1
|
Guo J, Qiu Y, Zhang J, Xue C, Zhu J. A review on polysaccharide-based delivery systems for edible bioactives: pH responsive, controlled release, and emerging applications. Int J Biol Macromol 2024; 291:139178. [PMID: 39730044 DOI: 10.1016/j.ijbiomac.2024.139178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
pH changes occur during bodily lesions, presenting an opportunity for leveraging pH-responsive delivery systems as signals for a targeted response. This review explores the design and application of pH-responsive delivery systems based on natural polysaccharides for the controlled release of bioactives. The article examines the development of diverse delivery carriers, including nanoparticles, nanofibers, nanogels, core-shell carriers, hydrogels, emulsions as well as liposomes and their capacity to respond to pH variations, enabling the precise and targeted delivery of bioactives within the human body. These polysaccharide-based delivery systems can be made pH-responsive by modulating the charge of polybasic or polyacidic polysaccharides, inducing swelling of the carrier and subsequent release of the encapsulated bioactives. These pH-responsive systems show promise in stabilizing under acidic conditions for enhanced retention in the stomach during oral delivery while also enabling targeted release at low pH sites such as tumors and wounds, thereby accelerating wound healing and aiding in cancer therapy and inflammation treatment. pH can co-respond with a variety of stimuli, including temperature, enzymes and reactive oxygen species, enabling more precise responses to the microenvironment for targeted delivery. It provides solid theoretical foundations for the advancement of personalized nutrition and therapeutics through controlled and responsive release technologies.
Collapse
Affiliation(s)
- Jiaxin Guo
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yang Qiu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Chenxu Xue
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiajin Zhu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Trucillo P. Biomaterials for Drug Delivery and Human Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:456. [PMID: 38255624 PMCID: PMC10817481 DOI: 10.3390/ma17020456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Biomaterials embody a groundbreaking paradigm shift in the field of drug delivery and human applications. Their versatility and adaptability have not only enriched therapeutic outcomes but also significantly reduced the burden of adverse effects. This work serves as a comprehensive overview of biomaterials, with a particular emphasis on their pivotal role in drug delivery, classifying them in terms of their biobased, biodegradable, and biocompatible nature, and highlighting their characteristics and advantages. The examination also delves into the extensive array of applications for biomaterials in drug delivery, encompassing diverse medical fields such as cancer therapy, cardiovascular diseases, neurological disorders, and vaccination. This work also explores the actual challenges within this domain, including potential toxicity and the complexity of manufacturing processes. These challenges emphasize the necessity for thorough research and the continuous development of regulatory frameworks. The second aim of this review is to navigate through the compelling terrain of recent advances and prospects in biomaterials, envisioning a healthcare landscape where they empower precise, targeted, and personalized drug delivery. The potential for biomaterials to transform healthcare is staggering, as they promise treatments tailored to individual patient needs, offering hope for improved therapeutic efficacy, fewer side effects, and a brighter future for medical practice.
Collapse
Affiliation(s)
- Paolo Trucillo
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Piazzale V. Tecchio, 80, 80125 Naples, Italy
| |
Collapse
|
3
|
Advances in chitin-based nanoparticle use in biodegradable polymers: A review. Carbohydr Polym 2023; 312:120789. [PMID: 37059529 DOI: 10.1016/j.carbpol.2023.120789] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
Chitin-based nanoparticles are polysaccharide materials that can be produced from a waste stream of the seafood industry: crustacean shells. These nanoparticles have received exponentially growing attention, especially in the field of medicine and agriculture owing to their renewable origin, biodegradability, facile modification, and functionality adjustment. Due to their exceptional mechanical strength and high surface area, chitin-based nanoparticles are ideal candidates for reinforcing biodegradable plastics to ultimately replace traditional plastics. This review discusses the preparation methods for chitin-based nanoparticles and their applications. Special focus is on biodegradable plastics for food packaging making use of the features that can be created by the chitin-based nanoparticles.
Collapse
|
4
|
Li G. Editorial: Functional and smart biomaterials: Development and application in regenerative medicine-Volume II. Front Bioeng Biotechnol 2023; 10:1120438. [PMID: 36686233 PMCID: PMC9846101 DOI: 10.3389/fbioe.2022.1120438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
|
5
|
Sinha A, Simnani FZ, Singh D, Nandi A, Choudhury A, Patel P, Jha E, chouhan RS, Kaushik NK, Mishra YK, Panda PK, Suar M, Verma SK. The translational paradigm of nanobiomaterials: Biological chemistry to modern applications. Mater Today Bio 2022; 17:100463. [PMID: 36310541 PMCID: PMC9615318 DOI: 10.1016/j.mtbio.2022.100463] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
Recently nanotechnology has evolved as one of the most revolutionary technologies in the world. It has now become a multi-trillion-dollar business that covers the production of physical, chemical, and biological systems at scales ranging from atomic and molecular levels to a wide range of industrial applications, such as electronics, medicine, and cosmetics. Nanobiomaterials synthesis are promising approaches produced from various biological elements be it plants, bacteria, peptides, nucleic acids, etc. Owing to the better biocompatibility and biological approach of synthesis, they have gained immense attention in the biomedical field. Moreover, due to their scaled-down sized property, nanobiomaterials exhibit remarkable features which make them the potential candidate for different domains of tissue engineering, materials science, pharmacology, biosensors, etc. Miscellaneous characterization techniques have been utilized for the characterization of nanobiomaterials. Currently, the commercial transition of nanotechnology from the research level to the industrial level in the form of nano-scaffolds, implants, and biosensors is stimulating the whole biomedical field starting from bio-mimetic nacres to 3D printing, multiple nanofibers like silk fibers functionalizing as drug delivery systems and in cancer therapy. The contribution of single quantum dot nanoparticles in biological tagging typically in the discipline of genomics and proteomics is noteworthy. This review focuses on the diverse emerging applications of Nanobiomaterials and their mechanistic advancements owing to their physiochemical properties leading to the growth of industries on different biomedical measures. Alongside the implementation of such nanobiomaterials in several drug and gene delivery approaches, optical coding, photodynamic cancer therapy, and vapor sensing have been elaborately discussed in this review. Different parameters based on current challenges and future perspectives are also discussed here.
Collapse
Affiliation(s)
- Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Paritosh Patel
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | - Ealisha Jha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Raghuraj Singh chouhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Suresh K. Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| |
Collapse
|
6
|
Tehrani FK, Sheikhi M, Rafiemanzelat F, Esmaeili F, Ghodsi S, Koohmareh GA, Ghalavand B. Protein and polysaccharide-based asymmetric mat with tuned bilayer configuration for enhanced wound healing efficiency. Carbohydr Polym 2022; 292:119666. [PMID: 35725208 DOI: 10.1016/j.carbpol.2022.119666] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/14/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022]
Abstract
In this research we focused on the fabrication of an asymmetric bilayer membrane with core-shell/simple layer configuration providing the functions of needed hierarchically hydrophilicity and porosity, anti-infectious, tissue adhesion as well as degradation and integration with tissue, cells proliferation, and enhanced promotion of tissue regeneration. The bilayer membrane composed of collagen (Col), chitosan (CS), aloe vera (AV) and gelatin (Gel), not only simulates the features of the epidermis and dermis layer of a natural skin but also benefits from the materials necessary for the regeneration of injured skin tissue during the healing process. The results of full-thickness skin wound evaluation revealed that the fabricated asymmetric membrane could facilitate wound healing within 10 days mainly through enhancing cellular activities, enhancing collagen deposition, and promoting proliferation. Results of histopathological analysis and immunohistochemistry after 10 days of treatment, demonstrated more re-epithelialization and collagen density for the treated groups compared to the control group.
Collapse
Affiliation(s)
- Firoozeh Kavosh Tehrani
- Polymer Chemistry Research Laboratory, Department of Chemistry, University of Isfahan, Isfahan 8174673441, Islamic Republic of Iran
| | - Mehdi Sheikhi
- Polymer Chemistry Research Laboratory, Department of Chemistry, University of Isfahan, Isfahan 8174673441, Islamic Republic of Iran
| | - Fatemeh Rafiemanzelat
- Polymer Chemistry Research Laboratory, Department of Chemistry, University of Isfahan, Isfahan 8174673441, Islamic Republic of Iran.
| | - Fariba Esmaeili
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Islamic Republic of Iran
| | - Saman Ghodsi
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Islamic Republic of Iran
| | - Gholam Ali Koohmareh
- Polymer Chemistry Research Laboratory, Department of Chemistry, University of Isfahan, Isfahan 8174673441, Islamic Republic of Iran
| | - Behnaz Ghalavand
- Polymer Chemistry Research Laboratory, Department of Chemistry, University of Isfahan, Isfahan 8174673441, Islamic Republic of Iran
| |
Collapse
|
7
|
Talimi R, Rabbani S, Mehryab F, Haeri A. Perivascular application of sirolimus multilayer nanofibrous mat for prevention of vascular stenosis: Preparation, In vitro characterization, and In vivo efficacy evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Bhattacharya N, Indra AK, Ganguli-Indra G. Selective Ablation of BCL11A in Epidermal Keratinocytes Alters Skin Homeostasis and Accelerates Excisional Wound Healing In Vivo. Cells 2022; 11:cells11132106. [PMID: 35805190 PMCID: PMC9265695 DOI: 10.3390/cells11132106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/27/2023] Open
Abstract
Transcriptional regulator BCL11A plays a crucial role in coordinating a suite of developmental processes including skin morphogenesis, barrier functions and lipid metabolism. There is little or no reports so far documenting the role of BCL11A in postnatal adult skin homeostasis and in the physiological process of tissue repair and regeneration. The current study establishes for the first time the In Vivo role of epidermal BCL11A in maintaining adult epidermal homeostasis and as a negative regulator of cutaneous wound healing. Conditional ablation of Bcl11a in skin epidermal keratinocytes (Bcl11aep−/−mice) enhances the keratinocyte proliferation and differentiation program, suggesting its critical role in epidermal homeostasis of adult murine skin. Further, loss of keratinocytic BCL11A promotes rapid closure of excisional wounds both in a cell autonomous manner likely via accelerating wound re-epithelialization and in a non-cell autonomous manner by enhancing angiogenesis. The epidermis specific Bcl11a knockout mouse serves as a prototype to gain mechanistic understanding of various downstream pathways converging towards the manifestation of an accelerated healing phenotype upon its deletion.
Collapse
Affiliation(s)
- Nilika Bhattacharya
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA;
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA;
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Science Center, Oregon State University, Corvallis, OR 97331, USA
- OHSU Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
- Department of Dermatology, OHSU, Portland, OR 97239, USA
- Correspondence: (A.K.I.); (G.G.-I.)
| | - Gitali Ganguli-Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA;
- OHSU Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
- Correspondence: (A.K.I.); (G.G.-I.)
| |
Collapse
|
9
|
Oxidized Chitosan-Tobramycin (OCS-TOB) Submicro-Fibers for Biomedical Applications. Pharmaceutics 2022; 14:pharmaceutics14061197. [PMID: 35745770 PMCID: PMC9227200 DOI: 10.3390/pharmaceutics14061197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Chitosan (CS) is a biodegradable, biocompatible, and non-toxic natural amino-poly-saccharide with antibacterial ability, owing to its positively charged amino groups. However, the low charge density leads to poor antibacterial efficiency which cannot meet the biomedical application requirements. In this study, Tobramycin (TOB) was grafted onto the backbone of oxidized chitosan (OCS) to synthesize oxidized chitosan-tobramycin (OCS-TOB). FTIR, 1H NMR and elemental analysis results demonstrated that OCS-TOB was successfully synthesized. OCS-TOB/PEO composite fibrous materials were produced by a self-made centrifugal spinning machine. In vitro experiments showed that cells proliferated on the submicro-fibrous OCS-TOB/PEO of appropriate concentration, and the antibacterial ability of OCS-TOB was much improved, compared with pristine CS. The results demonstrated that OCS-TOB/PEO nanofibrous materials could potentially be used for biomedical applications.
Collapse
|
10
|
Park HJ, Hong H, Thangam R, Song MG, Kim JE, Jo EH, Jang YJ, Choi WH, Lee MY, Kang H, Lee KB. Static and Dynamic Biomaterial Engineering for Cell Modulation. NANOMATERIALS 2022; 12:nano12081377. [PMID: 35458085 PMCID: PMC9028203 DOI: 10.3390/nano12081377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023]
Abstract
In the biological microenvironment, cells are surrounded by an extracellular matrix (ECM), with which they dynamically interact during various biological processes. Specifically, the physical and chemical properties of the ECM work cooperatively to influence the behavior and fate of cells directly and indirectly, which invokes various physiological responses in the body. Hence, efficient strategies to modulate cellular responses for a specific purpose have become important for various scientific fields such as biology, pharmacy, and medicine. Among many approaches, the utilization of biomaterials has been studied the most because they can be meticulously engineered to mimic cellular modulatory behavior. For such careful engineering, studies on physical modulation (e.g., ECM topography, stiffness, and wettability) and chemical manipulation (e.g., composition and soluble and surface biosignals) have been actively conducted. At present, the scope of research is being shifted from static (considering only the initial environment and the effects of each element) to biomimetic dynamic (including the concepts of time and gradient) modulation in both physical and chemical manipulations. This review provides an overall perspective on how the static and dynamic biomaterials are actively engineered to modulate targeted cellular responses while highlighting the importance and advance from static modulation to biomimetic dynamic modulation for biomedical applications.
Collapse
Affiliation(s)
- Hyung-Joon Park
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
| | - Hyunsik Hong
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
| | - Ramar Thangam
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
| | - Min-Gyo Song
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Ju-Eun Kim
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
| | - Eun-Hae Jo
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
| | - Yun-Jeong Jang
- Department of Biomedical Engineering, Armour College of Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA;
| | - Won-Hyoung Choi
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Min-Young Lee
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Heemin Kang
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
- Correspondence: (H.K.); (K.-B.L.)
| | - Kyu-Back Lee
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
- Correspondence: (H.K.); (K.-B.L.)
| |
Collapse
|
11
|
PLA Nanofibers for Microenvironmental-Responsive Quercetin Release in Local Periodontal Treatment. Molecules 2022; 27:molecules27072205. [PMID: 35408602 PMCID: PMC9000246 DOI: 10.3390/molecules27072205] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 01/10/2023] Open
Abstract
The management of periodontitis remains a vital clinical challenge due to the interplay between the microorganisms of the dental biofilm and the host inflammatory response leading to a degenerative process in the surrounding tissues. Quercetin (QUE), a natural flavonol found in many foods, including apples, onions and tea, has exhibited prolonged and strong antibiofilm and anti-inflammatory effects both in vitro and in vivo. However, its clinical application is limited by its poor stability and water solubility, as well as its low bioavailability. Thus, in the present study, electrospun polylactic acid (PLA) nanofibers loaded with different amounts (5−10% w/w) of QUE were produced to rapidly respond to the acidic microenvironment typical of periodontal pockets during periodontal disease. This strategy demonstrated that PLA-QUE membranes can act as a drug reservoir releasing high QUE concentrations in the presence of oral bacterial infection (pH < 5.5), and thus limiting Pseudomonas aeruginosa PAO1 and Streptococcus mutans biofilm maturation. In addition, released QUE exerts antioxidant and anti-inflammatory effects on P. gingivalis Lipopolysaccharide (LPS)-stimulated human gingival fibroblast (HGFs). The reported results confirmed that PLA-QUE membranes could inhibit subgingival biofilm maturation while reducing interleukin release, thereby limiting host inflammatory response. Overall, this study provided an effective pH-sensitive drug delivery system as a promising strategy for treating periodontitis.
Collapse
|
12
|
Kan Y, Bondareva JV, Statnik ES, Cvjetinovic J, Lipovskikh S, Abdurashitov AS, Kirsanova MA, Sukhorukhov GB, Evlashin SA, Salimon AI, Korsunsky AM. Effect of Graphene Oxide and Nanosilica Modifications on Electrospun Core-Shell PVA–PEG–SiO2@PVA–GO Fiber Mats. NANOMATERIALS 2022; 12:nano12060998. [PMID: 35335811 PMCID: PMC8950511 DOI: 10.3390/nano12060998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023]
Abstract
Electrospinning is a well-established method for the fabrication of polymer biomaterials, including those with core-shell nanofibers. The variability of structures presents a great range of opportunities in tissue engineering and drug delivery by incorporating biologically active molecules such as drugs, proteins, and growth factors and subsequent control of their release into the target microenvironment to achieve therapeutic effect. The object of study is non-woven core-shell PVA–PEG–SiO2@PVA–GO fiber mats assembled by the technology of coaxial electrospinning. The task of the core-shell fiber development was set to regulate the degradation process under external factors. The dual structure was modified with silica nanoparticles and graphene oxide to ensure the fiber integrity and stability. The influence of the nano additives and crosslinking conditions for the composite was investigated as a function of fiber diameter, hydrolysis, and mechanical properties. Tensile mechanical tests and water degradation tests were used to reveal the fracture and dissolution behavior of the fiber mats and bundles. The obtained fibers were visualized by confocal fluorescence microscopy to confirm the continuous core-shell structure and encapsulation feasibility for biologically active components, selectively in the fiber core and shell. The results provide a firm basis to draw the conclusion that electrospun core-shell fiber mats have tremendous potential for biomedical applications as drug carriers, photocatalysts, and wound dressings.
Collapse
Affiliation(s)
- Yuliya Kan
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143026 Moscow, Russia; (E.S.S.); (S.L.); (M.A.K.); (A.I.S.)
- Correspondence:
| | - Julia V. Bondareva
- Center for Materials Technologies, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia; (J.V.B.); (S.A.E.)
| | - Eugene S. Statnik
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143026 Moscow, Russia; (E.S.S.); (S.L.); (M.A.K.); (A.I.S.)
| | - Julijana Cvjetinovic
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143026 Moscow, Russia;
| | - Svetlana Lipovskikh
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143026 Moscow, Russia; (E.S.S.); (S.L.); (M.A.K.); (A.I.S.)
| | - Arkady S. Abdurashitov
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143026 Moscow, Russia; (A.S.A.); (G.B.S.)
| | - Maria A. Kirsanova
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143026 Moscow, Russia; (E.S.S.); (S.L.); (M.A.K.); (A.I.S.)
| | - Gleb B. Sukhorukhov
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143026 Moscow, Russia; (A.S.A.); (G.B.S.)
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Stanislav A. Evlashin
- Center for Materials Technologies, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia; (J.V.B.); (S.A.E.)
| | - Alexey I. Salimon
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143026 Moscow, Russia; (E.S.S.); (S.L.); (M.A.K.); (A.I.S.)
| | - Alexander M. Korsunsky
- Multi-Beam Laboratory for Engineering Microscopy (MBLEM), Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK;
| |
Collapse
|
13
|
Kravanja KA, Finšgar M. Analytical Techniques for the Characterization of Bioactive Coatings for Orthopaedic Implants. Biomedicines 2021; 9:1936. [PMID: 34944750 PMCID: PMC8698289 DOI: 10.3390/biomedicines9121936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022] Open
Abstract
The development of bioactive coatings for orthopedic implants has been of great interest in recent years in order to achieve both early- and long-term osseointegration. Numerous bioactive materials have been investigated for this purpose, along with loading coatings with therapeutic agents (active compounds) that are released into the surrounding media in a controlled manner after surgery. This review initially focuses on the importance and usefulness of characterization techniques for bioactive coatings, allowing the detailed evaluation of coating properties and further improvements. Various advanced analytical techniques that have been used to characterize the structure, interactions, and morphology of the designed bioactive coatings are comprehensively described by means of time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), 3D tomography, quartz crystal microbalance (QCM), coating adhesion, and contact angle (CA) measurements. Secondly, the design of controlled-release systems, the determination of drug release kinetics, and recent advances in drug release from bioactive coatings are addressed as the evaluation thereof is crucial for improving the synthesis parameters in designing optimal bioactive coatings.
Collapse
Affiliation(s)
| | - Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia;
| |
Collapse
|
14
|
Brimo N, Serdaroğlu DÇ, Uysal B. Comparing Antibiotic Pastes with Electrospun Nanofibers as Modern Drug Delivery Systems for Regenerative Endodontics. Curr Drug Deliv 2021; 19:904-917. [PMID: 34915834 DOI: 10.2174/1567201819666211216140947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/05/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022]
Abstract
Nanomaterials have various features that make these types of materials able to be applied in different biomedical applications like, diagnosis, treatment, and drug delivery. Using such materials in endodontic filed both to face the challenges that occur during treatment processes and to make these materials have an antibacterial effect without showing any harm on the host cells. The approach of nanofibers loaded with various antibacterial drugs offers a potential treatment method to enhance the elimination procedure of intracanal biofilms. Clinically, many models of bacterial biofilms have been prepared under in vitro conditions for different aims. The process of drug delivery from polymeric nanofibers is based on the principle that the releasing ratio of drug molecules increases due to the increase in the surface area of the hosted structure. In our review, we discuss diverse approaches of loading/releasing drugs on/from nanofibers and we summarized many studies about electrospun nanofibers loaded various drugs applied in the endodontic field. Moreover, we argued both the advantages and the limitations of these modern endodontic treatment materials comparing them with the traditional ones.
Collapse
Affiliation(s)
- Nura Brimo
- Department of Biomedical Engineering, Başkent University Bağlıca Campus, 06530, Ankara. Turkey
| | | | - Busra Uysal
- Department of Endodontics, Faculty of Dentistry, Ordu University, 52200, Ordu. Turkey
| |
Collapse
|
15
|
Schulte-Werning LV, Murugaiah A, Singh B, Johannessen M, Engstad RE, Škalko-Basnet N, Holsæter AM. Multifunctional Nanofibrous Dressing with Antimicrobial and Anti-Inflammatory Properties Prepared by Needle-Free Electrospinning. Pharmaceutics 2021; 13:1527. [PMID: 34575602 PMCID: PMC8464763 DOI: 10.3390/pharmaceutics13091527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 12/31/2022] Open
Abstract
An active wound dressing should address the main goals in wound treatment, which are improved wound healing and reduced infection rates. We developed novel multifunctional nanofibrous wound dressings with three active ingredients: chloramphenicol (CAM), beta-glucan (βG) and chitosan (CHI), of which βG and CHI are active nanofiber-forming biopolymers isolated from the cell walls of Saccharomyces cerevisiae and from shrimp shells, respectively. To evaluate the effect of each active ingredient on the nanofibers' morphological features and bioactivity, nanofibers with both βG and CHI, only βG, only CHI and only copolymers, polyethylene oxide (PEO) and hydroxypropylmethylcellulose (HPMC) were fabricated. All four nanofiber formulations were also prepared with 1% CAM. The needle-free NanospiderTM technique allowed for the successful production of defect-free nanofibers containing all three active ingredients. The CAM-containing nanofibers had a burst CAM-release and a high absorption capacity. Nanofibers with all active ingredients (βG, CHI and CAM) showed a concentration-dependent anti-inflammatory activity, while maintaining the antimicrobial activity of CAM. The promising anti-inflammatory properties, together with the high absorption capacity and antimicrobial effect, make these multifunctional nanofibers promising as dressings in local treatment of infected and exuding wounds, such as burn wounds.
Collapse
Affiliation(s)
- Laura Victoria Schulte-Werning
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (L.V.S.-W.); (A.M.); (N.Š.-B.)
| | - Anjanah Murugaiah
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (L.V.S.-W.); (A.M.); (N.Š.-B.)
| | - Bhupender Singh
- Research Group for Host-Microbe Interaction, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (B.S.); (M.J.)
| | - Mona Johannessen
- Research Group for Host-Microbe Interaction, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (B.S.); (M.J.)
| | | | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (L.V.S.-W.); (A.M.); (N.Š.-B.)
| | - Ann Mari Holsæter
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (L.V.S.-W.); (A.M.); (N.Š.-B.)
| |
Collapse
|
16
|
Latimer JM, Maekawa S, Yao Y, Wu DT, Chen M, Giannobile WV. Regenerative Medicine Technologies to Treat Dental, Oral, and Craniofacial Defects. Front Bioeng Biotechnol 2021; 9:704048. [PMID: 34422781 PMCID: PMC8378232 DOI: 10.3389/fbioe.2021.704048] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/29/2021] [Indexed: 01/10/2023] Open
Abstract
Additive manufacturing (AM) is the automated production of three-dimensional (3D) structures through successive layer-by-layer deposition of materials directed by computer-aided-design (CAD) software. While current clinical procedures that aim to reconstruct hard and soft tissue defects resulting from periodontal disease, congenital or acquired pathology, and maxillofacial trauma often utilize mass-produced biomaterials created for a variety of surgical indications, AM represents a paradigm shift in manufacturing at the individual patient level. Computer-aided systems employ algorithms to design customized, image-based scaffolds with high external shape complexity and spatial patterning of internal architecture guided by topology optimization. 3D bioprinting and surface modification techniques further enhance scaffold functionalization and osteogenic potential through the incorporation of viable cells, bioactive molecules, biomimetic materials and vectors for transgene expression within the layered architecture. These computational design features enable fabrication of tissue engineering constructs with highly tailored mechanical, structural, and biochemical properties for bone. This review examines key properties of scaffold design, bioresorbable bone scaffolds produced by AM processes, and clinical applications of these regenerative technologies. AM is transforming the field of personalized dental medicine and has great potential to improve regenerative outcomes in patient care.
Collapse
Affiliation(s)
- Jessica M Latimer
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Shogo Maekawa
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States.,Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yao Yao
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - David T Wu
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States.,Laboratory for Cell and Tissue Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Boston, MA, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Michael Chen
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - William V Giannobile
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| |
Collapse
|
17
|
Li Z, Mei S, Dong Y, She F, Li P, Li Y, Kong L. Multi-Functional Core-Shell Nanofibers for Wound Healing. NANOMATERIALS 2021; 11:nano11061546. [PMID: 34208135 PMCID: PMC8230886 DOI: 10.3390/nano11061546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/28/2021] [Accepted: 06/09/2021] [Indexed: 11/30/2022]
Abstract
Core-shell nanofibers have great potential for bio-medical applications such as wound healing dressings where multiple drugs and growth factors are expected to be delivered at different healing phases. Compared to monoaxial nanofibers, core-shell nanofibers can control the drug release profile easier, providing sustainable and effective drugs and growth factors for wound healing. However, it is challenging to produce core-shell structured nanofibers with a high production rate at low energy consumption. Co-axial centrifugal spinning is an alternative method to address the above limitations to produce core-shell nanofibers effectively. In this study, a co-axial centrifugal spinning device was designed and assembled to produce core-shell nanofibers for controlling the release rate of ibuprofen and hEGF in inflammation and proliferation phases during the wound healing process. Core-shell structured nanofibers were confirmed by TEM. This work demonstrated that the co-axial centrifugal spinning is a high productivity process that can produce materials with a 3D environment mimicking natural tissue scaffold, and the specific drug can be loaded into different layers to control the drug release rate to improve the drug efficiency and promote wound healing.
Collapse
Affiliation(s)
- Zhen Li
- Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430073, China; (Z.L.); (Y.D.)
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia;
- Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Foshan 528000, China
| | - Shunqi Mei
- Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430073, China; (Z.L.); (Y.D.)
- Correspondence: (S.M.); (L.K.)
| | - Yajie Dong
- Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430073, China; (Z.L.); (Y.D.)
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia;
| | - Fenghua She
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia;
| | - Puwang Li
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China;
| | - Yongzhen Li
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China;
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia;
- Correspondence: (S.M.); (L.K.)
| |
Collapse
|
18
|
Thao NTT, Lee S, Shin GR, Kang Y, Choi S, Kim MS. Preparation of Electrospun Small Intestinal Submucosa/Poly(caprolactone- co-Lactide- co-glycolide) Nanofiber Sheet as a Potential Drug Carrier. Pharmaceutics 2021; 13:pharmaceutics13020253. [PMID: 33670418 PMCID: PMC7917610 DOI: 10.3390/pharmaceutics13020253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
In this work, we chose small intestine submucosa (SIS) as a drug carrier because SIS possesses good biocompatibility, non-immunogenic property and bio-resorbability, and performed electrospinning for preparation of nanofiber sheets (NS). For the preparation of drug-loaded electrospun SIS nanofiber sheets as a drug carrier, we used poly(ε-caprolactone-ran-l-lactide) (PCLA) copolymers to improve the electrospinning performance of SIS. The electrospinning of SIS and PCLA provided the electrospun SIS/PCLA (S/P)-nanofiber sheet (S/P-NS) with adjustable thickness and areas. The electrospun S/P-NS showed different porosities, pore sizes, diameters and tensile strengths depending on the ratios between SIS and PCLA. The electrospun S/P-NS was used as a drug carrier of the dexamethasone (Dex) and silver sulfadiazine (AgS) drug related to anti-inflammation. Dex-loaded S/P-NS and AgS-loaded S/P-NS was successfully fabricated by the electrospinning. In the in vitro and in vivo release, we successfully confirmed the possibility for the sustained release of Dex and AgS from the Dex-S/P-NS and AgS-S/P-NS for three weeks. In addition, the sustained Dex and AgS release suppressed the macrophage infiltration. Collectively, we achieved feasible development of SIS nanofiber sheets for a sustained Dex and AgS delivery system.
Collapse
Affiliation(s)
| | | | | | | | | | - Moon Suk Kim
- Correspondence: ; Tel.: +82-31-219-2608; Fax: +82-31-219-3931
| |
Collapse
|