1
|
Udrescu M, Ardelean SM, Udrescu L. The curse and blessing of abundance-the evolution of drug interaction databases and their impact on drug network analysis. Gigascience 2022; 12:giad011. [PMID: 36892110 PMCID: PMC10023830 DOI: 10.1093/gigascience/giad011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/18/2022] [Accepted: 02/07/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Widespread bioinformatics applications such as drug repositioning or drug-drug interaction prediction rely on the recent advances in machine learning, complex network science, and comprehensive drug datasets comprising the latest research results in molecular biology, biochemistry, or pharmacology. The problem is that there is much uncertainty in these drug datasets-we know the drug-drug or drug-target interactions reported in the research papers, but we cannot know if the not reported interactions are absent or yet to be discovered. This uncertainty hampers the accuracy of such bioinformatics applications. RESULTS We use complex network statistics tools and simulations of randomly inserted previously unaccounted interactions in drug-drug and drug-target interaction networks-built with data from DrugBank versions released over the plast decade-to investigate whether the abundance of new research data (included in the latest dataset versions) mitigates the uncertainty issue. Our results show that the drug-drug interaction networks built with the latest dataset versions become very dense and, therefore, almost impossible to analyze with conventional complex network methods. On the other hand, for the latest drug database versions, drug-target networks still include much uncertainty; however, the robustness of complex network analysis methods slightly improves. CONCLUSIONS Our big data analysis results pinpoint future research directions to improve the quality and practicality of drug databases for bioinformatics applications: benchmarking for drug-target interaction prediction and drug-drug interaction severity standardization.
Collapse
Affiliation(s)
- Mihai Udrescu
- Department of Computer and Information Technology, Politehnica University of Timişoara, Timişoara 300223, Romania
| | - Sebastian Mihai Ardelean
- Department of Computer and Information Technology, Politehnica University of Timişoara, Timişoara 300223, Romania
| | - Lucreţia Udrescu
- Department I—Drug Analysis, “Victor Babeş” University of Medicine and Pharmacy Timişoara, Timişoara 300041, Romania
| |
Collapse
|
2
|
Proposal to Consider Chemical/Physical Microenvironment as a New Therapeutic Off-Target Approach. Pharmaceutics 2022; 14:pharmaceutics14102084. [PMID: 36297518 PMCID: PMC9611316 DOI: 10.3390/pharmaceutics14102084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
The molecular revolution could lead drug discovery from chance observation to the rational design of new classes of drugs that could simultaneously be more effective and less toxic. Unfortunately, we are witnessing some failure in this sense, and the causes of the crisis involve a wide range of epistemological and scientific aspects. In pharmacology, one key point is the crisis of the paradigm the “magic bullet”, which is to design therapies based on specific molecular targets. Drug repurposing is one of the proposed ways out of the crisis and is based on the off-target effects of known drugs. Here, we propose the microenvironment as the ideal place to direct the off-targeting of known drugs. While it has been extensively investigated in tumors, the generation of a harsh microenvironment is also a phenotype of the vast majority of chronic diseases. The hostile microenvironment, on the one hand, reduces the efficacy of both chemical and biological drugs; on the other hand, it dictates a sort of “Darwinian” selection of those cells armed to survive in such hostile conditions. This opens the way to the consideration of the microenvironment as a convenient target for pharmacological action, with a clear example in proton pump inhibitors.
Collapse
|
3
|
Cerne R, Lippa A, Poe MM, Smith JL, Jin X, Ping X, Golani LK, Cook JM, Witkin JM. GABAkines - Advances in the discovery, development, and commercialization of positive allosteric modulators of GABA A receptors. Pharmacol Ther 2022; 234:108035. [PMID: 34793859 PMCID: PMC9787737 DOI: 10.1016/j.pharmthera.2021.108035] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022]
Abstract
Positive allosteric modulators of γ-aminobutyric acid-A (GABAA) receptors or GABAkines have been widely used medicines for over 70 years for anxiety, epilepsy, sleep, and other disorders. Traditional GABAkines like diazepam have safety and tolerability concerns that include sedation, motor-impairment, respiratory depression, tolerance and dependence. Multiple GABAkines have entered clinical development but the issue of side-effects has not been fully solved. The compounds that are presently being developed and commercialized include several neuroactive steroids (an allopregnanolone formulation (brexanolone), an allopregnanolone prodrug (LYT-300), Sage-324, zuranolone, and ganaxolone), the α2/3-preferring GABAkine, KRM-II-81, and the α2/3/5-preferring GABAkine PF-06372865 (darigabat). The neuroactive steroids are in clinical development for post-partum depression, intractable epilepsy, tremor, status epilepticus, and genetic epilepsy disorders. Darigabat is in development for epilepsy and anxiety. The imidazodiazepine, KRM-II-81 is efficacious in animal models for the treatment of epilepsy and post-traumatic epilepsy, acute and chronic pain, as well as anxiety and depression. The efficacy of KRM-II-81 in models of pharmacoresistant epilepsy, preventing the development of seizure sensitization, and in brain tissue of intractable epileptic patients bodes well for improved therapeutics. Medicinal chemistry efforts are also ongoing to identify novel and improved GABAkines. The data document gaps in our understanding of the molecular pharmacology of GABAkines that drive differential pharmacological profiles, but emphasize advancements in the ability to successfully utilize GABAA receptor potentiation for therapeutic gain in neurology and psychiatry.
Collapse
Affiliation(s)
- Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA,Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia.,RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
| | | | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Xingjie Ping
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Lalit K. Golani
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - James M. Cook
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jeffrey M. Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA,RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
4
|
Integrating Network Pharmacology and Molecular Docking to Analyse the Potential Mechanism of action of Macleaya cordata (Willd.) R. Br. in the Treatment of Bovine Hoof Disease. Vet Sci 2021; 9:vetsci9010011. [PMID: 35051095 PMCID: PMC8779036 DOI: 10.3390/vetsci9010011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/18/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
Based on network pharmacological analysis and molecular docking techniques, the main components of M. cordata for the treatment of bovine relevant active compounds in M. cordata were searched for through previous research bases and literature databases, and then screened to identify candidate compounds based on physicochemical properties, pharmacokinetic parameters, bioavailability, and drug-like criteria. Target genes associated with hoof disease were obtained from the GeneCards database. Compound−target, compound−target−pathway−disease visualization networks, and protein−protein interaction (PPI) networks were constructed by Cytoscape. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed in R language. Molecular docking analysis was done using AutoDockTools. The visual network analysis showed that four active compounds, sanguinarine, chelerythrine, allocryptopine and protopine, were associated with the 10 target genes/proteins (SRC, MAPK3, MTOR, ESR1, PIK3CA, BCL2L1, JAK2, GSK3B, MAPK1, and AR) obtained from the screen. The enrichment analysis indicated that the cAMP, PI3K-Akt, and ErbB signaling pathways may be key signaling pathways in network pharmacology. The molecular docking results showed that sanguinarine, chelerythrine, allocryptopine, and protopine bound well to MAPK3 and JAK2. A comprehensive bioinformatics-based network topology strategy and molecular docking study has elucidated the multi-component synergistic mechanism of action of M. cordata in the treatment of bovine hoof disease, offering the possibility of developing M. cordata as a new source of drugs for hoof disease treatment.
Collapse
|
5
|
Groza V, Udrescu M, Bozdog A, Udrescu L. Drug Repurposing Using Modularity Clustering in Drug-Drug Similarity Networks Based on Drug-Gene Interactions. Pharmaceutics 2021; 13:2117. [PMID: 34959398 PMCID: PMC8709282 DOI: 10.3390/pharmaceutics13122117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
Drug repurposing is a valuable alternative to traditional drug design based on the assumption that medicines have multiple functions. Computer-based techniques use ever-growing drug databases to uncover new drug repurposing hints, which require further validation with in vitro and in vivo experiments. Indeed, such a scientific undertaking can be particularly effective in the case of rare diseases (resources for developing new drugs are scarce) and new diseases such as COVID-19 (designing new drugs require too much time). This paper introduces a new, completely automated computational drug repurposing pipeline based on drug-gene interaction data. We obtained drug-gene interaction data from an earlier version of DrugBank, built a drug-gene interaction network, and projected it as a drug-drug similarity network (DDSN). We then clustered DDSN by optimizing modularity resolution, used the ATC codes distribution within each cluster to identify potential drug repurposing candidates, and verified repurposing hints with the latest DrugBank ATC codes. Finally, using the best modularity resolution found with our method, we applied our pipeline to the latest DrugBank drug-gene interaction data to generate a comprehensive drug repurposing hint list.
Collapse
Affiliation(s)
- Vlad Groza
- Department of Computer and Information Technology, University Politehnica of Timişoara, 300223 Timişoara, Romania; (V.G.); (A.B.)
| | - Mihai Udrescu
- Department of Computer and Information Technology, University Politehnica of Timişoara, 300223 Timişoara, Romania; (V.G.); (A.B.)
| | - Alexandru Bozdog
- Department of Computer and Information Technology, University Politehnica of Timişoara, 300223 Timişoara, Romania; (V.G.); (A.B.)
| | - Lucreţia Udrescu
- Department I—Drug Analysis, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 300041 Timişoara, Romania;
| |
Collapse
|
6
|
Kazakova O, Racoviceanu R, Petrova A, Mioc M, Militaru A, Udrescu L, Udrescu M, Voicu A, Cummings J, Robertson G, Ordway DJ, Slayden RA, Șoica C. New Investigations with Lupane Type A-Ring Azepane Triterpenoids for Antimycobacterial Drug Candidate Design. Int J Mol Sci 2021; 22:12542. [PMID: 34830423 PMCID: PMC8621456 DOI: 10.3390/ijms222212542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
Abstract
Twenty lupane type A-ring azepano-triterpenoids were synthesized from betulin and its related derivatives and their antitubercular activity against Mycobacterium tuberculosis, mono-resistant MTB strains, and nontuberculous strains Mycobacterium abscessus and Mycobacterium avium were investigated in the framework of AToMIc (Anti-mycobacterial Target or Mechanism Identification Contract) realized by the Division of Microbiology and Infectious Diseases, NIAID, National Institute of Health. Of all the tested triterpenoids, 17 compounds showed antitubercular activity and 6 compounds were highly active on the H37Rv wild strain (with MIC 0.5 µM for compound 7), out of which 4 derivatives also emerged as highly active compounds on the three mono-resistant MTB strains. Molecular docking corroborated with a machine learning drug-drug similarity algorithm revealed that azepano-triterpenoids have a rifampicin-like antitubercular activity, with compound 7 scoring the highest as a potential M. tuberculosis RNAP potential inhibitor. FIC testing demonstrated an additive effect of compound 7 when combined with rifampin, isoniazid and ethambutol. Most compounds were highly active against M. avium with compound 14 recording the same MIC value as the control rifampicin (0.0625 µM). The antitubercular ex vivo effectiveness of the tested compounds on THP-1 infected macrophages is correlated with their increased cell permeability. The tested triterpenoids also exhibit low cytotoxicity and do not induce antibacterial resistance in MTB strains.
Collapse
Affiliation(s)
- Oxana Kazakova
- Ufa Institute of Chemistry, The Ufa Federal Research Centre, The Russian Academy of Sciences, 71, Pr. Oktyabrya, 450054 Ufa, Russia;
| | - Roxana Racoviceanu
- Department II-Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Sq., 300041 Timişoara, Romania; (R.R.); (M.M.); (C.Ș.)
- Res Ctr Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. 2, 300041 Timisoara, Romania
| | - Anastasiya Petrova
- Ufa Institute of Chemistry, The Ufa Federal Research Centre, The Russian Academy of Sciences, 71, Pr. Oktyabrya, 450054 Ufa, Russia;
| | - Marius Mioc
- Department II-Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Sq., 300041 Timişoara, Romania; (R.R.); (M.M.); (C.Ș.)
- Res Ctr Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. 2, 300041 Timisoara, Romania
| | - Adrian Militaru
- Department of Computer and Information Technology, University Politehnica of Timişoara, 2 Vasile Pârvan Blvd., 300223 Timişoara, Romania; (A.M.); (M.U.)
| | - Lucreția Udrescu
- Department I-Drug Analysis, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Sq., 300041 Timişoara, Romania;
| | - Mihai Udrescu
- Department of Computer and Information Technology, University Politehnica of Timişoara, 2 Vasile Pârvan Blvd., 300223 Timişoara, Romania; (A.M.); (M.U.)
| | - Adrian Voicu
- Department III-Informatics and Medical Biostatistics, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Sq., 300041 Timişoara, Romania
| | - Jason Cummings
- Department of Microbiology, Immunology & Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523, USA; (J.C.); (G.R.); (D.J.O.); (R.A.S.)
| | - Gregory Robertson
- Department of Microbiology, Immunology & Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523, USA; (J.C.); (G.R.); (D.J.O.); (R.A.S.)
| | - Diane J. Ordway
- Department of Microbiology, Immunology & Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523, USA; (J.C.); (G.R.); (D.J.O.); (R.A.S.)
| | - Richard A. Slayden
- Department of Microbiology, Immunology & Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523, USA; (J.C.); (G.R.); (D.J.O.); (R.A.S.)
| | - Codruța Șoica
- Department II-Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Sq., 300041 Timişoara, Romania; (R.R.); (M.M.); (C.Ș.)
- Res Ctr Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. 2, 300041 Timisoara, Romania
| |
Collapse
|
7
|
Avram S, Stan MS, Udrea AM, Buiu C, Boboc AA, Mernea M. 3D-ALMOND-QSAR Models to Predict the Antidepressant Effect of Some Natural Compounds. Pharmaceutics 2021; 13:pharmaceutics13091449. [PMID: 34575524 PMCID: PMC8470101 DOI: 10.3390/pharmaceutics13091449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022] Open
Abstract
The current treatment of depression involves antidepressant synthetic drugs that have a variety of side effects. In searching for alternatives, natural compounds could represent a solution, as many studies reported that such compounds modulate the nervous system and exhibit antidepressant effects. We used bioinformatics methods to predict the antidepressant effect of ten natural compounds with neuroleptic activity, reported in the literature. For all compounds we computed their drug-likeness, absorption, distribution, metabolism, excretion (ADME), and toxicity profiles. Their antidepressant and neuroleptic activities were predicted by 3D-ALMOND-QSAR models built by considering three important targets, namely serotonin transporter (SERT), 5-hydroxytryptamine receptor 1A (5-HT1A), and dopamine D2 receptor. For our QSAR models we have used the following molecular descriptors: hydrophobicity, electrostatic, and hydrogen bond donor/acceptor. Our results showed that all compounds present drug-likeness features as well as promising ADME features and no toxicity. Most compounds appear to modulate SERT, and fewer appear as ligands for 5-HT1A and D2 receptors. From our prediction, linalyl acetate appears as the only ligand for all three targets, neryl acetate appears as a ligand for SERT and D2 receptors, while 1,8-cineole appears as a ligand for 5-HT1A and D2 receptors.
Collapse
Affiliation(s)
- Speranta Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, SplaiulIndependentei, No 91-95, 050095 Bucharest, Romania; (S.A.); (M.S.S.); (M.M.)
| | - Miruna Silvia Stan
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, SplaiulIndependentei, No 91-95, 050095 Bucharest, Romania; (S.A.); (M.S.S.); (M.M.)
- Research Institute of the University of Bucharest–ICUB, University of Bucharest, 91–95, SplaiulIndependentei, 050095 Bucharest, Romania;
| | - Ana Maria Udrea
- Research Institute of the University of Bucharest–ICUB, University of Bucharest, 91–95, SplaiulIndependentei, 050095 Bucharest, Romania;
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Cătălin Buiu
- Department of Automatic Control and Systems Engineering, Politehnica University of Bucharest, 313 SplaiulIndependenţei, 060042 Bucharest, Romania
- Correspondence: ; Tel.: +40-021-402-9167
| | - Anca Andreea Boboc
- “Maria Sklodowska Curie” Emergency Children’s Hospital, 20, Constantin Brancoveanu Bd., 077120 Bucharest, Romania;
- Department of Pediatrics 8, “Carol Davila” University of Medicine and Pharmacy, EroiiSanitari Bd., 020021 Bucharest, Romania
| | - Maria Mernea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, SplaiulIndependentei, No 91-95, 050095 Bucharest, Romania; (S.A.); (M.S.S.); (M.M.)
| |
Collapse
|
8
|
Badkas A, De Landtsheer S, Sauter T. Topological network measures for drug repositioning. Brief Bioinform 2021; 22:bbaa357. [PMID: 33348366 PMCID: PMC8294518 DOI: 10.1093/bib/bbaa357] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Drug repositioning has received increased attention since the past decade as several blockbuster drugs have come out of repositioning. Computational approaches are significantly contributing to these efforts, of which, network-based methods play a key role. Various structural (topological) network measures have thereby contributed to uncovering unintuitive functional relationships and repositioning candidates in drug-disease and other networks. This review gives a broad overview of the topic, and offers perspectives on the application of topological measures for network analysis. It also discusses unexplored measures, and draws attention to a wider scope of application efforts, especially in drug repositioning.
Collapse
|
9
|
Mashraqi MM, Chaturvedi N, Alam Q, Alshamrani S, Bahnass MM, Ahmad K, Alqosaibi AI, Alnamshan MM, Ahmad SS, Beg MMA, Mishra A, Shaikh S, Rizvi SMD. Biocomputational Prediction Approach Targeting FimH by Natural SGLT2 Inhibitors: A Possible Way to Overcome the Uropathogenic Effect of SGLT2 Inhibitor Drugs. Molecules 2021; 26:582. [PMID: 33499241 PMCID: PMC7866138 DOI: 10.3390/molecules26030582] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 01/05/2023] Open
Abstract
The Food and Drug Administration (FDA) approved a new class of anti-diabetic medication (a sodium-glucose co-transporter 2 (SGLT2) inhibitor) in 2013. However, SGLT2 inhibitor drugs are under evaluation due to their associative side effects, such as urinary tract and genital infection, urinary discomfort, diabetic ketosis, and kidney problems. Even clinicians have difficulty in recommending it to diabetic patients due to the increased probability of urinary tract infection. In our study, we selected natural SGLT2 inhibitors, namely acerogenin B, formononetin, (-)-kurarinone, (+)-pteryxin, and quinidine, to explore their potential against an emerging uropathogenic bacterial therapeutic target, i.e., FimH. FimH plays a critical role in the colonization of uropathogenic bacteria on the urinary tract surface. Thus, FimH antagonists show promising effects against uropathogenic bacterial strains via their targeting of FimH's adherence mechanism with less chance of resistance. The molecular docking results showed that, among natural SGLT2 inhibitors, formononetin, (+)-pteryxin, and quinidine have a strong interaction with FimH proteins, with binding energy (∆G) and inhibition constant (ki) values of -5.65 kcal/mol and 71.95 µM, -5.50 kcal/mol and 92.97 µM, and -5.70 kcal/mol and 66.40 µM, respectively. These interactions were better than those of the positive control heptyl α-d-mannopyranoside and far better than those of the SGLT2 inhibitor drug canagliflozin. Furthermore, a 50 ns molecular dynamics simulation was conducted to optimize the interaction, and the resulting complexes were found to be stable. Physicochemical property assessments predicted little toxicity and good drug-likeness properties for these three compounds. Therefore, formononetin, (+)-pteryxin, and quinidine can be proposed as promising SGLT2 inhibitors drugs, with add-on FimH inhibition potential that might reduce the probability of uropathogenic side effects.
Collapse
Affiliation(s)
- Mutaib M. Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (M.M.M.); (S.A.); (M.M.B.)
| | - Navaneet Chaturvedi
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India; (N.C.); (A.M.)
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester Henry Wellcome Building, Lancaster Road Leicester, Leicester LE1 7HB, UK
| | - Qamre Alam
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia;
| | - Saleh Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (M.M.M.); (S.A.); (M.M.B.)
| | - Mosa M. Bahnass
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (M.M.M.); (S.A.); (M.M.B.)
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (S.S.A.); (M.M.A.B.)
| | - Amany I. Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.I.A.); (M.M.A.)
| | - Mashael M. Alnamshan
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.I.A.); (M.M.A.)
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (S.S.A.); (M.M.A.B.)
| | - Mirza Masroor Ali Beg
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (S.S.A.); (M.M.A.B.)
| | - Abha Mishra
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India; (N.C.); (A.M.)
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (S.S.A.); (M.M.A.B.)
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, P.O. Box 2440, Hail 81451, Saudi Arabia
| |
Collapse
|