1
|
Shi T, Liu K, Peng Y, Dai W, Du D, Li X, Liu T, Song N, Meng Y. Research progress on the therapeutic effects of nanoparticles loaded with drugs against atherosclerosis. Cardiovasc Drugs Ther 2024; 38:977-997. [PMID: 37178241 DOI: 10.1007/s10557-023-07461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Presently, there are many drugs for the treatment of atherosclerosis (AS), among which lipid-lowering, anti-inflammatory, and antiproliferative drugs have been the most studied. These drugs have been shown to have inhibitory effects on the development of AS. Nanoparticles are suitable for AS treatment research due to their fine-tunable and modifiable properties. Compared with drug monotherapy, experimental results have proven that the effects of nanoparticle-encapsulated drugs are significantly enhanced. In addition to nanoparticles containing a single drug, there have been many studies on collaborative drug treatment, collaborative physical treatment (ultrasound, near-infrared lasers, and external magnetic field), and the integration of diagnosis and treatment. This review provides an introduction to the therapeutic effects of nanoparticles loaded with drugs to treat AS and summarizes their advantages, including increased targeting ability, sustained drug release, improved bioavailability, reduced toxicity, and inhibition of plaque and vascular stenosis.
Collapse
Affiliation(s)
- Tianfeng Shi
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
- Department of Physiology, College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Kunkun Liu
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
- Department of Physiology, College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yueyou Peng
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Weibin Dai
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Donglian Du
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Xiaoqiong Li
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Tingting Liu
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
- Medical Imaging Department of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ningning Song
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
- Medical Imaging Department of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanfeng Meng
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China.
- Department of Physiology, College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Medical Imaging Department of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
2
|
Kou H, Yang H. Molecular imaging nanoprobes and their applications in atherosclerosis diagnosis. Theranostics 2024; 14:4747-4772. [PMID: 39239513 PMCID: PMC11373619 DOI: 10.7150/thno.96037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/06/2024] [Indexed: 09/07/2024] Open
Abstract
Molecular imaging has undergone significant development in recent years for its excellent ability to image and quantify biologic processes at cellular and molecular levels. Its application is of significance in cardiovascular diseases, particularly in diagnosing them at early stages. Atherosclerosis is a complex, chronic, and progressive disease that can lead to serious consequences such as heart strokes or infarctions. Attempts have been made to detect atherosclerosis with molecular imaging modalities. Not only do imaging modalities develop rapidly, but research of relevant nanomaterials as imaging probes has also been increasingly studied in recent years. This review focuses on the latest developments in the design and synthesis of probes that can be utilized in computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound imaging, photoacoustic imaging and combined modalities. The challenges and future developments of nanomaterials for molecular imaging modalities are also discussed.
Collapse
Affiliation(s)
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO 65409, United States
| |
Collapse
|
3
|
Alradwan I, AL Fayez N, Alomary MN, Alshehri AA, Aodah AH, Almughem FA, Alsulami KA, Aldossary AM, Alawad AO, Tawfik YMK, Tawfik EA. Emerging Trends and Innovations in the Treatment and Diagnosis of Atherosclerosis and Cardiovascular Disease: A Comprehensive Review towards Healthier Aging. Pharmaceutics 2024; 16:1037. [PMID: 39204382 PMCID: PMC11360443 DOI: 10.3390/pharmaceutics16081037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases (CVDs) are classed as diseases of aging, which are associated with an increased prevalence of atherosclerotic lesion formation caused by such diseases and is considered as one of the leading causes of death globally, representing a severe health crisis affecting the heart and blood vessels. Atherosclerosis is described as a chronic condition that can lead to myocardial infarction, ischemic cardiomyopathy, stroke, and peripheral arterial disease and to date, most pharmacological therapies mainly aim to control risk factors in patients with cardiovascular disease. Advances in transformative therapies and imaging diagnostics agents could shape the clinical applications of such approaches, including nanomedicine, biomaterials, immunotherapy, cell therapy, and gene therapy, which are emerging and likely to significantly impact CVD management in the coming decade. This review summarizes the current anti-atherosclerotic therapies' major milestones, strengths, and limitations. It provides an overview of the recent discoveries and emerging technologies in nanomedicine, cell therapy, and gene and immune therapeutics that can revolutionize CVD clinical practice by steering it toward precision medicine. CVD-related clinical trials and promising pre-clinical strategies that would significantly impact patients with CVD are discussed. Here, we review these recent advances, highlighting key clinical opportunities in the rapidly emerging field of CVD medicine.
Collapse
Affiliation(s)
- Ibrahim Alradwan
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Nojoud AL Fayez
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Mohammad N. Alomary
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Abdullah A. Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Alhassan H. Aodah
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Fahad A. Almughem
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Khulud A. Alsulami
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Ahmad M. Aldossary
- Wellness and Preventative Medicine Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Abdullah O. Alawad
- Healthy Aging Research Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Yahya M. K. Tawfik
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Essam A. Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| |
Collapse
|
4
|
Luo X, Zhang M, Dai W, Xiao X, Li X, Zhu Y, Shi X, Li Z. Targeted nanoparticles triggered by plaque microenvironment for atherosclerosis treatment through cascade effects of reactive oxygen species scavenging and anti-inflammation. J Nanobiotechnology 2024; 22:440. [PMID: 39061065 PMCID: PMC11282716 DOI: 10.1186/s12951-024-02652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammatory factors and reactive oxygen species (ROS) are risk factors for atherosclerosis. Many existing therapies use ROS-sensitive delivery systems to alleviate atherosclerosis, which achieved certain efficacy, but cannot eliminate excessive ROS. Moreover, the potential biological safety concerns of carrier materials through chemical synthesis cannot be ignored. Herein, an amphiphilic low molecular weight heparin- lipoic acid conjugate (LMWH-LA) was used as a ROS-sensitive carrier material, which consisted of injectable drug molecules used clinically, avoiding unknown side effects. LMWH-LA and curcumin (Cur) self-assembled to form LLC nanoparticles (LLC NPs) with LMWH as shell and LA/Cur as core, in which LMWH could target P-selectin on plaque endothelial cells and competitively block the migration of monocytes to endothelial cells to inhibit the origin of ROS and inflammatory factors, and LA could be oxidized to trigger hydrophilic-hydrophobic transformation and accelerate the release of Cur. Cur released within plaques further exerted anti-inflammatory and antioxidant effects, thereby suppressing ROS and inflammatory factors. We used ultrasound imaging, pathology and serum analysis to evaluate the therapeutic effect of nanoparticles on atherosclerotic plaques in apoe-/- mice, and the results showed that LLC showed significant anti-atherosclerotic effects. Our finding provided a promising therapeutic nanomedicine for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xianghong Luo
- Department of Echocardiography, Shanghai General Hospital, School of Medicine, Shanghai Jiao tong University, Shanghai, 200080, China
| | - Mengjiao Zhang
- Department of Medical Imaging, Weifang Medical University, Weifang, 261053, Shandong, China
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Waicong Dai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Xianghao Xiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Xinyi Li
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- School of Life Sciences, Hubei University, Hubei, China
| | - Yingjian Zhu
- Department of Urology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201803, China.
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China.
| | - Zhaojun Li
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- Department of Ultrasound, Jiading Branch of Shanghai General Hospital, Shanghai Jiao tong University School of Medicine, Shanghai, 201803, China.
| |
Collapse
|
5
|
Zhen J, Li X, Yu H, Du B. High-density lipoprotein mimetic nano-therapeutics targeting monocytes and macrophages for improved cardiovascular care: a comprehensive review. J Nanobiotechnology 2024; 22:263. [PMID: 38760755 PMCID: PMC11100215 DOI: 10.1186/s12951-024-02529-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
The prevalence of cardiovascular diseases continues to be a challenge for global health, necessitating innovative solutions. The potential of high-density lipoprotein (HDL) mimetic nanotherapeutics in the context of cardiovascular disease and the intricate mechanisms underlying the interactions between monocyte-derived cells and HDL mimetic showing their impact on inflammation, cellular lipid metabolism, and the progression of atherosclerotic plaque. Preclinical studies have demonstrated that HDL mimetic nanotherapeutics can regulate monocyte recruitment and macrophage polarization towards an anti-inflammatory phenotype, suggesting their potential to impede the progression of atherosclerosis. The challenges and opportunities associated with the clinical application of HDL mimetic nanotherapeutics, emphasize the need for additional research to gain a better understanding of the precise molecular pathways and long-term effects of these nanotherapeutics on monocytes and macrophages to maximize their therapeutic efficacy. Furthermore, the use of nanotechnology in the treatment of cardiovascular diseases highlights the potential of nanoparticles for targeted treatments. Moreover, the concept of theranostics combines therapy and diagnosis to create a selective platform for the conversion of traditional therapeutic medications into specialized and customized treatments. The multifaceted contributions of HDL to cardiovascular and metabolic health via highlight its potential to improve plaque stability and avert atherosclerosis-related problems. There is a need for further research to maximize the therapeutic efficacy of HDL mimetic nanotherapeutics and to develop targeted treatment approaches to prevent atherosclerosis. This review provides a comprehensive overview of the potential of nanotherapeutics in the treatment of cardiovascular diseases, emphasizing the need for innovative solutions to address the challenges posed by cardiovascular diseases.
Collapse
Affiliation(s)
- Juan Zhen
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Xiangjun Li
- School of Pharmaceutical Science, Jilin University, Changchun, 130021, China
| | - Haitao Yu
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Bing Du
- The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
6
|
Wang J, Lu B, Yin G, Liu L, Yang P, Huang N, Zhao A. Design and Fabrication of Environmentally Responsive Nanoparticles for the Diagnosis and Treatment of Atherosclerosis. ACS Biomater Sci Eng 2024; 10:1190-1206. [PMID: 38343186 DOI: 10.1021/acsbiomaterials.3c01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Cardiovascular disease poses a significant threat to human health in today's society. A major contributor to cardiovascular disease is atherosclerosis (AS). The development of plaque in the affected areas involves a complex pathological environment, and the disease progresses rapidly. Nanotechnology, combined with emerging diagnostic and treatment methods, offers the potential for the management of this condition. This paper presents the latest advancements in environment-intelligent responsive controlled-release nanoparticles designed specifically for the pathological environment of AS, which includes characteristics such as low pH, high reactive oxygen species levels, high shear stress, and multienzymes. Additionally, the paper summarizes the applications and features of nanotechnology in interventional therapy for AS, including percutaneous transluminal coronary angioplasty and drug-eluting stents. Furthermore, the application of nanotechnology in the diagnosis of AS shows promising real-time, accurate, and continuous effects. Lastly, the paper explores the future prospects of nanotechnology, highlighting the tremendous potential in the diagnosis and treatment of atherosclerotic diseases, especially with the ongoing development in nano gas, quantum dots, and Metal-Organic Frameworks materials.
Collapse
Affiliation(s)
- Jingyue Wang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Bingyang Lu
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ge Yin
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Li Liu
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ping Yang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Nan Huang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ansha Zhao
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| |
Collapse
|
7
|
Wang LM, Zhang WL, Lyu N, Suo YR, Yang L, Yu B, Jiang XJ. Research Advance of Chinese Medicine in Treating Atherosclerosis: Focus on Lipoprotein-Associated Phospholipase A2. Chin J Integr Med 2024; 30:277-288. [PMID: 38057549 DOI: 10.1007/s11655-023-3611-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 12/08/2023]
Abstract
As a serious cardiovascular disease, atherosclerosis (AS) causes chronic inflammation and oxidative stress in the body and poses a threat to human health. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a member of the phospholipase A2 (PLA2) family, and its elevated levels have been shown to contribute to AS. Lp-PLA2 is closely related to a variety of lipoproteins, and its role in promoting inflammatory responses and oxidative stress in AS is mainly achieved by hydrolyzing oxidized phosphatidylcholine (oxPC) to produce lysophosphatidylcholine (lysoPC). Moreover, macrophage apoptosis within plaque is promoted by localized Lp-PLA2 which also promotes plaque instability. This paper reviews those researches of Chinese medicine in treating AS via reducing Lp-PLA2 levels to guide future experimental studies and clinical applications related to AS.
Collapse
Affiliation(s)
- Lu-Ming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wen-Lan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Nuan Lyu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yan-Rong Suo
- Department of Traditional Chinese Medicine, Ganzhou People's Hospital, Ganzhou, Jiangxi Province, 341000, China
| | - Lin Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xi-Juan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
8
|
Mytych W, Bartusik-Aebisher D, Łoś A, Dynarowicz K, Myśliwiec A, Aebisher D. Photodynamic Therapy for Atherosclerosis. Int J Mol Sci 2024; 25:1958. [PMID: 38396639 PMCID: PMC10888721 DOI: 10.3390/ijms25041958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Atherosclerosis, which currently contributes to 31% of deaths globally, is of critical cardiovascular concern. Current diagnostic tools and biomarkers are limited, emphasizing the need for early detection. Lifestyle modifications and medications form the basis of treatment, and emerging therapies such as photodynamic therapy are being developed. Photodynamic therapy involves a photosensitizer selectively targeting components of atherosclerotic plaques. When activated by specific light wavelengths, it induces localized oxidative stress aiming to stabilize plaques and reduce inflammation. The key advantage lies in its selective targeting, sparing healthy tissues. While preclinical studies are encouraging, ongoing research and clinical trials are crucial for optimizing protocols and ensuring long-term safety and efficacy. The potential combination with other therapies makes photodynamic therapy a versatile and promising avenue for addressing atherosclerosis and associated cardiovascular disease. The investigations underscore the possibility of utilizing photodynamic therapy as a valuable treatment choice for atherosclerosis. As advancements in research continue, photodynamic therapy might become more seamlessly incorporated into clinical approaches for managing atherosclerosis, providing a blend of efficacy and limited invasiveness.
Collapse
Affiliation(s)
- Wiktoria Mytych
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland; (W.M.); (A.Ł.)
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Aleksandra Łoś
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland; (W.M.); (A.Ł.)
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland; (K.D.); (A.M.)
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland; (K.D.); (A.M.)
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| |
Collapse
|
9
|
Chen Z, Zhu Q, Li D, Lv Q, Fu G, Ma B, Zhang W. Targeting Nanoplatform for Atherosclerosis Inhibition and Degradation via a Dual-Track Reverse Cholesterol Transport Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306457. [PMID: 37803917 DOI: 10.1002/smll.202306457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/13/2023] [Indexed: 10/08/2023]
Abstract
As a main cause of serious cardiovascular diseases, atherosclerosis is characterized by deposited lipid and cholesterol crystals (CCs), which is considered as a great challenge to the current treatments. In this study, a dual-track reverse cholesterol transport strategy is used to overcome the cumulative CCs in the atherosclerotic lesions via a targeting nanoplatform named as LPLCH. Endowed with the active targeting ability to the plaques, the nanoparticles can be efficiently internalized and achieve a pH-triggered charge conversion for the escape from lysosomes. During this procedure, the liver X receptor (LXR) agonists loaded in nanoparticles are replaced by the deposited lysosomal CCs, leading to a LXR mediated up-regulation of ATP-binding cassette transporte ABCA1/G1 with the local CCs carrying at the same time. Thus, the cumulative CCs are removed in a dual-track way of ABCA1/G1 mediated efflux and nanoparticle-based carrying. The in vivo investigations indicate that LPLCH exhibits a favorable inhibition on the plaque progression and a further reversal of formed lesions when under a healthy diet. And the RNA-sequencing suggests that the cholesterol transport also synergistically activates the anti-inflammation effect. The dual-track reverse cholesterol transport strategy performed by LPLCH delivers an exciting candidate for the effective inhibition and degradation of atherosclerosis.
Collapse
Affiliation(s)
- Zhezhe Chen
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, 310016, China
| | - Qiongjun Zhu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, 310016, China
| | - Duanbin Li
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, 310016, China
| | - Qingbo Lv
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, 310016, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, 310016, China
| | - Boxuan Ma
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, 310016, China
| | - Wenbin Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, 310016, China
| |
Collapse
|
10
|
Shen M, Jiang H, Li S, Liu L, Yang Q, Yang H, Zhao Y, Meng H, Wang J, Li Y. Dual-modality probe nanodrug delivery systems with ROS-sensitivity for atherosclerosis diagnosis and therapy. J Mater Chem B 2024; 12:1344-1354. [PMID: 38230621 DOI: 10.1039/d3tb00407d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Most acute cardiovascular and cerebrovascular diseases are caused by atherosclerotic plaque rupture leading to blocked arteries. Targeted nanodelivery systems deliver imaging agents or drugs to target sites for diagnostic imaging or the treatment of various diseases, providing new insights for the detection and treatment of atherosclerosis. Based on the pathological characteristics of atherosclerosis, a hydrogen peroxide-sensitive bimodal probe PPIS@FC with integrated diagnosis and treatment function was designed. Bimodal probes Fe3O4@SiO2-CDs (FC) were prepared by coupling superparamagnetic iron oxide and carbon quantum dots synthesized with citric acid, and self-assembled with hydrogen peroxide stimulus-responsive amphiphilic block polymer PGMA-PEG modified with simvastatin (Sim) and target molecule ISO-1 to obtain drug-loaded micelles PGMA-PEG-ISO-1-Sim@FC (PPIS@FC). PPIS@FC could release Sim and FC in an H2O2-triggered manner, achieving the goal of releasing drugs using the special microenvironment at the plaque. At the same time, in vivo magnetic resonance and fluorescence imaging results proved that PPIS@FC possessed targeting ability, magnetic resonance imaging and fluorescence imaging effects. The results of the FeCl3 and ApoE-/- model showed that PPIS@FC had an excellent therapeutic effect and in vivo safety. Therefore, dual-modality imaging drug delivery systems with ROS response will become a promising strategy for the diagnosis and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Meili Shen
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun, China.
- Department of Radiotherapy, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hui Jiang
- Department of Blood Purification, Tong Liao City Hospital, Tong Liao, China
| | - Shaojing Li
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun, China.
| | - Linlin Liu
- Department of Radiotherapy, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qingbiao Yang
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun, China.
| | - Haiqin Yang
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun, China.
| | - Yan Zhao
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hao Meng
- Department of Radiotherapy, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jingyuan Wang
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun, China.
| | - Yapeng Li
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun, China.
| |
Collapse
|
11
|
Tscheuschner L, Tzafriri AR. Cardiovascular Tissue Engineering Models for Atherosclerosis Treatment Development. Bioengineering (Basel) 2023; 10:1373. [PMID: 38135964 PMCID: PMC10740643 DOI: 10.3390/bioengineering10121373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
In the early years of tissue engineering, scientists focused on the generation of healthy-like tissues and organs to replace diseased tissue areas with the aim of filling the gap between organ demands and actual organ donations. Over time, the realization has set in that there is an additional large unmet need for suitable disease models to study their progression and to test and refine different treatment approaches. Increasingly, researchers have turned to tissue engineering to address this need for controllable translational disease models. We review existing and potential uses of tissue-engineered disease models in cardiovascular research and suggest guidelines for generating adequate disease models, aimed both at studying disease progression mechanisms and supporting the development of dedicated drug-delivery therapies. This involves the discussion of different requirements for disease models to test drugs, nanoparticles, and drug-eluting devices. In addition to realistic cellular composition, the different mechanical and structural properties that are needed to simulate pathological reality are addressed.
Collapse
Affiliation(s)
- Linnea Tscheuschner
- Department of Vascular Surgery, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Abraham R. Tzafriri
- Department of Research and Innovation, CBSET Inc., Lexington, MA 02421, USA;
| |
Collapse
|
12
|
Perera B, Wu Y, Nguyen NT, Ta HT. Advances in drug delivery to atherosclerosis: Investigating the efficiency of different nanomaterials employed for different type of drugs. Mater Today Bio 2023; 22:100767. [PMID: 37600355 PMCID: PMC10433009 DOI: 10.1016/j.mtbio.2023.100767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/22/2023] Open
Abstract
Atherosclerosis is the build-up of fatty deposits in the arteries, which is the main underlying cause of cardiovascular diseases and the leading cause of global morbidity and mortality. Current pharmaceutical treatment options are unable to effectively treat the plaque in the later stages of the disease. Instead, they are aimed at resolving the risk factors. Nanomaterials and nanoparticle-mediated therapies have become increasingly popular for the treatment of atherosclerosis due to their targeted and controlled release of therapeutics. In this review, we discuss different types of therapeutics used to treat this disease and focus on the different nanomaterial strategies employed for the delivery of these drugs, enabling the effective and efficient resolution of the atherosclerotic plaque. The ideal nanomaterial strategy for each drug type (e.g. statins, nucleic acids, small molecule drugs, peptides) will be comprehensively discussed.
Collapse
Affiliation(s)
- Binura Perera
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
- Queensland Micro-Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Yuao Wu
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| | - Nam-Trung Nguyen
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| | - Hang Thu Ta
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
- Queensland Micro-Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| |
Collapse
|
13
|
In Humanized Sickle Cell Mice, Imatinib Protects Against Sickle Cell-Related Injury. Hemasphere 2023; 7:e848. [PMID: 36874380 PMCID: PMC9977487 DOI: 10.1097/hs9.0000000000000848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/19/2023] [Indexed: 03/06/2023] Open
Abstract
Drug repurposing is a valuable strategy for rare diseases. Sickle cell disease (SCD) is a rare hereditary hemolytic anemia accompanied by acute and chronic painful episodes, most often in the context of vaso-occlusive crisis (VOC). Although progress in the knowledge of pathophysiology of SCD have allowed the development of new therapeutic options, a large fraction of patients still exhibits unmet therapeutic needs, with persistence of VOCs and chronic disease progression. Here, we show that imatinib, an oral tyrosine kinase inhibitor developed for the treatment of chronic myelogenous leukemia, acts as multimodal therapy targeting signal transduction pathways involved in the pathogenesis of both anemia and inflammatory vasculopathy of humanized murine model for SCD. In addition, imatinib inhibits the platelet-derived growth factor-B-dependent pathway, interfering with the profibrotic response to hypoxia/reperfusion injury, used to mimic acute VOCs. Our data indicate that imatinib might be considered as possible new therapeutic tool for chronic treatment of SCD.
Collapse
|
14
|
Goh WX, Kok YY, Wong CY. Comparison of Cell-based and Nanoparticle-based Therapeutics in Treating Atherosclerosis. Curr Pharm Des 2023; 29:2827-2840. [PMID: 37936453 DOI: 10.2174/0113816128272185231024115046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 11/09/2023]
Abstract
Today, cardiovascular diseases are among the biggest public health threats worldwide. Atherosclerosis, a chronic inflammatory disease with complex aetiology and pathogenesis, predispose many of these conditions, including the high mortality rate-causing ischaemic heart disease and stroke. Nevertheless, despite the alarming prevalence and absolute death rate, established treatments for atherosclerosis are unsatisfactory in terms of efficacy, safety, and patient acceptance. The rapid advancement of technologies in healthcare research has paved new treatment approaches, namely cell-based and nanoparticle-based therapies, to overcome the limitations of conventional therapeutics. This paper examines the different facets of each approach, discusses their principles, strengths, and weaknesses, analyses the main targeted pathways and their contradictions, provides insights on current trends as well as highlights any unique mechanisms taken in recent years to combat the progression of atherosclerosis.
Collapse
Affiliation(s)
- Wen Xi Goh
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Yih Yih Kok
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Chiew Yen Wong
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Song D, Liu M, Dong Y, Hong S, Chen M, Du Y, Li S, Xu J, Gao W, Dong F. Investigation on the differences of hemodynamics in normal common carotid, subclavian, and common femoral arteries using the vector flow technique. Front Cardiovasc Med 2022; 9:956023. [PMID: 36465451 PMCID: PMC9712999 DOI: 10.3389/fcvm.2022.956023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/31/2022] [Indexed: 10/16/2023] Open
Abstract
OBJECTIVES To investigate the feasibility of the vector flow imaging (V Flow) technique to measure peripheral arterial hemodynamic parameters, including wall shear stress (WSS) and turbulence index (Tur) in healthy adults, and compare the results in different arteries. MATERIALS AND METHODS Fifty-two healthy adult volunteers were recruited in this study. The maximum and mean values of WSS, and the Tur values at early-systole, mid-systole, late-systole, and early diastole for total 156 normal peripheral arteries [common carotid arteries (CCA), subclavian arteries (SCA), and common femoral arteries (CFA)] were assessed using the V Flow technique. RESULTS The mean WSS values for CCA, SCA, and CFA were (1.66 ± 0.68) Pa, (0.62 ± 0.30) Pa, and (0.56 ± 0.27) Pa, respectively. The mean Tur values for CCA, SCA, and CFA were (0.46 ± 1.09%), (20.7 ± 9.06%), and (24.63 ± 17.66%), respectively. The CCA and SCA, as well as the CCA and CFA, showed statistically significant differences in the mean WSS and the mean Tur (P < 0.01). The mean Tur values had a negative correlation with the mean WSS; the correlation coefficient between log(Tur) and WSS is -0.69 (P < 0.05). CONCLUSION V Flow technique is a simple, practical, and feasible quantitative imaging approach for assessing WSS and Tur in peripheral arteries. It has the potential to be a useful tool for evaluating atherosclerotic plaques in peripheral arteries. The results provide a new quantitative foundation for future investigations into diverse arterial hemodynamic parameters.
Collapse
Affiliation(s)
- Di Song
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Mengmeng Liu
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yinghui Dong
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Shaofu Hong
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Ming Chen
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yigang Du
- Shenzhen Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, Guangdong, China
| | - Shuangshuang Li
- Shenzhen Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, Guangdong, China
| | - Jinfeng Xu
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Wenjing Gao
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Fajin Dong
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| |
Collapse
|
16
|
Hong K, Yu M, Crowther J, Mei L, Olsen K, Luo Y, Chen YE, Guo Y, Schwendeman A. Effect of Lipid Composition on the Atheroprotective Properties of HDL-Mimicking Micelles. Pharmaceutics 2022; 14:pharmaceutics14081570. [PMID: 36015196 PMCID: PMC9415476 DOI: 10.3390/pharmaceutics14081570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 02/01/2023] Open
Abstract
Atherosclerosis progression is driven by an imbalance of cholesterol and unresolved local inflammation in the arteries. The administration of recombinant apolipoprotein A-I (ApoA-I)-based high-density lipoprotein (HDL) nanoparticles has been used to reduce the size of atheroma and rescue inflammatory response in clinical studies. Because of the difficulty in producing large quantities of recombinant ApoA-I, here, we describe the preparation of phospholipid-based, ApoA-I-free micelles that structurally and functionally resemble HDL nanoparticles. Micelles were prepared using various phosphatidylcholine (PC) lipids combined with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[azido(polyethylene glycol)-2000] (DSPE-PEG2k) to form nanoparticles of 15-30 nm in diameter. The impacts of PC composition and PEGylation on the anti-inflammatory activity, cholesterol efflux capacity, and cholesterol crystal dissolution potential of micelles were investigated in vitro. The effects of micelle composition on pharmacokinetics and cholesterol mobilization ability were evaluated in vivo in Sprague Dawley rats. The study shows that the composition of HDL-mimicking micelles impacts their overall atheroprotective properties and supports further investigation of micelles as a therapeutic for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Kristen Hong
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; (K.H.); (M.Y.); (J.C.); (L.M.); (K.O.)
| | - Minzhi Yu
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; (K.H.); (M.Y.); (J.C.); (L.M.); (K.O.)
| | - Julia Crowther
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; (K.H.); (M.Y.); (J.C.); (L.M.); (K.O.)
| | - Ling Mei
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; (K.H.); (M.Y.); (J.C.); (L.M.); (K.O.)
| | - Karl Olsen
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; (K.H.); (M.Y.); (J.C.); (L.M.); (K.O.)
| | - Yonghong Luo
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.E.C.)
| | - Yuqing Eugene Chen
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.E.C.)
| | - Yanhong Guo
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.E.C.)
- Correspondence: (Y.G.); (A.S.)
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; (K.H.); (M.Y.); (J.C.); (L.M.); (K.O.)
- Correspondence: (Y.G.); (A.S.)
| |
Collapse
|
17
|
Abstract
The term "molecular ZIP (or area) codes" refers to an originally hypothetical system of cell adhesion molecules that would control cell trafficking in the body. Subsequent discovery of the integrins, cadherins, and other cell adhesion molecules confirmed this hypothesis. The recognition system encompassing integrins and their ligands came particularly close to fulfilling the original ZIP code hypothesis, as multiple integrins with closely related specificities mediate cell adhesion by binding to an RGD or related sequence in various extracellular matrix proteins. Diseased tissues have their own molecular addresses that, although not necessarily involved in cell trafficking, can be made use of in targeted drug delivery. This article discusses the molecular basis of ZIP codes and the extensive effort under way to harness them for drug delivery purposes.
Collapse
|
18
|
Zhang M, Xie Z, Long H, Ren K, Hou L, Wang Y, Xu X, Lei W, Yang Z, Ahmed S, Zhang H, Zhao G. Current advances in the imaging of atherosclerotic vulnerable plaque using nanoparticles. Mater Today Bio 2022; 14:100236. [PMID: 35341094 PMCID: PMC8943324 DOI: 10.1016/j.mtbio.2022.100236] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/13/2022] [Accepted: 03/05/2022] [Indexed: 01/29/2023]
Abstract
Vulnerable atherosclerotic plaques of the artery wall that pose a significant risk of cardio-cerebral vascular accidents remain the global leading cause of morbidity and mortality. Thus, early delineation of vulnerable atherosclerotic plaques is of clinical importance for prevention and treatment. The currently available imaging technologies mainly focus on the structural assessment of the vascular wall. Unfortunately, several disadvantages in these strategies limit the improvement in imaging effect. Nanoparticle technology is a novel diagnostic strategy for targeting and imaging pathological biomarkers. New functionalized nanoparticles that detect hallmarks of vulnerable plaques are promising for advance further control of this critical illness. The review aims to address the current opportunities and challenges for the use of nanoparticle technology in imagining vulnerable plaques.
Collapse
|
19
|
Nanoparticle-Based Modification of the DNA Methylome: A Therapeutic Tool for Atherosclerosis? CARDIOGENETICS 2022. [DOI: 10.3390/cardiogenetics12010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular epigenomics is a relatively young field of research, yet it is providing novel insights into gene regulation in the atherosclerotic arterial wall. That information is already pointing to new avenues for atherosclerosis (AS) prevention and therapy. In parallel, advances in nanoparticle (NP) technology allow effective targeting of drugs and bioactive molecules to the vascular wall. The partnership of NP technology and epigenetics in AS is just beginning and promises to produce novel exciting candidate treatments. Here, we briefly discuss the most relevant recent advances in the two fields. We focus on AS and DNA methylation, as the DNA methylome of that condition is better understood in comparison with the rest of the cardiovascular disease field. In particular, we review the most recent advances in NP-based delivery systems and their use for DNA methylome modification in inflammation. We also address the promises of DNA methyltransferase inhibitors for prevention and therapy. Furthermore, we emphasize the unique challenges in designing therapies that target the cardiovascular epigenome. Lastly, we touch the issue of human exposure to industrial NPs and its impact on the epigenome as a reminder of the undesired effects that any NP-based therapy must avoid to be apt for secondary prevention of AS.
Collapse
|
20
|
ROS-Based Nanoparticles for Atherosclerosis Treatment. MATERIALS 2021; 14:ma14226921. [PMID: 34832328 PMCID: PMC8619986 DOI: 10.3390/ma14226921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/29/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
Atherosclerosis (AS), a chronic arterial disease, is the leading cause of death in western developed countries. Considering its long-term asymptomatic progression and serious complications, the early prevention and effective treatment of AS are particularly important. The unique characteristics of nanoparticles (NPs) make them attractive in novel therapeutic and diagnostic applications, providing new options for the treatment of AS. With the assistance of reactive oxygen species (ROS)-based NPs, drugs can reach specific lesion areas, prolong the therapeutic effect, achieve targeted controlled release and reduce adverse side effects. In this article, we reviewed the mechanism of AS and the generation and removal strategy of ROS. We further discussed ROS-based NPs, and summarized their biomedical applications in scavenger and drug delivery. Furthermore, we highlighted the recent advances, challenges and future perspectives of ROS-based NPs for treating AS.
Collapse
|
21
|
The Effect of pH and Buffer on Oligonucleotide Affinity for Iron Oxide Nanoparticles. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7090128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Magnetic Fe3O4 nanoparticles (MNPs) have great potential in the nucleic acid delivery approach for therapeutic applications. Herein, the formation of a stable complex of iron oxide nanoparticles with oligonucleotides was investigated. Several factors, such as pH, buffer components, and oligonucleotides sequences, were chosen for binding efficiency studies and oligonucleotide binding constant calculation. Standard characterization techniques, such as dynamic light scattering, zeta potential, and transmission electron microscopy, provide MNPs coating and stability. The toxicity experiments were performed using lung adenocarcinoma A549 cell line and high reactive oxygen species formation with methylene blue assay. Fe3O4 MNPs complexes with oligonucleotides show high stability and excellent biocompatibility.
Collapse
|
22
|
Oshi MA, Haider A, Siddique MI, Zeb A, Jamal SB, Khalil AAK, Naeem M. Nanomaterials for chronic inflammatory diseases: the current status and future prospects. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Ma B, Xu H, Wang Y, Yang L, Zhuang W, Li G, Wang Y. Biomimetic-Coated Nanoplatform with Lipid-Specific Imaging and ROS Responsiveness for Atherosclerosis-Targeted Theranostics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35410-35421. [PMID: 34286950 DOI: 10.1021/acsami.1c08552] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atherosclerosis is one of the leading causes of cardiovascular diseases and is triggered by endothelial damage, local lipid cumulation, and inflammation. Despite the conventional medication treatment, nanosized drug carriers have become promising candidates for efficient drug delivery with lower side effects. However, the development of problems in nanocarriers such as drug leakage, accumulating efficiency, and accurate drug release, as well as the specific recognition of atherosclerotic plaques, still needs to be checked. In this study, a lipid-specific fluorophore (LFP) has been designed, which is further packaged with a reactive oxygen species (ROS)-responsive prednisolone (Pred) prodrug copolymer [PMPC-P(MEMA-co-PDMA)] to self-assemble into LFP@PMMP micelles. LFP@PMMP can be further coated with red blood cell (RBC) membrane to obtain surface-biomimetic nanoparticles (RBC/LFP@PMMP), demonstrating prolonged circulation, minimal drug leakage, and better accumulation at the plaques. With ROS responsiveness, RBC/LFP@PMMP can be interrupted at inflammatory atherosclerotic tissue with overexpressed ROS, followed by the dissociation of Pred from the polymer backbone and the release of LFP to combine with the rich lipid in the plaques. An accurate anti-inflammation and lipid-specific fluorescent imaging of atherosclerotic lesions was performed and further proven on ApoE-/- mice; this holds prospective potential for atherosclerosis theranostics.
Collapse
Affiliation(s)
- Boxuan Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Hong Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yanan Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Weihua Zhuang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
24
|
Peters LJF, Jans A, Bartneck M, van der Vorst EPC. Immunomodulatory Nanomedicine for the Treatment of Atherosclerosis. J Clin Med 2021; 10:3185. [PMID: 34300351 PMCID: PMC8306310 DOI: 10.3390/jcm10143185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis is the main underlying cause of cardiovascular diseases (CVDs), which remain the number one contributor to mortality worldwide. Although current therapies can slow down disease progression, no treatment is available that can fully cure or reverse atherosclerosis. Nanomedicine, which is the application of nanotechnology in medicine, is an emerging field in the treatment of many pathologies, including CVDs. It enables the production of drugs that interact with cellular receptors, and allows for controlling cellular processes after entering these cells. Nanomedicine aims to repair, control and monitor biological and physiological systems via nanoparticles (NPs), which have been shown to be efficient drug carriers. In this review we will, after a general introduction, highlight the advantages and limitations of the use of such nano-based medicine, the potential applications and targeting strategies via NPs. For example, we will provide a detailed discussion on NPs that can target relevant cellular receptors, such as integrins, or cellular processes related to atherogenesis, such as vascular smooth muscle cell proliferation. Furthermore, we will underline the (ongoing) clinical trials focusing on NPs in CVDs, which might bring new insights into this research field.
Collapse
Affiliation(s)
- Linsey J. F. Peters
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany;
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Alexander Jans
- Department of Medicine III, University Hospital Aachen, 52074 Aachen, Germany; (A.J.); (M.B.)
| | - Matthias Bartneck
- Department of Medicine III, University Hospital Aachen, 52074 Aachen, Germany; (A.J.); (M.B.)
| | - Emiel P. C. van der Vorst
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany;
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
25
|
Kladko DV, Falchevskaya AS, Serov NS, Prilepskii AY. Nanomaterial Shape Influence on Cell Behavior. Int J Mol Sci 2021; 22:5266. [PMID: 34067696 PMCID: PMC8156540 DOI: 10.3390/ijms22105266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
Nanomaterials are proven to affect the biological activity of mammalian and microbial cells profoundly. Despite this fact, only surface chemistry, charge, and area are often linked to these phenomena. Moreover, most attention in this field is directed exclusively at nanomaterial cytotoxicity. At the same time, there is a large body of studies showing the influence of nanomaterials on cellular metabolism, proliferation, differentiation, reprogramming, gene transfer, and many other processes. Furthermore, it has been revealed that in all these cases, the shape of the nanomaterial plays a crucial role. In this paper, the mechanisms of nanomaterials shape control, approaches toward its synthesis, and the influence of nanomaterial shape on various biological activities of mammalian and microbial cells, such as proliferation, differentiation, and metabolism, as well as the prospects of this emerging field, are reviewed.
Collapse
Affiliation(s)
| | | | | | - Artur Y. Prilepskii
- International Institute “Solution Chemistry of Advanced Materials and Technologies”, ITMO University, 191002 Saint Petersburg, Russia; (D.V.K.); (A.S.F.); (N.S.S.)
| |
Collapse
|
26
|
Gao B, Xu J, Zhou J, Zhang H, Yang R, Wang H, Huang J, Yan F, Luo Y. Multifunctional pathology-mapping theranostic nanoplatforms for US/MR imaging and ultrasound therapy of atherosclerosis. NANOSCALE 2021; 13:8623-8638. [PMID: 33929480 DOI: 10.1039/d1nr01096d] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Atherosclerotic thrombosis is the leading cause of most life-threatening cardiovascular diseases (CVDs), particularly as a result of rupture or erosion of vulnerable plaques. Rupture or erosion-prone plaques are quite different in cellular composition and immunopathology, requiring different treatment strategies. The current imaging technology cannot distinguish the types of vulnerable plaques, and thus empirical treatment is still applied to all without a tailored and precise treatment. Herein, we propose a novel strategy called "Multifunctional Pathology-mapping Theranostic Nanoplatform (MPmTN)" for the tailored treatment of plaques based on the pathological classification. MPmTNs are made up of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), containing contrast imaging materials Fe3O4 and perfluoropentane (PFP), and coated with specific plaque-targeted peptides PP1 and cyclic RGD. The PFP encapsulated inside the MPmTN can undergo a phase change from nanodroplets to gas microbubbles under therapeutic ultrasound (TUS) exposure. The acoustic and biological effects induced by TUS and disruption of microbubbles may further promote therapeutic effects. Hypothetically, MPmTN NPs can target the rupture-prone plaque via the binding of PP1 to class A scavenger receptors (SR-A) on macrophages, induce the apoptosis due to TUS exposure and thus reduce the chronic soakage of inflammatory cells. The MPmTN NPs can also target the erosion-prone plaque through the binding of cRGD to glycoprotein (GP) IIb/IIIa on activated platelets and promote platelet disaggregation under TUS exposure. Therefore, MPmTNs may work as a multifunctional pathology-mapping therapeutic agent. Our in vitro results show that the MPmTN with PP1 and cRGD peptides had a high binding affinity both for activated macrophages and blood clots. Under TUS exposure, the MPmTN could effectively induce macrophage apoptosis, destroy thrombus and exhibit good imaging properties for ultrasound (US) and MRI. In apoE-/- mice, MPmTNs can selectively accumulate at the plaque site and reduce the T2-weighted signal. The apoptosis of macrophages and disaggregation of activated platelets on the plaques were also confirmed in vivo. In summary, this study provides a potential strategy for a tailored treatment of vulnerable plaques based on their pathological nature and a multimodal imaging tool for the risk stratification and assessment of therapeutic efficacy.
Collapse
Affiliation(s)
- Binyang Gao
- Department of Ultrasound, Laboratory of Ultrasound Imaging and Drug, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | | | | | | | | | | | | | | | | |
Collapse
|