1
|
Sidiropoulou P, Katsarou M, Sifaki M, Papasavva M, Drakoulis N. Topical calcineurin and mammalian target of rapamycin inhibitors in inflammatory dermatoses: Current challenges and nanotechnology‑based prospects (Review). Int J Mol Med 2024; 54:85. [PMID: 39129316 PMCID: PMC11335355 DOI: 10.3892/ijmm.2024.5409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/06/2024] [Indexed: 08/13/2024] Open
Abstract
Topical therapy remains a critical component in the management of immune‑mediated inflammatory dermatoses such as psoriasis and atopic dermatitis. In this field, macrolactam immunomodulators, including calcineurin and mammalian target of rapamycin inhibitors, can offer steroid‑free therapeutic alternatives. Despite their potential for skin‑selective treatment compared with topical corticosteroids, the physicochemical properties of these compounds, such as high lipophilicity and large molecular size, do not meet the criteria for efficient penetration into the skin, especially with conventional topical vehicles. Thus, more sophisticated approaches are needed to address the pharmacokinetic limitations of traditional formulations. In this regard, interest has increasingly focused on nanoparticulate systems to optimize penetration kinetics and enhance the efficacy and safety of topical calcineurin and mTOR inhibitors in inflamed skin. Several types of nanovectors have been explored as topical carriers to deliver tacrolimus in both psoriatic and atopic skin, while preclinical data on nanocarrier‑based delivery of topical sirolimus in inflamed skin are also emerging. Given the promising preliminary outcomes and the complexities of drug delivery across inflamed skin, further research is required to translate these nanotherapeutics into clinical settings for inflammatory skin diseases. The present review outlined the dermatokinetic profiles of topical calcineurin and mTOR inhibitors, particularly tacrolimus, pimecrolimus and sirolimus, focusing on their penetration kinetics in psoriatic and atopic skin. It also summarizes the potential anti‑inflammatory benefits of topical sirolimus and explores novel preclinical studies investigating dermally applied nanovehicles to evaluate and optimize the skin delivery, efficacy and safety of these 'hard‑to‑formulate' macromolecules in the context of psoriasis and atopic dermatitis.
Collapse
Affiliation(s)
- Polytimi Sidiropoulou
- 1st Department of Dermatology-Venereology, School of Medicine, National and Kapodistrian University of Athens, 'A. Sygros' Hospital for Skin and Venereal Diseases, 16121 Athens, Greece
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Martha Katsarou
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria Sifaki
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
- SkinClinic Private Practice, 71405 Heraklion, Greece
| | - Maria Papasavva
- Department of Pharmacy, School of Health Sciences, Frederick University, 1036 Nicosia, Cyprus
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
2
|
Esposito E, Ferrara F, Drechsler M, Bortolini O, Ragno D, Toldo S, Bondi A, Pecorelli A, Voltan R, Secchiero P, Zauli G, Valacchi G. Nutlin-3 Loaded Ethosomes and Transethosomes to Prevent UV-Associated Skin Damage. Life (Basel) 2024; 14:155. [PMID: 38276284 PMCID: PMC10817472 DOI: 10.3390/life14010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The skin's protective mechanisms, in some cases, are not able to counteract the destructive effects induced by UV radiations, resulting in dermatological diseases, as well as skin aging. Nutlin-3, a potent drug with antiproliferative activity in keratinocytes, can block UV-induced apoptosis by activation of p53. In the present investigation, ethosomes and transethosomes were designed as delivery systems for nutlin-3, with the aim to protect the skin against UV damage. Vesicle size distribution was evaluated by photon correlation spectroscopy and morphology was investigated by cryogenic transmission electron microscopy, while nutlin-3 entrapment capacity was evaluated by ultrafiltration and HPLC. The in vitro diffusion kinetic of nutlin-3 from ethosomes and transethosomes was studied by Franz cell. Moreover, the efficiency of ethosomes and transethosomes in delivering nutlin-3 and its protective role were evaluated in ex vivo skin explants exposed to UV radiations. The results indicate that ethosomes and transethosomes efficaciously entrapped nutlin-3 (0.3% w/w). The ethosome vesicles were spherical and oligolamellar, with a 224 nm mean diameter, while in transethosome the presence of polysorbate 80 resulted in unilamellar vesicles with a 146 nm mean diameter. The fastest nutlin-3 kinetic was detected in the case of transethosomes, with permeability coefficients 7.4-fold higher, with respect to ethosomes and diffusion values 250-fold higher, with respect to the drug in solution. Ex vivo data suggest a better efficacy of transethosomes to promote nutlin-3 delivery within the skin, with respect to ethosomes. Indeed, nutlin-3 loaded transethosomes could prevent UV effect on cutaneous metalloproteinase activation and cell proliferative response.
Collapse
Affiliation(s)
- Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (D.R.); (A.B.)
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (D.R.); (A.B.)
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI) Keylab “Electron and Optical Microscopy”, University of Bayreuth, D-95440 Bayreuth, Germany;
| | - Olga Bortolini
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy; (O.B.); (S.T.); (A.P.); (R.V.)
| | - Daniele Ragno
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (D.R.); (A.B.)
| | - Sofia Toldo
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy; (O.B.); (S.T.); (A.P.); (R.V.)
| | - Agnese Bondi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (D.R.); (A.B.)
| | - Alessandra Pecorelli
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy; (O.B.); (S.T.); (A.P.); (R.V.)
| | - Rebecca Voltan
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy; (O.B.); (S.T.); (A.P.); (R.V.)
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, I-44121 Ferrara, Italy;
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialist Hospital, Riyadh 11462, Saudi Arabia;
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy; (O.B.); (S.T.); (A.P.); (R.V.)
- Plants for Human Health Institute, Animal Sciences Department, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| |
Collapse
|
3
|
Sigg N, Fouquet J, Morin D, Farges D, Vrignaud S, Martin L. A survey of patients with facial angiofibromas associated with tuberous sclerosis complex: Short-, medium- and long-term efficacy and safety of topical rapamycin. Ann Dermatol Venereol 2023; 150:270-273. [PMID: 37821253 DOI: 10.1016/j.annder.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/14/2023] [Accepted: 06/22/2023] [Indexed: 10/13/2023]
Abstract
AIMS Topical rapamycin is used to reduce facial angiofibromas in patients with tuberous sclerosis (TSC). In the absence of a commercially available preparation, numerous formulations have been tested clinically, although only in the short term. METHODS The pharmacy at Angers University Hospital (France) produced a cream formulation that was administered to people presenting this genetic disease. We conducted a questionnaire-based survey among 79 patients with TSC about their perceptions regarding the short-, medium- and long-term efficacy and safety of a topical rapamycin preparation in relation to facial angiofibromas. RESULTS This formulation was very well tolerated and its efficacy was sustained over the long term with a mean treatment duration of 33 months (extremes 1-60). Efficacy was rated ≥ 8/10 by 67.1% of patients while safety was rated ≥ 8/10 by 84.8% of patients. CONCLUSION This survey supports the safety and efficacy of topical rapamycin in the short-, medium- and long-term in the treatment of facial angiofibromas in a cohort of 79 patients with TSC.
Collapse
Affiliation(s)
- N Sigg
- Dermatology Department, CRMR MAGEC Nord, Angers University Hospital, France.
| | - J Fouquet
- Dermatology Department, CRMR MAGEC Nord, Angers University Hospital, France
| | - D Morin
- Dermatology Department, CRMR MAGEC Nord, Angers University Hospital, France
| | - D Farges
- Dermatology Department, CRMR MAGEC Nord, Angers University Hospital, France
| | - S Vrignaud
- Pharmacy, Angers University Hospital, France
| | - L Martin
- Dermatology Department, CRMR MAGEC Nord, Angers University Hospital, France
| |
Collapse
|
4
|
Sguizzato M, Ferrara F, Drechsler M, Baldisserotto A, Montesi L, Manfredini S, Valacchi G, Cortesi R. Lipid-Based Nanosystems for the Topical Application of Ferulic Acid: A Comparative Study. Pharmaceutics 2023; 15:1940. [PMID: 37514126 PMCID: PMC10385185 DOI: 10.3390/pharmaceutics15071940] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, we examined and compared two different lipid-based nanosystems (LBNs), namely Transferosomes (TFs) and Monoolein Aqueous Dispersions (MADs), as delivery systems for the topical application of Ferulic Acid (FA), an antioxidant molecule derived from natural sources. Our results, as demonstrated through Franz-cell experiments, indicate that the LBNs produced with poloxamer 188 in their composition create a multilamellar system. This system effectively controls the release of the drug. Nonetheless, we found that the type of non-ionic surfactant can impact the drug release rate. Regarding FA diffusion from the MAD, this showed a lower diffusion rate compared with the TF. In terms of an in vivo application, patch tests revealed that all LBN formulations tested were safe when applied under occlusive conditions for 48 h. Additionally, human skin biopsies were used to determine whether FA-containing formulations could influence skin tissue morphology or provide protection against O3 exposure. Analyses suggest that treatment with TFs composed of poloxamer 188 and MAD formulations might protect against structural skin damage (as observed in hematoxylin/eosin staining) and the development of an oxidative environment (as indicated by 4-hyroxinonenal (4HNE) expression levels) induced by O3 exposure. In contrast, formulations without the active ingredient did not offer protection against the detrimental effects of O3 exposure.Inizio modulo.
Collapse
Affiliation(s)
- Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI) Keylab "Electron and Optical Microscopy", University of Bayreuth, D-95440 Bayreuth, Germany
| | - Anna Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy
| | - Leda Montesi
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, I-44121 Ferrara, Italy
- Plants for Human Health Institute, Department of Animal Science, NC Research Campus Kannapolis, NC State University, Kannapolis, NC 28081, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
| |
Collapse
|
5
|
Balestri R, Rizzoli L, Pedrolli A, Urru SAM, Rech G, Neri I, Girardelli CR, Magnano M. Analysis of current data on the use of topical mTOR inhibitors in the treatment of facial angiofibromas in tuberous sclerosis complex-An update. J Eur Acad Dermatol Venereol 2023; 37:474-487. [PMID: 36300771 DOI: 10.1111/jdv.18693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant neurocutaneous syndrome causing hamartomatous growths in multiple organs. Facial angiofibromas occur in up to 80% of patients and can be highly disfiguring. Treatment for these lesions is challenging. Recently, topical rapamycin has been proposed as an effective option to treat angiofibromas but a commercially available compound has not yet been developed in Europe. We conducted a retrospective review with the aim to update the current data on the use of topical rapamycin in the treatment of angiofibromas in TSC, focusing on the optimal concentration and trying to establish which vehicle should be preferred. Thirty-nine reports describing the use of topical rapamycin in the treatment of angiofibromas in TSC were considered, involving a total of 483 patients. An improvement of the lesions has been shown in over 90% of subjects, particularly if the treatment was started at early stages. Several different formulations (ointment, gel, solution and cream) with a wide range of concentrations (0.003%-1%) were proposed, of which a pharmacological analysis has also been performed. Topical rapamycin can be considered an effective and safe option for the treatment and the prevention of facial angiofibromas in younger patients, but the best formulation has yet to be established. Our review demonstrates that ointment and gel should be preferred, but it is not clear which concentration is optimal. However, according to this study, the 0.1% concentration represents the first choice. Long-term and comparative studies between topical rapamycin formulations are required in order to establish which treatment has a better outcome and lower recurrence rate.
Collapse
Affiliation(s)
- Riccardo Balestri
- Division of Dermatology, Outpatient Consultation for Rare Diseases, Trento, Italy
| | - Laura Rizzoli
- Division of Dermatology, Outpatient Consultation for Rare Diseases, Trento, Italy
| | - Annalisa Pedrolli
- Division of Pediatrics, Outpatient Consultation for Rare Diseases, Trento, Italy
| | - Silvana Anna Maria Urru
- Hospital Pharmacy Unit, Trento General Hospital, Autonomous Province of Trento, Trento, Italy
| | - Giulia Rech
- Division of Dermatology, Outpatient Consultation for Rare Diseases, Trento, Italy
| | - Iria Neri
- Dermatology Unit, IRCSS Policlinico di S. Orsola, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Carlo R Girardelli
- Division of Dermatology, Outpatient Consultation for Rare Diseases, Trento, Italy
| | - Michela Magnano
- Division of Dermatology, Outpatient Consultation for Rare Diseases, Trento, Italy
| |
Collapse
|
6
|
Ethosomal Gel for Topical Administration of Dimethyl Fumarate in the Treatment of HSV-1 Infections. Int J Mol Sci 2023; 24:ijms24044133. [PMID: 36835541 PMCID: PMC9967198 DOI: 10.3390/ijms24044133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The infections caused by the HSV-1 virus induce lesions on the lips, mouth, face, and eye. In this study, an ethosome gel loaded with dimethyl fumarate was investigated as a possible approach to treat HSV-1 infections. A formulative study was conducted, evaluating the effect of drug concentration on size distribution and dimensional stability of ethosomes by photon correlation spectroscopy. Ethosome morphology was investigated by cryogenic transmission electron microscopy, while the interaction between dimethyl fumarate and vesicles, and the drug entrapment capacity were respectively evaluated by FTIR and HPLC. To favor the topical application of ethosomes on mucosa and skin, different semisolid forms, based on xanthan gum or poloxamer 407, were designed and compared for spreadability and leakage. Dimethyl fumarate release and diffusion kinetics were evaluated in vitro by Franz cells. The antiviral activity against HSV-1 was tested by plaque reduction assay in Vero and HRPE monolayer cells, while skin irritation effect was evaluated by patch test on 20 healthy volunteers. The lower drug concentration was selected, resulting in smaller and longer stable vesicles, mainly characterized by a multilamellar organization. Dimethyl fumarate entrapment in ethosome was 91% w/w, suggesting an almost total recovery of the drug in the lipid phase. Xanthan gum 0.5%, selected to thicken the ethosome dispersion, allowed to control drug release and diffusion. The antiviral effect of dimethyl fumarate loaded in ethosome gel was demonstrated by a reduction in viral growth both 1 h and 4 h post-infection. Moreover, the patch test demonstrated the safety of the ethosomal gel applied on the skin.
Collapse
|
7
|
Zilles JC, Duarte LP, Ruaro TC, Zimmer AR, Kulkamp-Guerreiro IC, Contri RV. Nanoemulsion Containing Kojic Dipalmitate and Rosehip Oil: A Promising Formulation to Treat Melasma. Pharmaceutics 2023; 15:pharmaceutics15020468. [PMID: 36839792 PMCID: PMC9959276 DOI: 10.3390/pharmaceutics15020468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Melasma is a hard-to-treat hyperpigmentation disorder. Combined incorporation of kojic dipalmitate (KDP), the esterified form of kojic acid, and rosehip oil, an oil with antioxidant and skin-regenerating properties, into nanocarrier systems appears to be a suitable strategy to develop high-performance formulations. A high-energy method (Ultra-Turrax®) was used to develop nanoemulsions containing up to 2 mg/mL KDP, 5% rosehip oil, and 7.5% surfactant. Formulations were characterized regarding droplet size, size distribution, pH, density, morphology, KDP content, incorporation efficiency, and stability under different temperature conditions. A scale-up study was conducted. Skin permeation, antioxidant potential, and tyrosinase inhibitory activity were assessed in vitro. Cell viability studies were also performed. Results showed that nanoemulsions containing 1 and 2 mg/mL KDP had incorporation efficiencies greater than 95%, droplet size smaller than 130 nm, suitable size distribution, zeta potential of approximately -10 mV, and good stability over 30 days of refrigerated storage. The nanoemulsion containing 1 mg/mL KDP was chosen for further evaluation because it had lower nanocrystal formation, greater scale-up feasibility and allowed KDP permeation up to the epidermis similarly than observed for 2 mg/mL KDP. This formulation (1 mg/mL KDP) showed antioxidant and depigmenting efficacy, close to that of 1 mM ascorbic acid. No cytotoxicity was observed in formulations concentrations ranging from 0.06% to 1%.
Collapse
Affiliation(s)
- Júlia Capp Zilles
- Programa de Pós-Graduação em Ciências Farmacêuticas–PPGCF, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
| | - Larissa Pedron Duarte
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
| | - Thaís Carine Ruaro
- Programa de Pós-Graduação em Ciências Farmacêuticas–PPGCF, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
| | - Aline Rigon Zimmer
- Programa de Pós-Graduação em Ciências Farmacêuticas–PPGCF, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
| | - Irene Clemes Kulkamp-Guerreiro
- Programa de Pós-Graduação em Ciências Farmacêuticas–PPGCF, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
| | - Renata Vidor Contri
- Programa de Pós-Graduação em Ciências Farmacêuticas–PPGCF, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
- Correspondence: ; Tel.: +55-51-3308-5416
| |
Collapse
|
8
|
Use of mTOR inhibitors (rapalogs) for the treatment of skin changes in tuberous sclerosis complex. Arch Pediatr 2022; 29:5S20-5S24. [PMID: 36585067 DOI: 10.1016/s0929-693x(22)00286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Skin manifestations of Tuberous Sclerosis Complex (TSC) are present in more than 90% of patients. Facial angiofibromas (AF) are considered a skin hallmark of TSC. They are responsible for esthetic impact in patients. We aimed at reviewing the data available on the use of rapamycin (sirolimus) and everolimus for the oral or topical treatment of AF and other TSC-related skin changes and reporting our preliminary experience at Angers University Hospital. METHODS The literature search has been performed in combining the terms "rapamycin", "sirolimus", "everolimus", "tuberous sclerosis complex", "skin" and "trial". We have splited the findings of the literature search into two parts: 1) the value of rapalogs used systemically for extracutaneous purposes and 2) the role of topical rapalogs used specifically for skin lesions. RESULTS Large clinical trials using rapamycin or everolimus for the treatment of brain, lung or kidney manifestations of TSC unfortunately poorly define the "skin lesion response rate" they report. Conversely, the trials with topical rapamycin demonstrate significant, albeit transient, efficacy on AF size and visibility and acceptable tolerance. Several trials suggest better efficacy in younger patients than in adults. Long-term evaluation (up to 136 weeks) point to sustained response and good local and systemic tolerance. However, maintenance therapy appears to be mandatory to preserve skin response. Other skin changes, especially shagreen fibrotic plaques, hypomelanotic macules and ungual tumors still need far more research. Our experience in 124 patients (children and adults) treated for facial AF at Angers University Hospital showed that about 80% of them had an impressive and sustained response. CONCLUSION The issues of cost and access to affordable topical rapamycin formulations are critical for the patients even if skin changes do not cause serious harm in the context of TSC. We strongly suggest to improve and standardize the formulation of topical rapamycin, to encourage the pharmaceutical industry for providing commercial products, and the Health systems (social welfare) to reimburse them. © 2022 French Society of Pediatrics. Published by Elsevier Masson SAS. All rights reserved.
Collapse
|
9
|
Ferrara F, Benedusi M, Cervellati F, Sguizzato M, Montesi L, Bondi A, Drechsler M, Pula W, Valacchi G, Esposito E. Dimethyl Fumarate-Loaded Transethosomes: A Formulative Study and Preliminary Ex Vivo and In Vivo Evaluation. Int J Mol Sci 2022; 23:ijms23158756. [PMID: 35955900 PMCID: PMC9369351 DOI: 10.3390/ijms23158756] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, transethosomes were investigated as potential delivery systems for dimethyl fumarate. A formulative study was performed investigating the effect of the composition of transethosomes on the morphology and size of vesicles, as well as drug entrapment capacity, using cryogenic transmission electron microscopy, photon correlation spectroscopy, and HPLC. The stability of vesicles was evaluated, both for size increase and capability to control the drug degradation. Drug release kinetics and permeability profiles were evaluated in vitro using Franz cells, associated with different synthetic membranes. The in vitro viability, as well as the capacity to improve wound healing, were evaluated in human keratinocytes. Transmission electron microscopy enabled the evaluation of transethosome uptake and intracellular fate. Based on the obtained results, a transethosome gel was further formulated for the cutaneous application of dimethyl fumarate, the safety of which was evaluated in vivo with a patch test. It was found that the phosphatidylcholine concentration affected vesicle size and lamellarity, influencing the capacity to control dimethyl fumarate’s chemical stability and release kinetics. Indeed, phosphatidylcholine 2.7% w/w led to multivesicular vesicles with 344 nm mean size, controlling the drug’s chemical stability for at least 90 days. Conversely, phosphatidylcholine 0.9% w/w resulted in 130 nm sized unilamellar vesicles, which maintained 55% of the drug over 3 months. These latest kinds of transethosomes were able to improve wound healing in vitro and were easily internalised by keratinocytes. The selected transethosome gel, loading 25 mg/mL dimethyl fumarate, was not irritant after cutaneous application under occlusion, suggesting its possible suitability in the treatment of wounds caused by diabetes mellitus or peripheral vascular diseases.
Collapse
Affiliation(s)
- Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Mascia Benedusi
- Department of Neurosciences and Rehabilitation, University of Ferrara, I-44121 Ferrara, Italy
| | - Franco Cervellati
- Department of Neurosciences and Rehabilitation, University of Ferrara, I-44121 Ferrara, Italy
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Leda Montesi
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy
| | - Agnese Bondi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI) Keylab “Electron and Optical Microscopy”, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Walter Pula
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Giuseppe Valacchi
- Animal Science Department, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
| | - Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
10
|
Ferrara F, Benedusi M, Sguizzato M, Cortesi R, Baldisserotto A, Buzzi R, Valacchi G, Esposito E. Ethosomes and Transethosomes as Cutaneous Delivery Systems for Quercetin: A Preliminary Study on Melanoma Cells. Pharmaceutics 2022; 14:1038. [PMID: 35631628 PMCID: PMC9147749 DOI: 10.3390/pharmaceutics14051038] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
The present study is aimed to design ethosomes and transethosomes for topical administration of quercetin. To overcome quercetin low bioavailability, scarce solubility and poor permeability that hamper its pharmaceutical use, the drug was loaded in ethosomes and transethosomes based on different concentrations of phosphatidylcholine. Vesicle morphology was studied by cryogenic transmission electron microscopy, while size distribution and quercetin entrapment capacity were evaluated up to 3 months, respectively, by photon correlation spectroscopy and high-performance liquid chromatography. The antioxidant property was studied by photochemiluminescence test. Quercetin release and permeation was investigated in vitro, using Franz cells associated to different membranes. In vitro assays were conducted on human keratinocytes and melanoma cells to study the behavior of quercetin-loaded nano-vesicular forms with respect to cell migration and proliferation. The results evidenced that both phosphatidylcholine concentration and quercetin affected the vesicle size. Quercetin entrapment capacity, antioxidant activity and size stability were controlled using transethosomes produced by the highest amount of phosphatidylcholine. In vitro permeation studies revealed an enhancement of quercetin permeation in the case of transethosomes with respect to ethosomes. Notably, scratch wound and migration assays suggested the potential of quercetin loaded-transethosomes as adjuvant strategy for skin conditions.
Collapse
Affiliation(s)
- Francesca Ferrara
- Department of Neuroscience and Rehabilitation, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (M.B.)
| | - Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (M.B.)
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121-Ferrara, Italy or (M.S.); (R.C.)
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121-Ferrara, Italy or (M.S.); (R.C.)
| | - Anna Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy; (A.B.); (R.B.)
| | - Raissa Buzzi
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy; (A.B.); (R.B.)
| | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, I-44121 Ferrara, Italy
- Plants for Human Health Institute, Department of Animal Science, NC Research Campus Kannapolis, NC State University, Kannapolis, NC 28081, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul 130-701, Korea
| | - Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121-Ferrara, Italy or (M.S.); (R.C.)
| |
Collapse
|
11
|
Le Guyader G, Do B, Rietveld IB, Coric P, Bouaziz S, Guigner JM, Secretan PH, Andrieux K, Paul M. Mixed Polymeric Micelles for Rapamycin Skin Delivery. Pharmaceutics 2022; 14:pharmaceutics14030569. [PMID: 35335945 PMCID: PMC8948846 DOI: 10.3390/pharmaceutics14030569] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 12/10/2022] Open
Abstract
Facial angiofibromas (FA) are one of the most obvious cutaneous manifestations of tuberous sclerosis complex. Topical rapamycin for angiofibromas has been reported as a promising treatment. Several types of vehicles have been used hitherto, but polymeric micelles and especially those made of d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) seem to have shown better skin bioavailability of rapamycin than the so far commonly used ointments. To better understand the influence of polymeric micelles on the behavior of rapamycin, we explored it through mixed polymeric micelles combining TPGS and poloxamer, evaluating stability and skin bioavailability to define an optimized formulation to effectively treat FA. Our studies have shown that TPGS improves the physicochemical behavior of rapamycin, i.e., its solubility and stability, due to a strong inclusion in micelles, while poloxamer P123 has a more significant influence on skin bioavailability. Accordingly, we formulated mixed-micelle hydrogels containing 0.1% rapamycin, and the optimized formulation was found to be stable for up to 3 months at 2–8 °C. In addition, compared to hydroalcoholic gel formulations, the studied system allows for better biodistribution on human skin.
Collapse
Affiliation(s)
- Guillaume Le Guyader
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, F-94010 Créteil, France; (G.L.G.); (M.P.)
- Centre Hospitalier Intercommunal de Créteil, F-94010 Créteil, France
| | - Bernard Do
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, F-94010 Créteil, France; (G.L.G.); (M.P.)
- Matériaux et Santé, Université Paris-Saclay, 92296 Châtenay-Malabry, France;
- Correspondence:
| | - Ivo B. Rietveld
- SMS Laboratory (EA 3233), Université de Rouen-Normandie, Place Émile Blondel, 76821 Mont Saint Aignan, France;
- Faculté de Pharmacie, Université de Paris, 4 Avenue de l’Observatoire, 75006 Paris, France
| | - Pascale Coric
- UMR 8038 CiTCoM, CNRS, University of Paris, 75006 Paris, France; (P.C.); (S.B.)
| | - Serge Bouaziz
- UMR 8038 CiTCoM, CNRS, University of Paris, 75006 Paris, France; (P.C.); (S.B.)
| | - Jean-Michel Guigner
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR CNRS 7590, MNHN, IRD UR 206, Université Sorbonne Paris Cité, F-75005 Paris, France;
| | | | - Karine Andrieux
- UMR CNRS 8258—U1267 Inserm, Université de Paris, F-75006 Paris, France;
| | - Muriel Paul
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, F-94010 Créteil, France; (G.L.G.); (M.P.)
- EpidermE, Université Paris Est Créteil, F-94010 Créteil, France
| |
Collapse
|
12
|
Quartier J, Lapteva M, Boulaguiem Y, Guerrier S, Kalia YN. Polymeric micelle formulations for the cutaneous delivery of sirolimus: A new approach for the treatment of facial angiofibromas in tuberous sclerosis complex. Int J Pharm 2021; 604:120736. [PMID: 34048926 DOI: 10.1016/j.ijpharm.2021.120736] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/13/2022]
Abstract
Facial angiofibromas are benign tumors characteristic of tuberous sclerosis complex. The disease involves the mTOR pathway and the cutaneous manifestation responds to topical treatment with sirolimus (SIR). However, there are no approved topical SIR products and extemporaneous formulations have been sub-optimal. The aims of this study were (i) to develop aqueous formulations of SIR loaded in polymeric micelles prepared using D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) and (ii) to use the cutaneous biodistribution method, in conjunction with a new statistical approach, to investigate the feasibility of SIR delivery to the viable epidermis. Optimized micelle solutions and hydrogels (0.2%) were developed and stable at 4 °C for at least 6 and 3 months, respectively. Cutaneous delivery experiments (infinite and finite dose) using porcine skin demonstrated that both formulations increased SIR cutaneous bioavailability as compared to the control (ointment 0.2%). Moreover, studies with the micellar hydrogel 0.2% demonstrated SIR deposition in the viable epidermis with no transdermal permeation. These encouraging results confirmed that polymeric micelles enabled development of aqueous SIR formulations capable of targeted epidermal delivery. Furthermore, the cutaneous biodistribution provided a detailed insight into drug bioavailability in the different skin compartments that could complement/explain clinical observations of formulation efficacy.
Collapse
Affiliation(s)
- Julie Quartier
- School of Pharmaceutical Sciences, University of Geneva, CMU-1 rue Michel Servet, 1211 Genève 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-1 rue Michel Servet, 1211 Genève 4, Switzerland
| | - Maria Lapteva
- School of Pharmaceutical Sciences, University of Geneva, CMU-1 rue Michel Servet, 1211 Genève 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-1 rue Michel Servet, 1211 Genève 4, Switzerland
| | - Younes Boulaguiem
- Geneva School of Economics and Management, University of Geneva, 40 Boulevard du Pont d'Arve, 1204 Genève, Switzerland
| | - Stéphane Guerrier
- School of Pharmaceutical Sciences, University of Geneva, CMU-1 rue Michel Servet, 1211 Genève 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-1 rue Michel Servet, 1211 Genève 4, Switzerland; Geneva School of Economics and Management, University of Geneva, 40 Boulevard du Pont d'Arve, 1204 Genève, Switzerland
| | - Yogeshvar N Kalia
- School of Pharmaceutical Sciences, University of Geneva, CMU-1 rue Michel Servet, 1211 Genève 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-1 rue Michel Servet, 1211 Genève 4, Switzerland.
| |
Collapse
|
13
|
Salem HF, Kharshoum RM, Abou-Taleb HA, Farouk HO, Zaki RM. Fabrication and Appraisal of Simvastatin via Tailored Niosomal Nanovesicles for Transdermal Delivery Enhancement: In Vitro and In Vivo Assessment. Pharmaceutics 2021; 13:pharmaceutics13020138. [PMID: 33494472 PMCID: PMC7910921 DOI: 10.3390/pharmaceutics13020138] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/26/2022] Open
Abstract
Simvastatin (SIM) is a HMG-CoA reductase inhibitor employed in the management of hyperlipidemia. However, its low bioavailability limits its clinical efficacy. The objective of this study was to overcome the poor bioavailability of SIM via the transdermal application of a SIM-loaded niosomal gel. Niosomes loaded with SIM were fabricated by means of the thin-film hydration method and optimized through a 33-factorial design utilizing Design Expert® software. The prepared niosomes were evaluated for entrapment efficiency (EE%), zeta potential, vesicle size, and cumulative percentage of drug release. The optimum niosomal formulation was loaded on the gel and evaluated for physical properties such as color, clarity, and homogeneity. It was also evaluated for spreadability, and the cumulative % drug release. The best niosomal gel formula was appraised for ex vivo permeation as well as pharmacokinetic study. The SIM-loaded niosomes showed EE% between 66.7–91.4%, vesicle size between 191.1–521.6 nm, and zeta potential ranged between −0.81–+35.6 mv. The cumulative percentage of drug released was ranged from 55% to 94% over 12 h. SIM-loaded niosomal gels were clear, homogenous, spreadable, and the pH values were within the range of physiological skin pH. Furthermore, about 73.5% of SIM was released within 24 h, whereas 409.5 µg/cm2 of SIM passed through the skin over 24 h in the ex vivo permeation study. The pharmacokinetic study revealed higher AUC0–∞ and Cmax with topical application of SIM-loaded niosomal gel compared to topical SIM gel or oral SIM suspension. The topical application of SIM-loaded niosomal gel ascertained the potential percutaneous delivery of SIM.
Collapse
Affiliation(s)
- Heba F. Salem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Shehata Hegazi Street, P.O. Box 62514 Beni-Suef, Egypt; (H.F.S.); (R.M.K.)
| | - Rasha M. Kharshoum
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Shehata Hegazi Street, P.O. Box 62514 Beni-Suef, Egypt; (H.F.S.); (R.M.K.)
| | - Heba A. Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Nahda University (NUB), P.O. Box 62511 Beni-Suef, Egypt; (H.A.A.-T.); (H.O.F.)
| | - Hanan Osman Farouk
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Nahda University (NUB), P.O. Box 62511 Beni-Suef, Egypt; (H.A.A.-T.); (H.O.F.)
| | - Randa Mohammed Zaki
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Shehata Hegazi Street, P.O. Box 62514 Beni-Suef, Egypt; (H.F.S.); (R.M.K.)
- Department of Pharmaceutics, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
- Correspondence: ; Tel.: +20-1154-446-442
| |
Collapse
|