1
|
Saadh MJ, Mustafa MA, Kumar S, Gupta P, Pramanik A, Rizaev JA, Shareef HK, Alubiady MHS, Al-Abdeen SHZ, Shakier HG, Alaraj M, Alzubaidi LH. Advancing therapeutic efficacy: nanovesicular delivery systems for medicinal plant-based therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7229-7254. [PMID: 38700796 DOI: 10.1007/s00210-024-03104-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/12/2024] [Indexed: 10/04/2024]
Abstract
The utilization of medicinal plant extracts in therapeutics has been hindered by various challenges, including poor bioavailability and stability issues. Nanovesicular delivery systems have emerged as promising tools to overcome these limitations by enhancing the solubility, bioavailability, and targeted delivery of bioactive compounds from medicinal plants. This review explores the applications of nanovesicular delivery systems in antibacterial and anticancer therapeutics using medicinal plant extracts. We provide an overview of the bioactive compounds present in medicinal plants and their therapeutic properties, emphasizing the challenges associated with their utilization. Various types of nanovesicular delivery systems, including liposomes, niosomes, ethosomes, and solid lipid nanoparticles, among others, are discussed in detail, along with their potential applications in combating bacterial infections and cancer. The review highlights specific examples of antibacterial and anticancer activities demonstrated by these delivery systems against a range of pathogens and cancer types. Furthermore, we address the challenges and limitations associated with the scale-up, stability, toxicity, and regulatory considerations of nanovesicular delivery systems. Finally, future perspectives are outlined, focusing on emerging technologies, integration with personalized medicine, and potential collaborations to drive forward research in this field. Overall, this review underscores the potential of nanovesicular delivery systems for enhancing the therapeutic efficacy of medicinal plant extracts in antibacterial and anticancer applications, while identifying avenues for further research and development.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq
| | - Sanjay Kumar
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Pooja Gupta
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Jasur Alimdjanovich Rizaev
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18, Amir Temur Street, Rector, Samarkand, Uzbekistan
| | - Hasanain Khaleel Shareef
- Department of Medical Biotechnology, College of Science, Al-Mustaqbal University, Hilla, Iraq
- Biology Department, College of Science for Women, University of Babylon, Hilla, Iraq
| | | | | | | | - Mohd Alaraj
- Faculty of Pharmacy, Jerash Private University, Jerash, Jordan
| | - Laith H Alzubaidi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Almawash S. Solid lipid nanoparticles, an effective carrier for classical antifungal drugs. Saudi Pharm J 2023; 31:1167-1180. [PMID: 37273269 PMCID: PMC10236373 DOI: 10.1016/j.jsps.2023.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
Solid-lipid nanoparticles (SLNs) are an innovative group of nanosystems used to deliver medicine to their respective targets with better efficiency and bioavailability in contrast to classical formulations. SLNs are less noxious, have fewer adverse effects, have more biocompatibility, and have easy biodegradability. Lipophilic, hydrophilic and hydrophobic drugs can be loaded into SLNs, to enhance their physical and chemical stability in critical environments. Certain antifungal agents used in different treatments are poorly soluble medications, biologicals, proteins etc. incorporated in SLNs to enhance their therapeutic outcome, increase their bioavailability and target specificity. SLNs-based antifungal agents are currently helpful against vicious drug-resistant fungal infections. This review covers the importance of SLNs in drug delivery of classical antifungal drugs, historical background, preparation, physicochemical characteristic, structure and sizes of SLNs, composition, drug entrapment efficacy, clinical evaluations and uses, challenges, antifungal drug resistance, strategies to overcome limitations, novel antifungal agents currently in clinical trials with special emphasis on fungal infections.
Collapse
|
3
|
Yadav R, Pradhan M, Yadav K, Mahalvar A, Yadav H. Present scenarios and future prospects of herbal nanomedicine for antifungal therapy. J Drug Deliv Sci Technol 2022; 74:103430. [PMID: 35582019 PMCID: PMC9101776 DOI: 10.1016/j.jddst.2022.103430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/27/2022]
Abstract
The current COVID-19 epidemic is a sobering reminder that human susceptibility to infectious diseases remains even in our modern civilization. After all, infectious diseases are still the major reason of death globally. Healthcare authorities have often underestimated and ignored the threat posed by "microbial dangers," although they put millions of lives at risk every year. Overlooked developing diseases including fungal infections (FIs) contribute to roughly 1.7 million fatalities per year. As many as 150 million cases of severe and potentially life-threatening FIs are reported each year. In the last few years, the number of instances has steadily increased. Most of them are invasive fungal infections that require specialized treatment and hospital care. In recent years herbal antifungal compounds have been explored to acquire effective and safe therapy against fungal infections. However, potential therapeutic effects are hampered by the poor solubility, stability, and bioavailability of these important chemicals as well as the gastric degradation that occurs in the gastrointestinal tract. To get around this issue, researchers have turned to novel drug delivery systems such as nanoemulsions, ethosomes, metallic nanoparticles, liposomes, lipid nanoparticles, transferosomes, etc by improving their limits, nanocarriers can enhance the medicinal effects of herbal oils and extracts. The present review article focuses on the available antifungal agents and their characteristics, mechanism of antifungal drugs resistance, herbal oils and extract as antifungal agents, challenges in the delivery of herbal drugs, and application of nano-drug delivery systems for effective delivery of antifungal herbal compounds.
Collapse
Affiliation(s)
- Rahul Yadav
- ISBM University, Nawapara, Gariyaband, Chhattisgarh, 493996, India
| | - Madhulika Pradhan
- Rungta College of Pharmaceutical Education and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Krishna Yadav
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
- Raipur Institute of Pharmaceutical Education and Research, Sarona, Raipur, Chhattisgarh, 492010, India
| | - Anand Mahalvar
- ISBM University, Nawapara, Gariyaband, Chhattisgarh, 493996, India
| | - Homesh Yadav
- ISBM University, Nawapara, Gariyaband, Chhattisgarh, 493996, India
| |
Collapse
|
4
|
Marena GD, Ramos MADS, Carvalho GC, Junior JAP, Resende FA, Corrêa I, Ono GYB, Sousa Araujo VH, Camargo BAF, Bauab TM, Chorilli M. Natural product‐based nanomedicine applied to fungal infection treatment: A review of the last 4 years. Phytother Res 2022; 36:2710-2745. [DOI: 10.1002/ptr.7460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/25/2022] [Accepted: 03/26/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Gabriel Davi Marena
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Matheus Aparecido dos Santos Ramos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Gabriela Corrêa Carvalho
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | | | | | - Ione Corrêa
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Gabriela Yuki Bressanim Ono
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Victor Hugo Sousa Araujo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Bruna Almeida Furquim Camargo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Tais Maria Bauab
- Department of Biological Sciences and Health University of Araraquara (UNIARA) Araraquara Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| |
Collapse
|
5
|
Olena Z, Yang Y, TingTing Y, XiaoTao Y, HaiLian R, Xun X, Dong X, CuiLing W, HaiLun H. Simultaneous preparation of antioxidant peptides and lipids from microalgae by pretreatment with bacterial proteases. BIORESOURCE TECHNOLOGY 2022; 348:126759. [PMID: 35077814 DOI: 10.1016/j.biortech.2022.126759] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Chlorella can produce large amounts of lipids and therefore has great potential for biodiesel production. In this study, Chlorella protothecoides was hydrolyzed by several kinds of extracellular bacterial proteases produced by Pseudoalteromonas sp. ZB23-2, B27-3 and JS4-1 before lipid extraction. Hydrolysates with high antioxidant activity were obtained. The scavenging activities of 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydrogen peroxide, and hydroxyl free radicals reached 33.47 ± 0.68%, 46.81 ± 2.38%, and 7.35 ± 0.37 µmol·TE/µmol, respectively. Likewise, proteolysis reduced biomass, which resulted in a reduction in lipid leaching reagents by 35.34-45.49%. Compared to the commonly used Kates and Paradis method (171.77 ± 2.50 mg/g), the modified ethanol lipid extraction combined with JS4-1 enzyme pretreatment (291.06 ± 1.70 mg/g) and acetone-ethanol lipid extraction combined with B27-3 protease pretreatment (277.20 ± 3.30 mg/g) resulted in a larger and more diverse lipid extraction. Protease pretreatment combined with less toxic solvents for lipid extraction improved microalgal biorefinery and reduced environmental pollution.
Collapse
Affiliation(s)
- Zhur Olena
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Yan Yang
- Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Yin TingTing
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Yan XiaoTao
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Rao HaiLian
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Xiao Xun
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Xiao Dong
- State Key Laboratory of Coal Resources and Safe Mining, University of Mining and Technology, Xuzhou 221116, China
| | - Wu CuiLing
- Department of Biochemistry, Changzhi Medical College, Changzhi 046000, China
| | - He HaiLun
- School of Life Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
6
|
Hampejsová R, Berka M, Berková V, Jersáková J, Domkářová J, von Rundstedt F, Frary A, Saiz-Fernández I, Brzobohatý B, Černý M. Interaction With Fungi Promotes the Accumulation of Specific Defense Molecules in Orchid Tubers and May Increase the Value of Tubers for Biotechnological and Medicinal Applications: The Case Study of Interaction Between Dactylorhiza sp. and Tulasnella calospora. FRONTIERS IN PLANT SCIENCE 2022; 13:757852. [PMID: 35845638 PMCID: PMC9282861 DOI: 10.3389/fpls.2022.757852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 06/13/2022] [Indexed: 05/04/2023]
Abstract
Terrestrial orchids can form tubers, organs modified to store energy reserves. Tubers are an attractive source of nutrients, and salep, a flour made from dried orchid tubers, is the source of traditional beverages. Tubers also contain valuable secondary metabolites and are used in traditional medicine. The extensive harvest of wild orchids is endangering their populations in nature; however, orchids can be cultivated and tubers mass-produced. This work illustrates the importance of plant-fungus interaction in shaping the content of orchid tubers in vitro. Orchid plants of Dactylorhiza sp. grown in asymbiotic culture were inoculated with a fungal isolate from Tulasnella calospora group and, after 3 months of co-cultivation, tubers were analyzed. The fungus adopted the saprotrophic mode of life, but no visible differences in the morphology and biomass of the tubers were detected compared to the mock-treated plants. To elucidate the mechanisms protecting the tubers against fungal infestation, proteome, metabolome, and lipidome of tubers were analyzed. In total, 1,526, 174, and 108 proteins, metabolites, and lipids were quantified, respectively, providing a detailed snapshot of the molecular process underlying plant-microbe interaction. The observed changes at the molecular level showed that the tubers of inoculated plants accumulated significantly higher amounts of antifungal compounds, including phenolics, alkaloid Calystegine B2, and dihydrophenanthrenes. The promoted antimicrobial effects were validated by observing transient inhibition of Phytophthora cactorum growth. The integration of omics data highlighted the promotion of flavonoid biosynthesis, the increase in the formation of lipid droplets and associated production of oxylipins, and the accumulation of auxin in response to T. calospora. Taken together, these results provide the first insights into the molecular mechanisms of defense priming in orchid tubers and highlight the possible use of fungal interactors in biotechnology for the production of orchid secondary metabolites.
Collapse
Affiliation(s)
- Romana Hampejsová
- Potato Research Institute, Ltd., Havlíčkův Brod, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Veronika Berková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jana Jersáková
- Department of Biology of Ecosystems, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | | | | | - Anne Frary
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Turkey
| | - Iñigo Saiz-Fernández
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- *Correspondence: Martin Černý,
| |
Collapse
|
7
|
Ye L, Yao Q, Xu F, He L, Ding J, Xiao R, Ding L, Luo B. Preparation and antitumor activity of triphenylphosphine-based mitochondrial targeting polylactic acid nanoparticles loaded with 7-hydroxyl coumarin. J Biomater Appl 2021; 36:1064-1075. [PMID: 34338057 DOI: 10.1177/08853282211037030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Due to the low bioavailability and severe toxic side effects caused by the lack of selectivity of traditional chemotherapy drugs, the targeted delivery of chemotherapy drugs has become the key to tumor treatment. The activity and transmembrane potential of mitochondria in cancer cells were significantly higher than that of normal cells, making them a potential target for chemotherapeutic drug delivery. In this study, triphenylphosphine (TPP) based mitochondria targeting polylactic acid (PLLA) nanoparticles (TPP-PLLA NPs) were synthesized to improve the delivery efficiency of anticancer drugs. The carrier material was characterized by 1H NMR and FT-IR and 7-hydroxyl coumarin (7-HC) was successfully loaded into TPP-PLLA to form 7-HC/TPP-PLLA NPs. Further studies showed that TPP-PLLA NPs were primarily accumulated in the mitochondrial and 7-HC/TPP-PLLA NPs had higher antitumor activity. Taken together, our results indicated that TPP-PLLA NPs could be a promising mitochondria-targeted drug delivery system for cancer therapy.
Collapse
Affiliation(s)
- Lin Ye
- Department of Pharmaceutics, School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Qing Yao
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - Fengnan Xu
- Department of Pharmaceutics, School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Liu He
- Department of Pharmaceutics, School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Jieqiong Ding
- Department of Physiology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Ruolei Xiao
- Department of Pharmaceutics, School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Liqiong Ding
- Department of Pharmaceutics, School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Binhua Luo
- Department of Pharmaceutics, School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|