1
|
Boltnarova B, Durinova A, Jandova L, Micuda S, Kucera O, Pavkova I, Machacek M, Nemeckova I, Vojta M, Dusek J, Krutakova M, Nachtigal P, Pavek P, Holas O. Dexamethasone Acetate-Loaded PLGA Nanospheres Targeting Liver Macrophages. Macromol Biosci 2024:e2400411. [PMID: 39611304 DOI: 10.1002/mabi.202400411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/14/2024] [Indexed: 11/30/2024]
Abstract
Glucocorticoids are potent anti-inflammatory drugs, although their use is associated with severe side effects. Loading glucocorticoids into suitable nanocarriers can significantly reduce these undesirable effects. Macrophages play a crucial role in inflammation, making them strategic targets for glucocorticoid-loaded nanocarriers. The main objective of this study is to develop a glucocorticoid-loaded PLGA nanocarrier specifically targeting liver macrophages, thereby enabling the localized release of glucocorticoids at the site of inflammation. Dexamethasone acetate (DA)-loaded PLGA nanospheres designed for passive macrophage targeting are synthesized using the nanoprecipitation method. Two types of PLGA NSs in the size range of 100-300 nm are prepared, achieving a DA-loading efficiency of 19 %. Sustained DA release from nanospheres over 3 days is demonstrated. Flow cytometry analysis using murine bone marrow-derived macrophages demonstrates the efficient internalization of fluorescent dye-labeled PLGA nanospheres, particularly into pro-inflammatory macrophages. Significant down-regulation in pro-inflammatory cytokine genes mRNA is observed without apparent cytotoxicity after treatment with DA-loaded PLGA nanospheres. Subsequent experiments in mice confirm liver macrophage-specific nanospheres accumulation following intravenous administration using in vivo imaging, flow cytometry, and fluorescence microscopy. Taken together, the data show that the DA-loaded PLGA nanospheres are a promising drug-delivery system for the treatment of inflammatory liver diseases.
Collapse
Affiliation(s)
- Barbora Boltnarova
- Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, 50005, Czech Republic
| | - Anna Durinova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, 50005, Czech Republic
| | - Lenka Jandova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove, 50003, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove, 50003, Czech Republic
| | - Otto Kucera
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove, 50003, Czech Republic
| | - Ivona Pavkova
- Department of Molecular Pathology and Biology, Military Faculty of Medicine, University of Defence, Trebesska 1575, Hradec Kralove, 50001, Czech Republic
| | - Miloslav Machacek
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, 50005, Czech Republic
| | - Ivana Nemeckova
- Department of Biological and Medical Sciences Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, 50005, Czech Republic
| | - Marek Vojta
- Department of Physics, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove, 50003, Czech Republic
| | - Jan Dusek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, 50005, Czech Republic
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove, 50003, Czech Republic
| | - Maria Krutakova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, 50005, Czech Republic
| | - Petr Nachtigal
- Department of Biological and Medical Sciences Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, 50005, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, 50005, Czech Republic
| | - Ondrej Holas
- Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, 50005, Czech Republic
| |
Collapse
|
2
|
Frejková M, Běhalová K, Rubanová D, De Sanctis JB, Kubala L, Chytil P, Šimonová A, Křížek T, Randárová E, Gunár K, Etrych T. Polymer nanotherapeutics with the controlled release of acetylsalicylic acid and its derivatives inhibiting cyclooxygenase isoforms and reducing the production of pro-inflammatory mediators. Int J Pharm 2024; 665:124742. [PMID: 39317246 DOI: 10.1016/j.ijpharm.2024.124742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
The effective treatment of inflammatory diseases, particularly their chronic forms, is a key task of modern medicine. Herein, we report the synthesis and evaluation of biocompatible polymer conjugates based on N-2-(hydroxypropyl)methacrylamide copolymers enabling the controlled release of acetylsalicylic acid (ASA)-based anti-inflammatory drugs under specific stimuli. All polymer nanotherapeutics were proposed as water-soluble drug delivery systems with a hydrodynamic size below 10 nm ensuring suitability for the parenteral application and preventing opsonization by the reticuloendothelial system. The nanotherapeutics bearing an ester-bound ASA exhibited long-term release of the ASA/salicylic acid mixture, while the nanotherapeutics carrying salicylic acid hydrazide (SAH) ensured the selective release of SAH in the acidic inflammatory environment thanks to the pH-sensitive hydrazone bond between the polymer carrier and SAH. The ASA- and SAH-containing nanotherapeutics inhibited both cyclooxygenase isoforms and/or the production of pro-inflammatory mediators. Thanks to their favorable design, they can preferentially accumulate in the inflamed tissue, resulting in reduced side effects and lower dosage, and thus more effective and safer treatment.
Collapse
Affiliation(s)
- Markéta Frejková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00 Prague 6, Czech Republic
| | - Kateřina Běhalová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00 Prague 6, Czech Republic
| | - Daniela Rubanová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Lukáš Kubala
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center - Center of Biomolecular and Cellular Engineering, St. Anne's University Hospital, Pekařská 53, 602 00, Brno, Czech Republic
| | - Petr Chytil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00 Prague 6, Czech Republic
| | - Alice Šimonová
- Department of Analytical Chemistry, Faculty of Science of Charles University, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Tomáš Křížek
- Department of Analytical Chemistry, Faculty of Science of Charles University, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Eva Randárová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00 Prague 6, Czech Republic
| | - Kristýna Gunár
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00 Prague 6, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00 Prague 6, Czech Republic.
| |
Collapse
|
3
|
Li J, Chi H, Wu Y, Peng K, Wang J, Lin W. Sulfur dioxide-triggered visualization tool for auxiliary diagnosis of alcohol-induced "anti-inflammatory and pro-inflammatory" development process. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134685. [PMID: 38797075 DOI: 10.1016/j.jhazmat.2024.134685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Inflammation is the most common disease in humans. Alcohol has been part of human culture throughout history. To avoid alcohol prompting inflammation to develop into a more serious disease, it is important for human health to explore the effects of alcohol on the development of inflammation.Endogenous sulfur dioxide (SO2) is considered an important regulator of the development of inflammation and is involved in the entire development process of inflammation. Taken together, it is of great significance to explore the impact of alcohol on the development process of inflammation through changes in SO2 concentration in the inflammatory microenvironment. Herein, we report the development of a molecular tool (Nu-SO2) with rapid (5 s) response to the important inflammatory modulator sulfur dioxide (SO2) for the diagnosis of inflammation, assessment of therapeutic effects, and evaluation of the development process of alcohol-induced inflammation. The rationality of Nu-SO2 was confirmed through molecular docking calculations, density functional theory (DFT) theoretical calculations, DNA/RNA titration experiments and co-localization experiments. Furthermore, Nu-SO2 was effectively applied for specific response and highly sensitive visualization imaging of SO2 in solution, cells and mice. Importantly, Nu-SO2 was successfully used to diagnose lipopolysaccharide-induced inflammation in cells and mice and evaluate the efficacy of dexamethasone in treating inflammation. More significantly, based on the excellent performance of Nu-SO2 in dynamically reporting the further development of inflammation in mice triggered by alcohol, we successfully elucidated the "anti-inflammatory and pro-inflammatory" trend in the development of inflammation caused by alcohol stimulation. Thus, this work not only advances the research on the relationship between alcohol, inflammation and SO2, but also provides a new non-invasive assessment method for the development mechanism of inflammation induced by external stimuli and the precise diagnosis and treatment of drug efficacy evaluation.
Collapse
Affiliation(s)
- Jiangfeng Li
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Hanwen Chi
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Yu Wu
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Kanghui Peng
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Jiangyan Wang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| |
Collapse
|
4
|
Cysewski P, Jeliński T, Przybyłek M, Mai A, Kułak J. Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen. Molecules 2024; 29:2296. [PMID: 38792157 PMCID: PMC11124057 DOI: 10.3390/molecules29102296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Deep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental solubility data were collected for all DES systems. A machine learning model was developed using COSMO-RS molecular descriptors to predict solubility. All studied DESs exhibited a cosolvency effect, increasing drug solubility at modest concentrations of water. The model accurately predicted solubility for ibuprofen, ketoprofen, and related analogs (flurbiprofen, felbinac, phenylacetic acid, diphenylacetic acid). A machine learning approach utilizing COSMO-RS descriptors enables the rational design and solubility prediction of DES formulations for improved pharmaceutical applications.
Collapse
Affiliation(s)
- Piotr Cysewski
- Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-096 Bydgoszcz, Poland; (T.J.); (M.P.)
| | | | | | | | | |
Collapse
|
5
|
Sari MHM, Saccol CP, Custódio VN, da Rosa LS, da Costa JS, Fajardo AR, Ferreira LM, Cruz L. Carrageenan-xanthan nanocomposite film with improved bioadhesion and permeation profile in human skin: A cutaneous-friendly platform for ketoprofen local delivery. Int J Biol Macromol 2024; 265:130864. [PMID: 38493820 DOI: 10.1016/j.ijbiomac.2024.130864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Ketoprofen (KET), commonly used for inflammation in clinical settings, leads to systemic adverse effects with prolonged use, mitigated by topical administration. Nanotechnology-based cutaneous forms, like films, may enhance KET efficacy. Therefore, this study aimed to prepare and characterize films containing KET nanoemulsions (F-NK) regarding mechanical properties, chemical composition and interactions, occlusive potential, bioadhesion, drug permeation in human skin, and safety. The films were prepared using a κ-carrageenan and xanthan gum blend (2 % w/w, ratio 3: 1) plasticized with glycerol through the solvent casting method. Non-nanoemulsioned KET films (F-K) were prepared for comparative purposes. F-NK was flexible and hydrophilic, exhibited higher drug content and better uniformity (94.40 ± 3.61 %), maintained the NK droplet size (157 ± 12 nm), and was thinner and lighter than the F-K. This film also showed increased tensile strength and Young's modulus values, enhanced bioadhesion and occlusive potential, and resulted in more of the drug in the human skin layers. Data also suggested that nano-based formulations are homogeneous and more stable than F-KET. Hemolysis and chorioallantoic membrane tests suggested the formulations' safety. Thus, the nano-based film is suitable for cutaneous KET delivery, which may improve the drug's efficacy in managing inflammatory conditions.
Collapse
Affiliation(s)
- Marcel Henrique Marcondes Sari
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba, Brazil.
| | - Camila Parcianello Saccol
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Vanessa Neuenschwander Custódio
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | | | - Juliê Silveira da Costa
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Federal University of Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil
| | - André Ricardo Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Federal University of Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil
| | - Luana Mota Ferreira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba, Brazil
| | - Letícia Cruz
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil.
| |
Collapse
|
6
|
Fernández-Gómez P, Pérez de la Lastra Aranda C, Tosat-Bitrián C, Bueso de Barrio JA, Thompson S, Sot B, Salas G, Somoza Á, Espinosa A, Castellanos M, Palomo V. Nanomedical research and development in Spain: improving the treatment of diseases from the nanoscale. Front Bioeng Biotechnol 2023; 11:1191327. [PMID: 37545884 PMCID: PMC10401050 DOI: 10.3389/fbioe.2023.1191327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/23/2023] [Indexed: 08/08/2023] Open
Abstract
The new and unique possibilities that nanomaterials offer have greatly impacted biomedicine, from the treatment and diagnosis of diseases, to the specific and optimized delivery of therapeutic agents. Technological advances in the synthesis, characterization, standardization, and therapeutic performance of nanoparticles have enabled the approval of several nanomedicines and novel applications. Discoveries continue to rise exponentially in all disease areas, from cancer to neurodegenerative diseases. In Spain, there is a substantial net of researchers involved in the development of nanodiagnostics and nanomedicines. In this review, we summarize the state of the art of nanotechnology, focusing on nanoparticles, for the treatment of diseases in Spain (2017-2022), and give a perspective on the future trends and direction that nanomedicine research is taking.
Collapse
Affiliation(s)
- Paula Fernández-Gómez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Carmen Pérez de la Lastra Aranda
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Carlota Tosat-Bitrián
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Sebastián Thompson
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Begoña Sot
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Unidad de Innovación Biomédica, Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJ UAM), Madrid, Spain
| | - Gorka Salas
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Ana Espinosa
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Madrid, Spain
| | - Milagros Castellanos
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Valle Palomo
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| |
Collapse
|
7
|
Halfter N, Espinosa-Cano E, Pontes-Quero GM, Ramírez-Jiménez RA, Heinemann C, Möller S, Schnabelrauch M, Wiesmann HP, Hintze V, Aguilar MR. Ketoprofen-Based Polymer-Drug Nanoparticles Provide Anti-Inflammatory Properties to HA/Collagen Hydrogels. J Funct Biomater 2023; 14:jfb14030160. [PMID: 36976084 PMCID: PMC10059015 DOI: 10.3390/jfb14030160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
Current limitations of wound dressings for treating chronic wounds require the development of novel approaches. One of these is the immune-centered approach, which aims to restore the pro-regenerative and anti-inflammatory properties of macrophages. Under inflammatory conditions, ketoprofen nanoparticles (KT NPs) can reduce pro-inflammatory markers of macrophages and increase anti-inflammatory cytokines. To assess their suitability as part of wound dressings, these NPs were combined with hyaluronan (HA)/collagen-based hydro- (HGs) and cryogels (CGs). Different HA and NP concentrations and loading techniques for NP incorporation were used. The NP release, gel morphology, and mechanical properties were studied. Generally, colonialization of the gels with macrophages resulted in high cell viability and proliferation. Furthermore, direct contact of the NPs to the cells reduced the level of nitric oxide (NO). The formation of multinucleated cells on the gels was low and further decreased by the NPs. For the HGs that produced the highest reduction in NO, extended ELISA studies showed reduced levels of the pro-inflammatory markers PGE2, IL-12 p40, TNF-α, and IL-6. Thus, HA/collagen-based gels containing KT NPs may represent a novel therapeutic approach for treating chronic wounds. Whether effects observed in vitro translate into a favorable profile on skin regeneration in vivo will require rigorous testing.
Collapse
Affiliation(s)
- Norbert Halfter
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Straße 27, 01069 Dresden, Germany
| | - Eva Espinosa-Cano
- Group of Biomaterials, Institute of Polymer Science and Technology ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, C/Monforte de Lemos 3/5, 28029 Madrid, Spain
| | - Gloria María Pontes-Quero
- Group of Biomaterials, Institute of Polymer Science and Technology ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, C/Monforte de Lemos 3/5, 28029 Madrid, Spain
| | - Rosa Ana Ramírez-Jiménez
- Group of Biomaterials, Institute of Polymer Science and Technology ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, C/Monforte de Lemos 3/5, 28029 Madrid, Spain
| | - Christiane Heinemann
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Straße 27, 01069 Dresden, Germany
| | - Stephanie Möller
- Department of Biomaterials, INNOVENT e. V., Prüssingstraße 27B, 07745 Jena, Germany
| | | | - Hans-Peter Wiesmann
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Straße 27, 01069 Dresden, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Straße 27, 01069 Dresden, Germany
- Correspondence: (V.H.); (M.R.A.)
| | - Maria Rosa Aguilar
- Group of Biomaterials, Institute of Polymer Science and Technology ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, C/Monforte de Lemos 3/5, 28029 Madrid, Spain
- Correspondence: (V.H.); (M.R.A.)
| |
Collapse
|
8
|
Vakilzadeh H, Varshosaz J, Dinari M, Mirian M, Hajhashemi V, Shamaeizadeh N, Sadeghi HMM. Smart redox-sensitive micelles based on chitosan for dasatinib delivery in suppressing inflammatory diseases. Int J Biol Macromol 2023; 229:696-712. [PMID: 36529222 DOI: 10.1016/j.ijbiomac.2022.12.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/03/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Dasatinib (DAS) exhibits anti-inflammatory effects by retrieving the balance between inflammatory and anti-inflammatory cytokines secreted by macrophages. The aim of this study was the development of redox-responsive micelles with the potential of passive targeting and on-demand drug release for DAS delivery to macrophages. For this purpose, two molecular weights of chitosan (CHIT) were conjugated to DAS at different molar ratios using 3,3'-dithiodipropionic anhydride (DTDPA) as disulfide bond containing linker to synthesize a series of CHIT-S-S-DAS amphiphilic conjugates. Micelles obtained by the sonication method had particle sizes of 129.3-172.2 nm, zeta potentials of +17.5 to +20.9 mV, drug contents of 0.90-7.20 %, CMC values of 35.3-96.6 μg/ml, and exhibited redox-responsive in vitro drug release. Optimized micelles were non-toxic and dramatically more efficient than non-redox responsive micelles in reducing TNF-α and IL-6 and increasing IL-10 secretion from LPS-stimulated RAW264.7 cells. Furthermore, the redox-responsive micelles were able to reduce the mice paw edema, reduce the plasma levels of pro-inflammatory cytokines and increase plasma level of IL-10, considerably more than free DAS and non-redox responsive micelles in carrageenan-induced mice paw edema model of inflammation.
Collapse
Affiliation(s)
- Hamed Vakilzadeh
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran.
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Valiollah Hajhashemi
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahal Shamaeizadeh
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Mir-Mohammad Sadeghi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
9
|
Pauna AMR, Mititelu Tartau L, Bogdan M, Meca AD, Popa GE, Pelin AM, Drochioi CI, Pricop DA, Pavel LL. Synthesis, Characterization and Biocompatibility Evaluation of Novel Chitosan Lipid Micro-Systems for Modified Release of Diclofenac Sodium. Biomedicines 2023; 11:biomedicines11020453. [PMID: 36830989 PMCID: PMC9953466 DOI: 10.3390/biomedicines11020453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
The purpose of our study was the obtaining, characterization and biocompatibility estimation of novel carrier systems for diclofenac. Diclofenac is a potent nonsteroidal anti-inflammatory drug with frequent gastrointestinal side effects, impairing the quality of the patient's life. Original diclofenac-loaded micro-vesicles coated with chitosan were prepared and physico-chemical analyzed. We investigated their in vitro hemocompatibility and in vivo biocompatibility in rats. The animals were treated orally as follows: group 1 (Control): distilled water 0.3 mL/100 g body weight; Group 2 (CHIT): 0.3 mL/100 g body weight 0.5% chitosan solution; Group 3 (DCF): 15 mg/kg body weight diclofenac; Group 4 (DCF-ves): lipid vesicles loaded with diclofenac 15 mg/kg body weight. Blood samples were collected for assessing: red blood cells, hemoglobin, hematocrit and leukocyte formula. A series of specific parameters of the liver and kidney function, some markers of immune defense, as well as the activity of some enzymes involved in oxidative processes, were also investigated. At the end of the experiment, the animals were sacrificed and fragments of liver, kidney and stomach were collected for histopathological examination. No blood hemolysis was evidenced by the in vitro test with the administration of diclofenac vesicles. The animals treated with diclofenac lipid vesicles stabilized with chitosan did not display any notable differences in their hematological and biochemical profile compared to control animals. These data correlated with the histological results, which showed the absence of architectural changes in the examined tissues. Biological in vitro and in vivo evaluation revealed that the microvesicles containing diclofenac are biocompatible, with potential to be used as delivery systems to modify the drug release, thus making them an attractive candidate for biomedical applications.
Collapse
Affiliation(s)
- Ana-Maria Raluca Pauna
- Department of Pharmacology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Liliana Mititelu Tartau
- Department of Pharmacology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: Correspondence: (L.M.T.); (M.B.)
| | - Maria Bogdan
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania
- Correspondence: Correspondence: (L.M.T.); (M.B.)
| | - Andreea-Daniela Meca
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Gratiela Eliza Popa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ana Maria Pelin
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, 800010 Galați, Romania
| | - Cristian Ilie Drochioi
- Surgical Department, Faculty of Dental Medicine, University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Liliana Lacramioara Pavel
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, 800010 Galați, Romania
| |
Collapse
|
10
|
Fluorescent silicon-doped polymer dots: Preparation and its multiple applications as antibacterial, solid fluorescence and reducing agents. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Wei Y, Liu J, Liu G, Gao S, Wu D, Yang L, Luo R, Zhang F, Wang Y. Hemocompatibility Multi-in-One Hydrogel Coating with ROS-Triggered Inflammation Suppression and Anti-Infection Properties for Blood-Contacting Device. Biomacromolecules 2022; 23:4357-4369. [PMID: 36166656 DOI: 10.1021/acs.biomac.2c00815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In traditional blood-contacting medical devices, infection and thrombosis are easily formed on the surface of the materials. In addition, inflammation is also a clinical complication that cannot be ignored. More importantly, there is a mutually promoting relationship between the inflammatory response and the infection as well as thrombosis. In this work, we propose a self-adaptive anti-inflammatory coating strategy combined with anti-infection and anticoagulant capacity, which was accomplished based on nano-Ag particles and dexamethasone (Dex)-loaded hydrogel coating. The coating loaded with nano-Ag endows it with good bactericidal performance, including Gram-positive and Gram-negative bacteria. As an anti-inflammatory drug, Dex was grafted onto hydrogel coating by a reactive oxygen species (ROS)-cleavable thioketal (TK) bond and released upon the trigger of an inflammatory environment, blocking further inflammatory cascade, providing self-adaptive anti-inflammatory properties, and avoiding side effects of the drug. It was demonstrated that the coating worked as a precise strategy to resist coagulation, infection, and inflammation, provided a new perspective for designing clinical complication-conformable coatings, and had great application prospects on blood-contacting medical devices.
Collapse
Affiliation(s)
- Yuan Wei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Jingze Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Gongyan Liu
- Collage of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Shuai Gao
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu 611135, P. R. China
| | - Dimeng Wu
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu 611135, P. R. China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Fanjun Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
12
|
Criado-Gonzalez M, Espinosa-Cano E, Rojo L, Boulmedais F, Aguilar MR, Hernández R. Injectable Tripeptide/Polymer Nanoparticles Supramolecular Hydrogel: A Candidate for the Treatment of Inflammatory Pathologies. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10068-10080. [PMID: 35179869 DOI: 10.1021/acsami.1c22993] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Supramolecular peptide-based hydrogels attract great attention in several fields, i.e., biomedicine, catalysis, energy, and materials chemistry, due to the noncovalent nature of the self-assembly and functional tunable properties defined by the amino acid sequence. In this work, we developed an injectable hybrid supramolecular hydrogel whose formation was triggered by electrostatic interactions between a phosphorylated tripeptide, Fmoc-FFpY (F: phenylalanine, pY: phosphorylated tyrosine), and cationic polymer nanoparticles made of vinylimidazole and ketoprofen (poly(HKT-co-VI) NPs). Hydrogel formation was assessed through inverted tube tests, and its fibrillary structure, around polymer NPs, was observed by transmission electron microscopy. Interestingly, peptide self-assembly yields the formation of nontwisted and twisted fibers, which could be attributed to β-sheets and α-helix structures, respectively, as characterized by circular dichroism and infrared spectroscopies. An increase of the elastic modulus of the Fmoc-FFpY/polymer NPs hybrid hydrogels was observed with peptide concentration as well as its injectability property, due to its shear thinning behavior and self-healing ability. After checking their stability under physiological conditions, the cytotoxicity properties of these hybrid hydrogels were evaluated in contact with human dermal fibroblasts (FBH) and murine macrophages (RAW 264.7). Finally, the Fmoc-FFpY/polymer NPs hybrid hydrogels exhibited a great nitric oxide reduction (∼67%) up to basal values of pro-inflammatory RAW 264.7 cells, thus confirming their excellent anti-inflammatory properties for the treatment of localized inflammatory pathologies.
Collapse
Affiliation(s)
- Miryam Criado-Gonzalez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), c/ Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Eva Espinosa-Cano
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), c/ Juan de la Cierva, 3, 28006 Madrid, Spain
- CIBER-BBN, c/ Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), c/ Juan de la Cierva, 3, 28006 Madrid, Spain
- CIBER-BBN, c/ Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| | - Fouzia Boulmedais
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR 22), 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | - María Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), c/ Juan de la Cierva, 3, 28006 Madrid, Spain
- CIBER-BBN, c/ Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| | - Rebeca Hernández
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), c/ Juan de la Cierva, 3, 28006 Madrid, Spain
| |
Collapse
|
13
|
Yu Y, Yang Q, Wang Z, Ding Q, Li M, Fang Y, He Q, Zhu YZ. The Anti-Inflammation and Anti-Nociception Effect of Ketoprofen in Rats Could Be Strengthened Through Co-Delivery of a H 2S Donor, S-Propargyl-Cysteine. J Inflamm Res 2021; 14:5863-5875. [PMID: 34785926 PMCID: PMC8590460 DOI: 10.2147/jir.s333326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/11/2021] [Indexed: 01/20/2023] Open
Abstract
PURPOSE Ketoprofen (KETO) is a traditional non-steroidal anti-inflammatory drug (NSAIDs) with good analgesic and antipyretic effects. However, as NASIDs, the toxicity of KETO towards gastrointestinal (GI) system might limit its clinical use. S-propargyl-cysteine (SPRC) is an excellent endogenous H2S donor showed wide application in the field of anti-inflammation, anti-oxidative stress, or even the protection of cardiovascular system through the elevation of endogenous H2S concentration. As recently studies reported, co-administration of H2S donor might potentially mitigate the GI toxicity and relevant side effects induced by series of NSAIDs. METHODS In this study, we established a SPRC and KETO co-encapsulated poly (lactic-co-glycolic acid) microsphere (SK@MS), and its particle size, morphology, storage stability and in vitro release profile were firstly investigated. The elevation of endogenous H2S level of SK@MS was then calculated, and the pharmacodynamic study (anti-inflammation and analgesic effects) of SK@MS, SPRC, and KETO towards adjuvant induced arthritis (AIA) in rats were also studied. Finally, to test the potential side effect, the heart, liver, spleen, lung, kidney, stomach, small intestine, and large intestine were resected from rats and examined by H&E staining. RESULTS A monodispersed SK@MS could be observed under the SEM, and particle size was calculated around 25.12 μm. The loading efficiency (LE) for SPRC and KETO were 6.67% and 2.64%, respectively, while the encapsulation efficiency (EE) for SPRC and KETO were 37.20% and 68.28%, respectively. SK@MS showed a sustained release of SPRC and KETO in vitro, which was up-to 15 days. SK@MS could achieve a long-term elevation of the H2S concentration in vivo, while SPRC showed an instant H2S elevation and metabolize within 6 h. Interestingly, the KETO did not show any influence on the H2S concentration in vivo. After establishment of AIA model, neither SPRC nor KETO showed scarcely anti-inflammation and anti-nociception effect, while conversely, SK@MS showed an obvious mitigation towards paw edema and pain in AIA rats, which indicated an improved anti-inflammation and anti-nociception effect when co-delivery of SRC and KETO. Besides, low stimulation towards major organs in rats observed in any experimental group. CONCLUSION A monodispersed was successfully prepared in this study, and SK@MS showed a sustained SPRC and KETO release in vitro and H2S release in vivo. In the pharmacodynamics study, SK@MS not only exhibited an excellent anti-inflammation and analgesic effects in AIA rats but also showed low stimulation towards rats.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Qinyan Yang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Zhou Wang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Meng Li
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Yudong Fang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Qida He
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
- Shanghai Key Laboratory of Bioactive Small Molecules & School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
14
|
Nanoparticles to Target and Treat Macrophages: The Ockham's Concept? Pharmaceutics 2021; 13:pharmaceutics13091340. [PMID: 34575416 PMCID: PMC8469871 DOI: 10.3390/pharmaceutics13091340] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Nanoparticles are nanomaterials with three external nanoscale dimensions and an average size ranging from 1 to 1000 nm. Nanoparticles have gained notoriety in technological advances due to their tunable physical, chemical, and biological characteristics. However, the administration of functionalized nanoparticles to living beings is still challenging due to the rapid detection and blood and tissue clearance by the mononuclear phagocytic system. The major exponent of this system is the macrophage. Regardless the nanomaterial composition, macrophages can detect and incorporate foreign bodies by phagocytosis. Therefore, the simplest explanation is that any injected nanoparticle will be probably taken up by macrophages. This explains, in part, the natural accumulation of most nanoparticles in the spleen, lymph nodes, and liver (the main organs of the mononuclear phagocytic system). For this reason, recent investigations are devoted to design nanoparticles for specific macrophage targeting in diseased tissues. The aim of this review is to describe current strategies for the design of nanoparticles to target macrophages and to modulate their immunological function involved in different diseases with special emphasis on chronic inflammation, tissue regeneration, and cancer.
Collapse
|
15
|
Hosseinikhah SM, Barani M, Rahdar A, Madry H, Arshad R, Mohammadzadeh V, Cucchiarini M. Nanomaterials for the Diagnosis and Treatment of Inflammatory Arthritis. Int J Mol Sci 2021; 22:3092. [PMID: 33803502 PMCID: PMC8002885 DOI: 10.3390/ijms22063092] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Nanomaterials have received increasing attention due to their unique chemical and physical properties for the treatment of rheumatoid arthritis (RA), the most common complex multifactorial joint-associated autoimmune inflammatory disorder. RA is characterized by an inflammation of the synovium with increased production of proinflammatory cytokines (IL-1, IL-6, IL-8, and IL-10) and by the destruction of the articular cartilage and bone, and it is associated with the development of cardiovascular disorders such as heart attack and stroke. While a number of imaging tools allow for the monitoring and diagnosis of inflammatory arthritis, and despite ongoing work to enhance their sensitivity and precision, the proper assessment of RA remains difficult particularly in the early stages of the disease. Our goal here is to describe the benefits of applying various nanomaterials as next-generation RA imaging and detection tools using contrast agents and nanosensors and as improved drug delivery systems for the effective treatment of the disease.
Collapse
Affiliation(s)
- Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran;
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 761691411, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-9861, Iran
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany;
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad 91886-17871, Iran;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany;
| |
Collapse
|
16
|
Pontes-Quero GM, Benito-Garzón L, Pérez Cano J, Aguilar MR, Vázquez-Lasa B. Modulation of Inflammatory Mediators by Polymeric Nanoparticles Loaded with Anti-Inflammatory Drugs. Pharmaceutics 2021; 13:pharmaceutics13020290. [PMID: 33672354 PMCID: PMC7926915 DOI: 10.3390/pharmaceutics13020290] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The first-line treatment of osteoarthritis is based on anti-inflammatory drugs, the most currently used being nonsteroidal anti-inflammatory drugs, selective cyclooxygenase 2 (COX-2) inhibitors and corticoids. Most of them present cytotoxicity and low bioavailability in physiological conditions, making necessary the administration of high drug concentrations causing several side effects. The goal of this work was to encapsulate three hydrophobic anti-inflammatory drugs of different natures (celecoxib, tenoxicam and dexamethasone) into core-shell terpolymer nanoparticles with potential applications in osteoarthritis. Nanoparticles presented hydrodynamic diameters between 110 and 130 nm and almost neutral surface charges (between −1 and −5 mV). Encapsulation efficiencies were highly dependent on the loaded drug and its water solubility, having higher values for celecoxib (39–72%) followed by tenoxicam (20–24%) and dexamethasone (14–26%). Nanoencapsulation reduced celecoxib and dexamethasone cytotoxicity in human articular chondrocytes and murine RAW264.7 macrophages. Moreover, the three loaded systems did not show cytotoxic effects in a wide range of concentrations. Celecoxib and dexamethasone-loaded nanoparticles reduced the release of different inflammatory mediators (NO, TNF-α, IL-1β, IL-6, PGE2 and IL-10) by lipopolysaccharide (LPS)-stimulated RAW264.7. Tenoxicam-loaded nanoparticles reduced NO and PGE2 production, although an overexpression of IL-1β, IL-6 and IL-10 was observed. Finally, all nanoparticles proved to be biocompatible in a subcutaneous injection model in rats. These findings suggest that these loaded nanoparticles could be suitable candidates for the treatment of inflammatory processes associated with osteoarthritis due to their demonstrated in vitro activity as regulators of inflammatory mediator production.
Collapse
Affiliation(s)
- Gloria María Pontes-Quero
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; (G.M.P.-Q.); (B.V.-L.)
- Alodia Farmacéutica SL, Santiago Grisolía 2 D130/L145, 28760 Madrid, Spain;
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Lorena Benito-Garzón
- Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Correspondence: (L.B.-G.); (M.R.A.); Tel.: +34-915-622-900 (M.R.A.)
| | - Juan Pérez Cano
- Alodia Farmacéutica SL, Santiago Grisolía 2 D130/L145, 28760 Madrid, Spain;
| | - María Rosa Aguilar
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; (G.M.P.-Q.); (B.V.-L.)
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
- Correspondence: (L.B.-G.); (M.R.A.); Tel.: +34-915-622-900 (M.R.A.)
| | - Blanca Vázquez-Lasa
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; (G.M.P.-Q.); (B.V.-L.)
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| |
Collapse
|
17
|
Thao NTT, Lee S, Shin GR, Kang Y, Choi S, Kim MS. Preparation of Electrospun Small Intestinal Submucosa/Poly(caprolactone- co-Lactide- co-glycolide) Nanofiber Sheet as a Potential Drug Carrier. Pharmaceutics 2021; 13:pharmaceutics13020253. [PMID: 33670418 PMCID: PMC7917610 DOI: 10.3390/pharmaceutics13020253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
In this work, we chose small intestine submucosa (SIS) as a drug carrier because SIS possesses good biocompatibility, non-immunogenic property and bio-resorbability, and performed electrospinning for preparation of nanofiber sheets (NS). For the preparation of drug-loaded electrospun SIS nanofiber sheets as a drug carrier, we used poly(ε-caprolactone-ran-l-lactide) (PCLA) copolymers to improve the electrospinning performance of SIS. The electrospinning of SIS and PCLA provided the electrospun SIS/PCLA (S/P)-nanofiber sheet (S/P-NS) with adjustable thickness and areas. The electrospun S/P-NS showed different porosities, pore sizes, diameters and tensile strengths depending on the ratios between SIS and PCLA. The electrospun S/P-NS was used as a drug carrier of the dexamethasone (Dex) and silver sulfadiazine (AgS) drug related to anti-inflammation. Dex-loaded S/P-NS and AgS-loaded S/P-NS was successfully fabricated by the electrospinning. In the in vitro and in vivo release, we successfully confirmed the possibility for the sustained release of Dex and AgS from the Dex-S/P-NS and AgS-S/P-NS for three weeks. In addition, the sustained Dex and AgS release suppressed the macrophage infiltration. Collectively, we achieved feasible development of SIS nanofiber sheets for a sustained Dex and AgS delivery system.
Collapse
Affiliation(s)
| | | | | | | | | | - Moon Suk Kim
- Correspondence: ; Tel.: +82-31-219-2608; Fax: +82-31-219-3931
| |
Collapse
|