1
|
Razmjooei M, Hosseini SMH, Yousefi G, Golmakani MT, Eskandari MH. Exploiting Apical Sodium-Dependent Bile Acid Transporter (ASBT)-Mediated Endocytosis with Multi-Functional Deoxycholic Acid Grafted Alginate Amide Nanoparticles as an Oral Insulin Delivery System. Pharm Res 2024; 41:335-353. [PMID: 38114803 DOI: 10.1007/s11095-023-03641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVE Oral administration of insulin is a potential candidate for managing diabetes. However, it is obstructed by the gastrointestinal tract barriers resulting in negligible oral bioavailability. METHODS This investigation presents a novel nanocarrier platform designed to address these challenges. In this regard, the process involved amination of sodium alginate by ethylene diamine, followed by its conjugation with deoxycholic acid. RESULTS The resulting DCA@Alg@INS nanocarrier revealed a significantly high insulin loading content of 63.6 ± 1.03% and encapsulation efficiency of 87.6 ± 3.84%, with a particle size of 206 nm and zeta potentials of -3 mV. In vitro studies showed sustained and pH-dependent release profiles of insulin from nanoparticles. In vitro cellular studies, confocal laser scanning microscopy and flow cytometry analysis confirmed the successful attachment and internalization of DCA@Alg@INS nanoparticles in Caco-2 cells. Furthermore, the DCA@Alg@INS demonstrated a superior capacity for cellular uptake and permeability coefficient relative to the insulin solution, exhibiting sixfold and 4.94-fold enhancement, respectively. According to the uptake mechanism studies, the results indicated that DCA@Alg@INS was mostly transported through an energy-dependent active pathway since the uptake of DCA@Alg@INS by cells was significantly reduced in the presence of NaN3 by ~ 92% and at a low temperature of 4°C by ~ 94%. CONCLUSIONS Given the significance of administering insulin through oral route, deoxycholic acid-modified alginate nanoparticles present a viable option to surmount various obstacles presented by the gastrointestinal.
Collapse
Affiliation(s)
- Maryam Razmjooei
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Gholamhossein Yousefi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad-Taghi Golmakani
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran.
| |
Collapse
|
2
|
Morofuji R, Kudo K, Honda T, Kinugasa S, Matsuo T, Okabe K. Enhancing Corneal Drug Penetration Using Penetratin for Ophthalmic Suspensions. Biol Pharm Bull 2024; 47:1033-1042. [PMID: 38797668 DOI: 10.1248/bpb.b24-00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Eye drops, including solutions and suspensions, are essential dosage forms to treat ophthalmic diseases, with poorly water-soluble drugs typically formulated as ophthalmic suspensions. In addition to low bioavailability, suspensions exhibit limited efficacy, safety, and usability due to the presence of drug particles. Improving bioavailability can reduce the drug concentrations and the risk of problems associated with suspended drug particles. However, practical penetration enhancers capable of improving bioavailability remain elusive. Herein, we focused on penetratin (PNT), a cell-penetrating peptide (CPP) that promotes active cellular transport related to macromolecule uptake, such as micropinocytosis. According to the in vitro corneal uptake study using a reconstructed human corneal epithelial tissue model, LabCyte CORNEA-MODEL24, PNT enhanced the uptake of Fluoresbrite® YG carboxylate polystyrene microspheres without covalent binding. In an ex vivo porcine eye model, the addition of 10 µM PNT to rebamipide ophthalmic suspension markedly improved the corneal uptake of rebamipide; however, the addition of 100 µM PNT was ineffective due to potentially increased particle size by aggregation. This article provides basic information on the application of PNT as a penetration enhancer in ophthalmic suspensions, including the in vitro and ex vivo studies mentioned above, as well as the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay and storage stability at different pH values.
Collapse
Affiliation(s)
- Ryo Morofuji
- Division of Materials Science, Nara Institute of Science and Technology
- Pharmaceutical Development Division, Nara Research & Development Center, Santen Pharmaceutical Co., Ltd
| | - Kazuhiro Kudo
- Division of Materials Science, Nara Institute of Science and Technology
- Pharmaceutical Development Division, Nara Research & Development Center, Santen Pharmaceutical Co., Ltd
| | - Takahiro Honda
- Pharmaceutical Development Division, Nara Research & Development Center, Santen Pharmaceutical Co., Ltd
| | - Shino Kinugasa
- Division of Materials Science, Nara Institute of Science and Technology
| | - Takamasa Matsuo
- Division of Materials Science, Nara Institute of Science and Technology
| | - Komei Okabe
- Division of Materials Science, Nara Institute of Science and Technology
- Pharmaceutical Development Division, Nara Research & Development Center, Santen Pharmaceutical Co., Ltd
| |
Collapse
|
3
|
Þorgeirsdóttir DÝ, Andersen JH, Perch-Nielsen M, Møller LH, Grønbæk-Thorsen F, Kolberg HG, Gammelgaard B, Kristensen M. Selenomethionine as alternative label to the fluorophore TAMRA when exploiting cell-penetrating peptides as blood-brain barrier shuttles to better mimic the physicochemical properties of the non-labelled peptides. Eur J Pharm Sci 2023; 183:106400. [PMID: 36750148 DOI: 10.1016/j.ejps.2023.106400] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
The cell-penetrating peptides (CPPs) Tat and penetratin are frequently explored as shuttles for drug delivery across the blood-brain barrier (BBB). CPPs are often labelled with fluorophores for analytical purposes, with 5(6)-carboxytetramethylrhodamine (TAMRA) being a popular choice. However, TAMRA labelling affects the physicochemical properties of the resulting fluorophore-CPP construct when compared to the CPP alone. Selenomethionine (MSe) may be introduced as alternative label, which, due to its small size and amino acid nature, likely results in minimal alterations of the peptide physicochemical properties. With this study we compared, head-to-head, the effect of MSe and TAMRA labelling of Tat and penetratin with respect to their physicochemical properties, and investigated effects hereof on brain capillary endothelial cell (BCEC) models. TAMRA labelling positively affected the ability of the peptides to adhere to the cell membranes as well being internalized into the BCECs when compared to MSe labelling. TAMRA labelling of penetratin added toxicity to the BCECs to a higher extent than TAMRA labelling of Tat, whereas MSe labelling did not affect the cellular viability. Both TAMRA and MSe labelling of penetratin decreased the barrier integrity of BCEC monolayers, but not to an extent that improved transport of the paracellular marker 14C-mannitol. In conclusion, MSe labelling of Tat and penetratin adds minimal alterations to the physicochemical properties of these CPPs and their resulting effects on BCECs, and thereby represents a preferred alternative to TAMRA for peptide quantification purposes.
Collapse
Affiliation(s)
- Dagmar Ýr Þorgeirsdóttir
- CNS Drug Delivery and Barrier Modelling, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Jeppe Hofman Andersen
- CNS Drug Delivery and Barrier Modelling, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Marcus Perch-Nielsen
- CNS Drug Delivery and Barrier Modelling, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Laura Hyrup Møller
- Pharmaceutical Physical and Analytical Chemistry, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Freja Grønbæk-Thorsen
- Pharmaceutical Physical and Analytical Chemistry, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Hannah Grønbech Kolberg
- CNS Drug Delivery and Barrier Modelling, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Bente Gammelgaard
- Pharmaceutical Physical and Analytical Chemistry, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Mie Kristensen
- CNS Drug Delivery and Barrier Modelling, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
4
|
Wang S, Meng S, Zhou X, Gao Z, Piao MG. pH-Responsive and Mucoadhesive Nanoparticles for Enhanced Oral Insulin Delivery: The Effect of Hyaluronic Acid with Different Molecular Weights. Pharmaceutics 2023; 15:pharmaceutics15030820. [PMID: 36986680 PMCID: PMC10056758 DOI: 10.3390/pharmaceutics15030820] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Drug degradation at low pH and rapid clearance from intestinal absorption sites are the main factors limiting the development of oral macromolecular delivery systems. Based on the pH responsiveness and mucosal adhesion of hyaluronic acid (HA) and poly[2-(dimethylamino)ethyl methacrylate] (PDM), we prepared three HA–PDM nano-delivery systems loaded with insulin (INS) using three different molecular weights (MW) of HA (L, M, H), respectively. The three types of nanoparticles (L/H/M-HA–PDM–INS) had uniform particle sizes and negatively charged surfaces. The optimal drug loadings of the L-HA–PDM–INS, M-HA–PDM–INS, H-HA–PDM–INS were 8.69 ± 0.94%, 9.11 ± 1.03%, and 10.61 ± 1.16% (w/w), respectively. The structural characteristics of HA–PDM–INS were determined using FT-IR, and the effect of the MW of HA on the properties of HA–PDM–INS was investigated. The release of INS from H-HA–PDM–INS was 22.01 ± 3.84% at pH 1.2 and 63.23 ± 4.10% at pH 7.4. The protective ability of HA–PDM–INS with different MW against INS was verified by circular dichroism spectroscopy and protease resistance experiments. H-HA–PDM–INS retained 45.67 ± 5.03% INS at pH 1.2 at 2 h. The biocompatibility of HA–PDM–INS, regardless of the MW of HA, was demonstrated using CCK-8 and live–dead cell staining. Compared with the INS solution, the transport efficiencies of L-HA–PDM–INS, M-HA–PDM–INS, and H-HA–PDM–INS increased 4.16, 3.81, and 3.10 times, respectively. In vivo pharmacodynamic and pharmacokinetic studies were performed in diabetic rats following oral administration. H-HA–PDM–INS exhibited an effective hypoglycemic effect over a long period, with relative bioavailability of 14.62%. In conclusion, these simple, environmentally friendly, pH-responsive, and mucoadhesive nanoparticles have the potential for industrial development. This study provides preliminary data support for oral INS delivery.
Collapse
Affiliation(s)
- Shuangqing Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Saige Meng
- Department of Pharmacy, No. 73 Group Military Hospital of PLA, Xiamen 361003, China
| | - Xinlei Zhou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Zhonggao Gao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (Z.G.); (M.G.P.)
| | - Ming Guan Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
- Correspondence: (Z.G.); (M.G.P.)
| |
Collapse
|
5
|
Diedrichsen RG, Tuelung PS, Foderà V, Nielsen HM. Stereochemistry and Intermolecular Interactions Influence Carrier Peptide-Mediated Insulin Delivery. Mol Pharm 2023; 20:1202-1212. [PMID: 36607603 DOI: 10.1021/acs.molpharmaceut.2c00883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The inherent low oral bioavailability of therapeutic peptides can be enhanced by the cell-penetrating peptide penetratin and its analogues shuffle and penetramax applied as carriers for delivery of insulin. In this study, the objective was to gain mechanistic insights on the effect of the carrier peptide stereochemistry on their interactions with insulin and on insulin delivery. Insulin-carrier peptide interactions were investigated using small-angle X-ray scattering and cryogenic transmission electron microscopy, while the insulin and peptide stability and transepithelial insulin permeation were evaluated in the Caco-2 cell culture model along with the carrier peptide-induced effects on epithelial integrity and cellular metabolic activity. Interestingly, the insulin transepithelial permeation was influenced by the degree of insulin-carrier peptide complexation and depended on the stereochemistry of penetramax but not of penetratin and shuffle. The l-form of the peptides initially decreased the epithelial integrity comparable to that induced by the d-peptides, suggesting a comparable mechanism of action. The immediate decrease was reversible during exposure of the Caco-2 epithelium to the l-peptides but not during exposure to the d-peptides, likely a result of their higher stability. Overall, exploration of the stereochemistry showed to be an interesting strategy for carrier peptide-mediated insulin delivery.
Collapse
Affiliation(s)
- Ragna G Diedrichsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (Biodelivery), Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen2100, Denmark
| | - Pernille S Tuelung
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, Copenhagen2100, Denmark
| | - Vito Foderà
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (Biodelivery), Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen2100, Denmark
| | - Hanne M Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (Biodelivery), Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen2100, Denmark
| |
Collapse
|
6
|
Salave S, Rana D, Kumar H, Kommineni N, Benival D. Anabolic Peptide-Enriched Stealth Nanoliposomes for Effective Anti-Osteoporotic Therapy. Pharmaceutics 2022; 14:2417. [PMID: 36365235 PMCID: PMC9697760 DOI: 10.3390/pharmaceutics14112417] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 08/26/2023] Open
Abstract
The objective of the present work was to develop PTH (1-34)-loaded stealth nanoliposomes (PTH-LPs) by employing the use of the Quality by Design (QbD) approach. Risk identification was carried out using the Ishikawa fishbone diagram. PTH-LPs were optimized using Box Behnken Design, a type of response surface methodology to examine the effect of independent variables on dependent variables such as particle size and percentage entrapment efficiency (%EE). Design space was generated for PTH-LPs to reduce interbatch variability during the formulation development process. Furthermore, a cytotoxicity assay, cell proliferation assay, calcium calorimetric assay, mineralized nodule formation, and cellular uptake assay were carried out on MG-63 osteoblast-like cells. The results obtained from these procedures demonstrated that lipid concentration had a significant positive impact on particle size and %EE, whereas cholesterol concentration showed a reduction in %EE. The particle size and %EE of optimized formulation were found to be 147.76 ± 2.14 nm and 69.18 ± 3.62%, respectively. Optimized PTH-LPs showed the sustained release profile of the drug. In vitro cell evaluation studies showed PTH-LPs have good biocompatibility with MG-63 cells. The cell proliferation study revealed that PTH-LPs induced osteoblast differentiation which improved the formation of mineralized nodules in MG-63 cells. The outcome of the present study conclusively demonstrated the potential of the QbD concept to build quality in PTH-LPs with improved osteoanabolic therapy in osteoporosis.
Collapse
Affiliation(s)
- Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Hemant Kumar
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | | | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| |
Collapse
|
7
|
Gelli HP, Vazquez-Uribe R, Sommer MOA. Screening for effective cell-penetrating peptides with minimal impact on epithelial cells and gut commensals in vitro. Front Pharmacol 2022; 13:1049324. [PMID: 36408245 PMCID: PMC9666501 DOI: 10.3389/fphar.2022.1049324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/18/2022] [Indexed: 01/25/2023] Open
Abstract
One of the biggest challenges for oral drug absorption is the epithelial barrier of the gastrointestinal tract. The use of cell-penetrating peptides (CPPs) to modulate the epithelial barrier function is known to be an effective strategy to improve drug absorption and bioavailability. In this study we compare side-by-side, 9 most promising CPPs to study their cytotoxicity (Cytotox Red dye staining) and cell viability (AlamarBlue staining) on epithelial cells and their effects on paracellular permeability of the intestinal barrier in vitro in a differentiated Caco-2 epithelial monolayer model. The data revealed that 4 out of 9 well-studied CPPs significantly improved Caco-2 paracellular permeability without compromising on cellular health. To assess the impact of CPPs on the human microbiota we studied the antimicrobial effects of the 4 effective CPPs from our permeation studies against 10 representative strains of the gut microbiota in vitro using microbroth dilution. Our data revealed that these 4 CPPs affected the growth of almost all tested commensal strains. Interestingly, we found that two synthetic CPPs (Shuffle and Penetramax) outperformed all the other CPPs in their ability to increase intestinal paracellular permeability at 50 µM and had only a small to moderate effect on the tested gut commensal strains. Based on these data Shuffle and Penetramax represent relevant CPPs to be further characterized in vivo for safe delivery of poorly absorbed therapeutics while minimizing negative impacts on the gut microbiota.
Collapse
|
8
|
Panou DA, Diedrichsen RG, Kristensen M, Nielsen HM. Cell-Penetrating Peptides as Carriers for Transepithelial Drug Delivery. Methods Mol Biol 2022; 2383:371-384. [PMID: 34766302 DOI: 10.1007/978-1-0716-1752-6_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This chapter describes the use of cell-penetrating peptides (CPPs) as carriers for transepithelial delivery of therapeutic peptides. Assessment of transepithelial peptide permeation and the mechanisms of action that permeability enhancing drug carriers exert on the epithelium requires subtle sample preparation and analysis by orthogonal methods. Here, the preparation and use of CPP-insulin physical mixture samples including the quantification of insulin by enzyme-linked immunosorbent assay (ELISA) is described. In addition, effects of CPPs on the epithelium and its barrier properties immediately upon exposure and after a recovery period are evaluated by epithelial cell viability, transepithelial electrical resistance, immunostaining of the tight junction associated zonula occludens (ZO-1) protein, and actin cytoskeleton staining.
Collapse
Affiliation(s)
- Danai Anastasia Panou
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Drug Delivery and Biophysics of Biopharmaceuticals, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Ragna Guldsmed Diedrichsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Drug Delivery and Biophysics of Biopharmaceuticals, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Mie Kristensen
- CNS Drug Delivery & Barrier Modelling, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Mørck Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Drug Delivery and Biophysics of Biopharmaceuticals, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Frøslev P, Franzyk H, Ozgür B, Brodin B, Kristensen M. Highly cationic cell-penetrating peptides affect the barrier integrity and facilitates mannitol permeation in a human stem cell-based blood-brain barrier model. Eur J Pharm Sci 2021; 168:106054. [PMID: 34728364 DOI: 10.1016/j.ejps.2021.106054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 11/03/2022]
Abstract
The blood-brain barrier (BBB) allows passive permeation of only a limited number of, primarily lipophilic, low-molecular weight drugs that obey the so-called "rule of CNS likeness". Therefore, novel strategies to facilitate drug delivery across the BBB are needed. Cell-penetrating peptides (CPPs) enable delivery of various therapeutic cargoes into cells and may potentially serve as shuttles for delivery of brain-specific drugs across the BBB. The CPPs Tat47-57 and penetratin are prototypical cationic CPPs, whereas apidaecin and oncocin belong to the group of proline-rich cationic antimicrobial peptides displaying CPP-like properties. The aim of the present study was to investigate the potential of Tat47-57, penetratin, apidaecin, and oncocin for interaction with and permeation of the BBB in vitro. We also studied whether the CPPs facilitated permeation of the paracellular flux marker mannitol as well as the transcellular flux marker propranolol. The peptides were labelled with the fluorophore 6-TAMRA (T) for visualization and quantification purposes. CPP membrane-adherence, membrane-embedding, and cellular uptake as well as barrier-permeation were evaluated in murine brain capillary endothelial cells (bEND3) and human induced pluripotent stem cell-derived (Bioni-010c) brain capillary endothelial-like monolayers. The cationic and the proline-rich cationic CPPs were taken up into the Bioni-010c monolayers. T-Tat47-57, T-apidaecin, and T-oncocin also permeated Bioni-010c monolayers, whereas T-penetratin did not. However, both T-Tat47-57 and T-penetratin affected the barrier integrity to a degree that facilitated permeation of 14C-mannitol. These results may therefore pave the way for future CPP-mediated brain delivery of small drugs that do not obey the "rule of CNS likeness".
Collapse
Affiliation(s)
- Patrick Frøslev
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Burak Ozgür
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Birger Brodin
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Mie Kristensen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark.
| |
Collapse
|