. 3D-Printed Ceramic Bone Scaffolds with Variable Pore Architectures. Int J Mol Sci 2020; 21:E6942. [PMID: 32971749 PMCID: PMC7555666 DOI: 10.3390/ijms21186942] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023] Open
Abstract
This study evaluated the mechanical properties and bone regeneration ability of 3D-printed pure hydroxyapatite (HA)/tricalcium phosphate (TCP) pure ceramic scaffolds with variable pore architectures. A digital light processing (DLP) 3D printer was used to construct block-type scaffolds containing only HA and TCP after the polymer binder was completely removed by heat treatment. The compressive strength and porosity of the blocks with various structures were measured; scaffolds with different pore sizes were implanted in rabbit calvarial models. The animals were observed for eight weeks, and six animals were euthanized in the fourth and eighth weeks. Then, the specimens were evaluated using radiological and histological analyses. Larger scaffold pore sizes resulted in enhanced bone formation after four weeks (p < 0.05). However, in the eighth week, a correlation between pore size and bone formation was not observed (p > 0.05). The findings showed that various pore architectures of HA/TCP scaffolds can be achieved using DLP 3D printing, which can be a valuable tool for optimizing bone-scaffold properties for specific clinical treatments. As the pore size only influenced bone regeneration in the initial stage, further studies are required for pore-size optimization to balance the initial bone regeneration and mechanical strength of the scaffold.
Collapse
Affiliation(s)
- Ho-Kyung Lim
- Department of Oral and Maxillofacial Surgery, Korea University Guro Hospital, Seoul 08308, Korea;
| | - Seok-Jin Hong
- Department of Otorhinolaryngology-Head & Neck Surgery, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Dongtan 18450, Korea;
| | - Sun-Ju Byeon
- Department of Pathology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Dongtan 18450, Korea;
| | | | - Sung-Woon On
- Department of Oral and Maxillofacial Surgery, Dentistry, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Dongtan 18450, Korea;
- Graduate School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea;
| | - Byoung-Eun Yang
- Graduate School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea;
- Department of Oral and Maxillofacial Surgery, Dentistry, Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea
| | - Jong-Ho Lee
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul 03080, Korea;
| | - Soo-Hwan Byun
- Graduate School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea;
- Department of Oral and Maxillofacial Surgery, Dentistry, Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul 03080, Korea;
| |
Collapse
|
47
|
Zaborniak I, Macior A, Chmielarz P. Stimuli-Responsive Rifampicin-Based Macromolecules. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3843. [PMID: 32878162 PMCID: PMC7503961 DOI: 10.3390/ma13173843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 02/08/2023]
Abstract
This paper presents the modification of the antibiotic rifampicin by an anionic polyelectrolyte using a simplified electrochemically mediated atom transfer radical polymerization (seATRP) technique to receive stimuli-responsive polymer materials. Initially, a supramolecular ATRP initiator was prepared by an esterification reaction of rifampicin hydroxyl groups with α-bromoisobutyryl bromide (BriBBr). The structure of the initiator was successfully proved by nuclear magnetic resonance (1H and 13C NMR), Fourier-transform infrared (FT-IR) and ultraviolet-visible (UV-vis) spectroscopy. The prepared rifampicin-based macroinitiator was electrochemically investigated among various ATRP catalytic complexes, by a series of cyclic voltammetry (CV) measurements, determining the rate constants of electrochemical catalytic (EC') process. Macromolecules with rifampicin core and hydrophobic poly (n-butyl acrylate) (PnBA) and poly(tert-butyl acrylate) (PtBA) side chains were synthesized in a controlled manner, receiving polymers with narrow molecular weight distribution (Mw/Mn = 1.29 and 1.58, respectively). "Smart" polymer materials sensitive to pH changes were provided by transformation of tBA into acrylic acid (AA) moieties in a facile route by acidic hydrolysis. The pH-dependent behavior of prepared macromolecules was investigated by dynamic light scattering (DLS) determining a hydrodynamic radius of polymers upon pH changes, followed by a control release of quercetin as a model active substance upon pH changes.
Collapse
Affiliation(s)
- Izabela Zaborniak
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland;
| | - Angelika Macior
- School of Engineering and Technical Sciences, Rzeszow University of Technology, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland;
| | - Paweł Chmielarz
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland;
| |
Collapse
|
48
|
Szewczyk A, Skwira A, Konopacka A, Sądej R, Walker G, Prokopowicz M. Mesoporous silica pellets as bifunctional bone drug delivery system for cefazolin. Int J Pharm 2020; 588:119718. [PMID: 32750441 DOI: 10.1016/j.ijpharm.2020.119718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022]
Abstract
For decades, bone drug delivery systems dedicated for osteomyelitis treatment have been investigated as bifunctional materials that exhibit prolonged drug release and mineralization potential. Herein, composite-type pellets based on cefazolin-loaded amino-modified mesoporous silica SBA-15 and microwave-assisted hydroxyapatite were investigated as potential bone drug delivery system in vitro. Pellets were obtained by granulation, extrusion and spheronization methods in laboratory scale and studied in terms of physical properties, drug release, mineralization potential, antimicrobial activity and cytotoxicity towards human osteoblasts. The obtained pellets were characterized for hardness and friability which indicated the pellets durability during further investigations. Prolonged (5-day) release of cefazolin from pellets was observed. The pellets exhibited mineralization potential in simulated body fluid, i.e., a continuous layer of bone-like apatite was formed on the surface of pellets after 28 days of incubation. An antimicrobial assay of pellets revealed an antibacterial effect against Staphylococcus aureus strain during 6 days. No cytotoxic effects of pellets towards human osteoblasts were observed. The obtained results proved that proposed pellets appear to have potential applications as bone drug delivery systems.
Collapse
Affiliation(s)
- Adrian Szewczyk
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland
| | - Adrianna Skwira
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland
| | - Agnieszka Konopacka
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland
| | - Rafał Sądej
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Gavin Walker
- Bernal Institute and Department of Chemical Science, University of Limerick, Limerick, Ireland
| | - Magdalena Prokopowicz
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland.
| |
Collapse
|
49
|
Kim JW, Yang BE, Hong SJ, Choi HG, Byeon SJ, Lim HK, Chung SM, Lee JH, Byun SH. Bone Regeneration Capability of 3D Printed Ceramic Scaffolds. Int J Mol Sci 2020; 21:ijms21144837. [PMID: 32650589 PMCID: PMC7402304 DOI: 10.3390/ijms21144837] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 01/01/2023] Open
Abstract
In this study, we evaluated the bone regenerative capability of a customizable hydroxyapatite (HA) and tricalcium phosphate (TCP) scaffold using a digital light processing (DLP)-type 3D printing system. Twelve healthy adult male beagle dogs were the study subjects. A total of 48 defects were created, with two defects on each side of the mandible in all the dogs. The defect sites in the negative control group (sixteen defects) were left untreated (the NS group), whereas those in the positive control group (sixteen defects) were filled with a particle-type substitute (the PS group). The defect sites in the experimental groups (sixteen defects) were filled with a 3D printed substitute (the 3DS group). Six dogs each were exterminated after healing periods of 4 and 8 weeks. Radiological and histomorphometrical evaluations were then performed. None of the groups showed any specific problems. In radiological evaluation, there was a significant difference in the amount of new bone formation after 4 weeks (p < 0.05) between the PS and 3DS groups. For both of the evaluations, the difference in the total amount of bone after 8 weeks was statistically significant (p < 0.05). There was no statistically significant difference in new bone between the PS and 3DS groups in both evaluations after 8 weeks (p > 0.05). The proposed HA/TCP scaffold without polymers, obtained using the DLP-type 3D printing system, can be applied for bone regeneration. The 3D printing of a HA/TCP scaffold without polymers can be used for fabricating customized bone grafting substitutes.
Collapse
Affiliation(s)
- Ju-Won Kim
- Department of Oral and Maxillofacial Surgery, Dentistry, Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea; (J.-W.K.); (B.-E.Y.)
- Graduate School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea
| | - Byoung-Eun Yang
- Department of Oral and Maxillofacial Surgery, Dentistry, Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea; (J.-W.K.); (B.-E.Y.)
- Graduate School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea
| | - Seok-Jin Hong
- Department of Otorhinolaryngology-Head & Neck Surgery, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Dongtan 18450, Korea;
| | - Hyo-Geun Choi
- Department of Otorhinolaryngology-Head & Neck Surgery, Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea;
| | - Sun-Ju Byeon
- Department of Pathology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Dongtan 18450, Korea;
| | - Ho-Kyung Lim
- Department of Oral and Maxillofacial Surgery, Dentistry, Korea University Guro Hospital, Seoul 08308, Korea;
| | | | - Jong-Ho Lee
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul 03080, Korea;
| | - Soo-Hwan Byun
- Department of Oral and Maxillofacial Surgery, Dentistry, Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea; (J.-W.K.); (B.-E.Y.)
- Graduate School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul 03080, Korea;
- Correspondence: ; Tel.: +82-10-8787-2640
| |
Collapse
|
50
|
Rothe R, Hauser S, Neuber C, Laube M, Schulze S, Rammelt S, Pietzsch J. Adjuvant Drug-Assisted Bone Healing: Advances and Challenges in Drug Delivery Approaches. Pharmaceutics 2020; 12:E428. [PMID: 32384753 PMCID: PMC7284517 DOI: 10.3390/pharmaceutics12050428] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
Bone defects of critical size after compound fractures, infections, or tumor resections are a challenge in treatment. Particularly, this applies to bone defects in patients with impaired bone healing due to frequently occurring metabolic diseases (above all diabetes mellitus and osteoporosis), chronic inflammation, and cancer. Adjuvant therapeutic agents such as recombinant growth factors, lipid mediators, antibiotics, antiphlogistics, and proangiogenics as well as other promising anti-resorptive and anabolic molecules contribute to improving bone healing in these disorders, especially when they are released in a targeted and controlled manner during crucial bone healing phases. In this regard, the development of smart biocompatible and biostable polymers such as implant coatings, scaffolds, or particle-based materials for drug release is crucial. Innovative chemical, physico- and biochemical approaches for controlled tailor-made degradation or the stimulus-responsive release of substances from these materials, and more, are advantageous. In this review, we discuss current developments, progress, but also pitfalls and setbacks of such approaches in supporting or controlling bone healing. The focus is on the critical evaluation of recent preclinical studies investigating different carrier systems, dual- or co-delivery systems as well as triggered- or targeted delivery systems for release of a panoply of drugs.
Collapse
Affiliation(s)
- Rebecca Rothe
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
| | - Sabine Schulze
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (S.S.); (S.R.)
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (S.S.); (S.R.)
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Tatzberg 4, 01307 Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|