1
|
Niu Z, Hildebrand S, Kappes S, Ali ME, Vogel M, Mikhael M, Ran D, Kozak J, Wiedner M, Richter DF, Lamprecht A, Pfeifer A. Enhanced browning of adipose tissue by mirabegron-microspheres. J Control Release 2024; 375:601-613. [PMID: 39278357 DOI: 10.1016/j.jconrel.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Thermogenic brown adipose tissue (BAT) has emerged as an attractive target for combating obesity. However, pharmacological activation of energy expenditure by BAT and/or induction of browning of white adipose tissue (WAT) has been hampered by cardiovascular side effects. To address these concerns, we developed polylactide-co-glycolide acid (PLGA) microspheres loaded with mirabegron (MIR), a selective beta-3 adrenergic receptor (ADRB3) agonist, to achieve sustained local induction and activation of thermogenic adipocytes. MIR-loaded PLGA microspheres (MIR-MS) effectively activated brown adipocytes and enhanced the thermogenic program in white adipocytes. Moreover, treating isolated inguinal WAT (iWAT) with MIR-MS resulted in increased expression of browning markers and elevated lipolysis mainly via ADRB3. In mice, injection of MIR-MS over four weeks induced browning of iWAT at the injection site. Importantly, local MIR-MS injection successfully mitigated unwanted cardiovascular risks, including high systolic blood pressure (SBP) and heart rate, as compared to MIR-treated mice. Finally, injecting MIR-MS into human subcutaneous WAT led to a significant induction of lipolysis and an increase in the expression of thermogenic marker uncoupling protein 1 (UCP1). Taken together, our findings indicate that MIR-MS function as a local drug release system that induces browning of human and murine subcutaneous WAT while mitigating undesirable cardiovascular effects.
Collapse
Affiliation(s)
- Zheming Niu
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Staffan Hildebrand
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Sebastian Kappes
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Mohamed Ehab Ali
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Matthias Vogel
- Pharmacogenomic, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - Mickel Mikhael
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Danli Ran
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Jan Kozak
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Maria Wiedner
- Institut ID, Beethoven Clinic, Plastic and Aesthetic Surgery Cologne, Cologne, Germany
| | - Dirk F Richter
- Institut ID, Beethoven Clinic, Plastic and Aesthetic Surgery Cologne, Cologne, Germany
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany.
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany.
| |
Collapse
|
2
|
Stepniak A, Biernacka M, Malecka M, Palecz B. Host-Guest Complexes of Flavanone and 4'-Chloroflavanone with Naturals and Modified Cyclodextrin: A Calorimetric and Spectroscopy Investigations. Molecules 2024; 29:3123. [PMID: 38999075 PMCID: PMC11243463 DOI: 10.3390/molecules29133123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
The aim of the research was to investigate and compare the interaction between flavanones (flavanone, 4-chloro-flavanone) with potential anticancer activity and selected cyclodextrins. Measurements were made using calorimetric (ITC, DSC) and spectrophotometric (UV-Vis spectroscopy, FT-IR, 1H NMR) methods. The increase in the solubility in aqueous medium caused by the complexation process was determined by the Higuchi-Connors method. As a result of the study, the stoichiometry and thermodynamics of the complexation reaction were determined. The formation of stable inclusion complexes at a 1:1 M ratio between flavanone and 4-chloroflavanone and the cyclodextrins selected for research was also confirmed.
Collapse
Affiliation(s)
- Artur Stepniak
- Unit of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163/165, 90-230 Lodz, Poland (M.M.); (B.P.)
| | | | | | | |
Collapse
|
3
|
Jin Park Y, Wuk Kim D. Development and evaluation of hot-melt-extruded diquafosol tetrasodium formulations for ophthalmic inserts: A design of experiments approach. Int J Pharm 2024; 659:124249. [PMID: 38772496 DOI: 10.1016/j.ijpharm.2024.124249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/04/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024]
Abstract
This study aimed to develop, optimize, and evaluate hot-melt-extruded ophthalmic inserts capable of sustained release of diquafosol tetrasodium (DQS) via a design of experiments approach. DQS, a tear stimulant for dry eye management, faces challenges of frequent administration and low bioavailability. The developed insert uses biodegradable polymers in varied proportions to achieve sustained release. Optimized through mixture design, the insert completely dissolved within 24 h and maintained a stable drug content, thickness, and surface pH over three months at room temperature. In vitro corneal permeation studies on excised rabbit corneas demonstrated increased bioavailability, suggesting a reduced dosing frequency compared with conventional eye drops. Therefore, this insert has potential to enhance treatment outcomes by improving patient compliance and providing sustained drug effects.
Collapse
Affiliation(s)
- Ye Jin Park
- Vessel-Organ Interaction Research Center (VOICE, MRC), BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, South Korea
| | - Dong Wuk Kim
- Vessel-Organ Interaction Research Center (VOICE, MRC), BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|
4
|
Miretti M, Prucca CG, Baumgartner MT, Martinelli M. Combining ZnPc-liposomes and chitosan on a hybrid matrix for enhanced photodynamic therapy. Int J Biol Macromol 2023; 253:127544. [PMID: 37866570 DOI: 10.1016/j.ijbiomac.2023.127544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Photodynamic therapy is an alternative treatment for several pathologies, including cancer. This therapy uses a photosensitizer capable of producing reactive oxygen species through irradiation, promoting cellular death. A limitation of photosensitizers is their low solubility in aqueous media. Hence, developing a suitable carrier for photosensitizers for specific applications is a challenge. Cervical cancer is one of the most common cancers in women, and photodynamic therapy could be an attractive alternative therapeutic approach. In this work, we synthesized films composed of chitosan, polyvinylpyrrolidone, and liposomes containing Zn-phthalocyanine. Photophysical characterization of ZnPc incorporated into films was determined by UV-vis and fluorescence. Film properties such as swelling, mechanical properties, and water vapor permeability were performed. Finally, in vitro, photodynamic evaluation of these films was performed on HeLa cells. The results indicate that incorporating Zn-Pc-liposomes into films decreases cell viability by >95 %.
Collapse
Affiliation(s)
- Mariana Miretti
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina; Instituto de investigación y desarrollo en ingenieria de procesos y quimica aplicada (IPQA-CONICET), Córdoba, Argentina
| | - César G Prucca
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Córdoba, Argentina
| | - María T Baumgartner
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina; Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC-CONICET), Córdoba, Argentina
| | - Marisa Martinelli
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina; Instituto de investigación y desarrollo en ingenieria de procesos y quimica aplicada (IPQA-CONICET), Córdoba, Argentina.
| |
Collapse
|
5
|
Liu X, Miceli JF, Patton S, Murray M, Evans J, Wei X, Wang P. Agrobacterial Transformation Enhancement by Improved Competent Cell Preparation and Optimized Electroporation. Life (Basel) 2023; 13:2217. [PMID: 38004357 PMCID: PMC10671908 DOI: 10.3390/life13112217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The introduction of plasmids into Agrobacterium cells is one of the key steps in the Agrobacterium-mediated transformation of plants for gene editing applications. Depending on chromosomal background, some Agrobacterium strains exhibit a very low transformation efficiency, which results in a low number of colonies for subsequent screening and thus limits the potential for automated high-throughput transformation processes, especially with low copy or large plasmids. This study demonstrates improvements of transformation frequency by modifying the competent cell preparation process and optimizing electroporation parameters for two Agrobacterium strains. The competent cell preparation process was modified by prolonging bacterial growth in the log phase and optimizing the endpoint cell density for cell harvest which resulted in a significant cell yield increase and transformation frequency improvement. Optimization of electroporation by fine-tuning the parameters not only resulted in a 30-fold transformation frequency increase but also revealed a strain-dependent requirement for field strength and electric pulse length. To further improve transformation of a recalcitrant strain, different concentrations of dimethyl sulfoxide (DMSO) in recovery medium were examined. The study revealed an important role of DMSO in transformed cell recovery, with 5% DMSO resulting in the highest transformation frequency. The significant improvements in Agrobacterium transformation frequency addressed a critical bottleneck towards establishing a high throughput process.
Collapse
Affiliation(s)
- Xiang Liu
- Seeds Research, Syngenta Crop Protection LLC, Research Triangle Park, Durham, NC 27709, USA (S.P.); (M.M.); (J.E.); (X.W.)
| | | | | | | | | | | | - Pohao Wang
- Seeds Research, Syngenta Crop Protection LLC, Research Triangle Park, Durham, NC 27709, USA (S.P.); (M.M.); (J.E.); (X.W.)
| |
Collapse
|
6
|
Cho J, Nouizi F, Kim CS, Gulsen G. Monitoring Distribution of the Therapeutic Agent Dimethyl Sulfoxide via Solvatochromic Shift of Albumin-Bound Indocyanine Green. SENSORS (BASEL, SWITZERLAND) 2023; 23:7728. [PMID: 37765785 PMCID: PMC10535274 DOI: 10.3390/s23187728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
We recently developed a novel hyperspectral excitation-resolved near-infrared fluorescence imaging system (HER-NIRF) based on a continuous-wave wavelength-swept laser. In this study, this technique is applied to measure the distribution of the therapeutic agent dimethyl sulfoxide (DMSO) by utilizing solvatochromic shift in the spectral profile of albumin-bound Indocyanine green (ICG). Using wide-field imaging in turbid media, complex dynamics of albumin-bound ICG are measured in mixtures of dimethyl sulfoxide (DMSO) and water. Phantom experiments are conducted to evaluate the performance of the HER-NIRF system. The results show that the distribution of DMSO can be visualized in the wide-field reflection geometry. One of the main purposes of the DMSO is to act as a carrier for other drugs, enhancing their effects by facilitating skin penetration. Understanding the solubility and permeability of drugs in vivo is very important in drug discovery and development. Hence, this HER-NIRF technique has great potential to advance the utilization of the therapeutic agent DMSO by mapping its distribution via the solvatochromic shift of ICG. By customizing the operational wavelength range, this system can be applied to any other fluorophores in the near-infrared region and utilized for a wide variety of drug delivery studies.
Collapse
Affiliation(s)
- Jaedu Cho
- Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California, Irvine, CA 92697, USA (F.N.)
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 607-735, Republic of Korea;
| | - Farouk Nouizi
- Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California, Irvine, CA 92697, USA (F.N.)
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 607-735, Republic of Korea;
| | - Gultekin Gulsen
- Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California, Irvine, CA 92697, USA (F.N.)
| |
Collapse
|
7
|
Abdullah HM, Farooq M, Adnan S, Masood Z, Saeed MA, Aslam N, Ishaq W. Development and evaluation of reservoir transdermal polymeric patches for controlled delivery of diclofenac sodium. Polym Bull (Berl) 2023; 80:6793-6818. [DOI: https:/doi.org/10.1007/s00289-022-04390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 07/04/2023]
|
8
|
Zhu C, Zhang Z, Wen Y, Song X, Zhu J, Yao Y, Li J. Cationic micelles as nanocarriers for enhancing intra-cartilage drug penetration and retention. J Mater Chem B 2023; 11:1670-1683. [PMID: 36621526 DOI: 10.1039/d2tb02050e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is a tremendous unmet medical need for osteoarthritis (OA) treatment around the world, and pharmacological management is the most common option but presents a limited and short efficacy. Insufficient drug delivery to articular cartilage is the key cause. It is widely accepted that the complex structure of articular cartilage and the rapid clearance of joint liquids largely hinder drug penetration and retention in the cartilage. To address these obstacles, we designed and prepared a positively charged micellar system that can effectively deliver a model drug to the deep zone of the cartilage and prolong the drug retention time. In this work, a triblock copolymer composed of cationic poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) and poly(ε-caprolactone) (PCL), denoted as PDMAEMA-PCL-PDMAEMA, was synthesized. A triblock copolymer composed of brush poly[poly(ethylene glycol) methacrylate] (pPEGMA) and PCL, denoted as pPEGMA-PCL-pPEGMA, was prepared for comparison. The two types of triblock copolymers were self-assembled in an aqueous environment to form cationic and neutral micelles, respectively. A hydrophobic fluorescent dye as a model drug was loaded into micelle cores, and the dye-loaded micelles were evaluated for intra-cartilage penetration and retention using porcine knee cartilage explants. The PDMAEMA-PCL-PDMAEMA cationic micelles were found to significantly enhance the intra-cartilage penetration and retention capability due to the electrostatic interaction between the micelles and the negatively charged cartilage extracellular matrix. The confocal microscopy study showed that the cationic micelles could penetrate the full-thickness porcine cartilage explants (around 1.5 mm) within 24 hours. Up to 87% of the cationic micelles were taken up by porcine cartilage explants, and 71% of the absorbed micelles were retained in the tissue for at least 4 days. Although the pPEGMA-PCL-pPEGMA neutral micelles were able to penetrate the full-thickness cartilage, this type of micelle showed lower uptake (44%) and retention (44%) rates. This observation implied that the surface charge of micelles could play an important role in efficient intra-cartilage drug delivery. This study verified the feasibility and effectiveness of the PDMAEMA-PCL-PDMAEM cationic micelles in intra-cartilage drug delivery, showing that cationic micelles could be promising carriers for OA treatment.
Collapse
Affiliation(s)
- Chenxian Zhu
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore.
| | - Zhongxing Zhang
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore.
| | - Yuting Wen
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore. .,National University of Singapore (Chongqing) Research Institute, 2 Huizhu Road, Yubei District, Chongqing 401120, China
| | - Xia Song
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore.
| | - Jingling Zhu
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore. .,NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Yifei Yao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Jun Li
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore. .,National University of Singapore (Chongqing) Research Institute, 2 Huizhu Road, Yubei District, Chongqing 401120, China.,NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| |
Collapse
|
9
|
Sugumar V, Hayyan M, Madhavan P, Wong WF, Looi CY. Current Development of Chemical Penetration Enhancers for Transdermal Insulin Delivery. Biomedicines 2023; 11:biomedicines11030664. [PMID: 36979643 PMCID: PMC10044980 DOI: 10.3390/biomedicines11030664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
The use of the transdermal delivery system has recently gained ample recognition due to the ability to deliver drug molecules across the skin membrane, serving as an alternative to conventional oral or injectable routes. Subcutaneous insulin injection is the mainstay treatment for diabetes mellitus which often leads to non-compliance among patients, especially in younger patients. Apart from its invasiveness, the long-term consequences of insulin injection cause the development of physical trauma, which includes lipohypertrophy at the site of administration, scarring, infection, and sometimes nerve damage. Hence, there is a quest for a better alternative to drug delivery that is non-invasive and easily adaptable. One of the potential solutions is the transdermal delivery method. However, the stratum corneum (the top layer of skin) is the greatest barrier in transporting large molecules like insulin. Therefore, various chemical enhancers have been proposed to promote stratum corneum permeability, or they are designed to increase the permeability of the full epidermis, such as the use of ionic liquid, peptides, chemical pre-treatment as well as packaging insulin with carriers or nanoparticles. In this review, the recent progress in the development of chemical enhancers for transdermal insulin delivery is discussed along with the possible mechanistic of action and the potential outlook on the proposed permeation approaches in comparison to other therapeutical drugs
Collapse
Affiliation(s)
- Vaisnevee Sugumar
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia
| | - Maan Hayyan
- Chemical Engineering Program, Faculty of Engineering & Technology, Muscat University, P.O. Box 550, Muscat P.C.130, Oman
- Correspondence: (M.H.); (W.F.W.); (C.Y.L.)
| | - Priya Madhavan
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor’s University, 1, Jalan Taylors, Subang Jaya 47500, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (M.H.); (W.F.W.); (C.Y.L.)
| | - Chung Yeng Looi
- Medical Advancement for Better Quality of Life Impact Lab, Taylor’s University, 1, Jalan Taylors, Subang Jaya 47500, Malaysia
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
- Correspondence: (M.H.); (W.F.W.); (C.Y.L.)
| |
Collapse
|
10
|
Anjani QK, Demartis S, Volpe-Zanutto F, Li H, Sabri AHB, Gavini E, Donnelly RF. Fluorescence-Coupled Techniques for Determining Rose Bengal in Dermatological Formulations and Their Application to Ex Vivo Skin Deposition Studies. Pharmaceutics 2023; 15:pharmaceutics15020408. [PMID: 36839730 PMCID: PMC9960589 DOI: 10.3390/pharmaceutics15020408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Rose Bengal (RB) is a fluorescent dye with several potential biomedical applications, particularly in dermatology. Due to RB's poor physicochemical properties, several advanced delivery systems have been developed as a potential tool to promote its permeation across the skin. Nevertheless, no validated quantitative method to analyse RB within the skin is described in the literature. Considering RB exhibits a conjugated ring system, the current investigation proposes fluorescence-based techniques beneficial for qualitatively and quantitatively determining RB delivered to the skin. Notably, the development and validation of a fluorescence-coupled HPLC method to quantify RB within the skin matrix are herein described for the first time. The method was validated based on the ICH, FDA and EMA guidelines, and the validated parameters included specificity, linearity, LOD, LLOQ, accuracy and precision, and carry-over and dilution integrity. Finally, the method was applied to evaluate RB's ex vivo permeation and deposition profiles when loaded into dermatological formulations. Concerning qualitative determination, multiphoton microscopy was used to track the RB distribution within the skin strata, and fluorescence emission spectra were investigated to evaluate RB's behaviour when interacting with different environments. The analytical method proved specific, precise, accurate and sensitive to analyse RB in the skin. In addition, qualitative side-analytical techniques were revealed to play an essential role in evaluating the performance of RB's dermatological formulation.
Collapse
Affiliation(s)
- Qonita Kurnia Anjani
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
- Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Sara Demartis
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Piazza Università 21, 07100 Sassari, Italy
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Huanhuan Li
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Akmal Hidayat Bin Sabri
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Piazza Università 21, 07100 Sassari, Italy
- Correspondence: (E.G.); (R.F.D.); Tel.: +39-079-228752 (E.G.); +44-(0)-2890-972-251 (R.F.D.)
| | - Ryan F. Donnelly
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
- Correspondence: (E.G.); (R.F.D.); Tel.: +39-079-228752 (E.G.); +44-(0)-2890-972-251 (R.F.D.)
| |
Collapse
|
11
|
Yeoh SC, Loh PL, Murugaiyah V, Goh CF. Development and Characterisation of a Topical Methyl Salicylate Patch: Effect of Solvents on Adhesion and Skin Permeation. Pharmaceutics 2022; 14:pharmaceutics14112491. [PMID: 36432686 PMCID: PMC9698037 DOI: 10.3390/pharmaceutics14112491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The advent of skin patch formulation design and technology has enabled the commercialisation of methyl salicylate (MS) as a topical patch. However, the most fundamental aspect of skin permeation is unknown at present. The study aims to investigate the effect of solvent choice on the skin permeation of MS in a neat solvent system and patch formulation with an emphasis on patch adhesion. MS in six selected solvents (propylene glycol (PG), Transcutol®, isopropyl myristate, Labrasol®, Plurol® oleique CC 497 and Maisine® CC) was characterised and in vitro permeation studies were also performed. An ATR-FTIR analysis on solvent-treated skin was conudcted. Patch formulation was prepared and characterised for adhesion, in vitro drug release and skin permeation studies. The highest MS permeation was found in neat PG over 24 h (~90 μg/cm2) due to its strong skin protein conformation effect. Transcutol® and isopropyl myristate showed better skin deposition and formulation retention, respectively. Nevertheless, PG enhanced the patch adhesion despite having a lower cumulative amount of MS permeated (~80 μg/cm2) as compared with Transcutol® and Maisine® (~110-150 μg/cm2). These two solvents, however, demonstrated better skin deposition and formulation retention but a lower patch adhesion. The unpredictable influence of the solvent on patch adhesion highlights the importance of the trade-off between patch adhesion and skin permeation during formulation design.
Collapse
Affiliation(s)
- Soo Chin Yeoh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Poh Lee Loh
- THP Medical Sdn Bhd, 1209, Jalan Perindustrian Bukit Minyak 18, Kawasan Perindustrian Bukit Minyak, Simpang Ampat 14100, Penang, Malaysia
| | - Vikneswaran Murugaiyah
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
- Correspondence:
| |
Collapse
|
12
|
Salau O, Bagde A, Kalvala A, Singh M. Enhancement of transdermal permeation of cannabinoids and their pharmacodynamic evaluation in rats. Int J Pharm 2022; 624:122016. [PMID: 35863593 PMCID: PMC9812589 DOI: 10.1016/j.ijpharm.2022.122016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 01/07/2023]
Abstract
The objective of the present study was to enhance the transdermal permeation of cannabinoids: cannabidiol (CBD), cannabigerol (CBG) and tetrahydrocannabivarin (THCV) using chemical permeation enhancer approach and evaluate them for their anti-inflammatory effect in vivo in a paw edema model in rats. Cannabinoids gel formulations were developed using FDA approved inactive ingredients: lactic acid (LA), polyethylene glycol-400 (PEG-400), N-methyl-2 pyrrolidone (NMP), dimethyl sulfoxide (DMSO). In vitro skin permeation testing (IVPT) showed flux of ∼ 13.25 μg/cm2/h for CBD, ∼9.38 μg/cm2/h for CBG and ∼ 51.74 μg/cm2/h for THCV. Additionally, IVPT study showed cumulative drug permeation of 610.96 ± 88.92 μg/cm2, 432.09 ± 35.59 μg/cm2 and 2384.44 ± 42.22 μg/cm2 from CBD, CBG and THCV gel formulations respectively. Further, effect of excipients on cannabinoid permeation showed that, formulation containing lactic acid, NMP and DMSO showed significantly (p < 0.0001) enhanced flux of cannabinoids as compared to formulation without LA, NMP and DMSO. In vivo studies showed that paw edema was significantly (p < 0.0001) reduced in the groups containing CBD, CBG, THCV as compared to control and placebo formulation. In conclusion, flux of CBD, CBG and THCV was significantly enhanced using chemical permeation enhancers approach which helped in reducing rat paw edema.
Collapse
Affiliation(s)
| | | | | | - Mandip Singh
- Corresponding author at: College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307. (M. Singh)
| |
Collapse
|
13
|
Development and evaluation of reservoir transdermal polymeric patches for controlled delivery of diclofenac sodium. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Sim YS, Chong ZY, Azizi J, Goh CF. Development and validation of a gradient HPLC-UV method for mitragynine following in vitro skin permeation studies. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1204:123316. [PMID: 35700649 DOI: 10.1016/j.jchromb.2022.123316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 11/22/2022]
Abstract
Mitragynine is a promising candidate for pain relief and opiate replacement but the investigations for drug delivery are lacking. This study aims to investigate the potential of mitragynine to be delivered through the skin with an emphasis on developing and validating a gradient HPLC-UV analytical method to determine mitragynine in the samples collected during in vitro skin permeation studies. The optimised method involves a gradient elution using a C18 column with a mobile phase comprising acetonitrile and 0.1 %v/v of formic acid (0-1 min: 30:70 to 70:30 (v/v) and hold up to 4 min; 4-6 min: return to 30:70 (v/v) and hold up to 10 min) at a flow rate of 1.2 mL/min. This method was validated based on the standards set by the International Council on Harmonisation guidelines. The method showed mitragynine elution at ∼ 4 min with adequate linearity (R2 ≥ 0.999 for concentration ranges of 0.5-10 and 10-175 μg/mL) and acceptable limits of detection and quantification at 0.47 and 1.43 μg/mL, respectively. The analytical performance is robust with excellent precision and accuracy. This method was used to evaluate the in vitro skin permeation of mitragynine (5 %w/v) from simple solvent systems over 48 hr. The results showed a cumulative amount of mitragynine permeated at ∼ 11 μg/cm2 for dimethyl sulfoxide and ∼ 4 μg/cm2 for propylene glycol. The study not only addressed the issues of the currently available HPLC-UV methods that limit the direct application but also affirmed the potential of mitragynine to be delivered through the skin.
Collapse
Affiliation(s)
- Yee Shan Sim
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Zan Yang Chong
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Juzaili Azizi
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
15
|
Preparation and Optimization of an Ultraflexible Liposomal Gel for Lidocaine Transdermal Delivery. MATERIALS 2022; 15:ma15144895. [PMID: 35888361 PMCID: PMC9325174 DOI: 10.3390/ma15144895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
Abstract
The pain caused by lidocaine injections into the face prior to facial plastic surgeries intended to remove growths or tumorous lesions has been reported by many patients to be the worst part of these procedures. However, the lidocaine gels and creams currently on the market do not deliver an equal or better local anesthetic effect to replace these injections. To develop an alternative to the painful local anesthetic injection, we prepared ultraflexible liposomes using soy phosphatidylcholine, lidocaine, and different amounts of sodium cholate, a surfactant. The prepared ultraflexible liposomes (UFLs) were examined for particle size, zeta potential, cytotoxicity, and in vitro release. By using a carbomer as a gelling agent, the prepared UFL lidocaine gels were evaluated for their penetration ability in a Franz diffusion cell, using Strat-M membranes. The formulation achieving the highest amount of penetrated lidocaine was chosen for further pH, viscosity, and stability tests. The local anesthetic efficacy of the formulation was investigated by an in vivo tail-flick test in rats. Our findings suggested that this topical gel formulated with ultraflexible liposomal lidocaine has enhanced skin permeation ability, as well as an improved local analgesic effect from the lidocaine.
Collapse
|
16
|
Amorphization of Drugs for Transdermal Delivery-a Recent Update. Pharmaceutics 2022; 14:pharmaceutics14050983. [PMID: 35631568 PMCID: PMC9143970 DOI: 10.3390/pharmaceutics14050983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/10/2022] Open
Abstract
Amorphous solid dispersion is a popular formulation approach for orally administered poorly water-soluble drugs, especially for BCS class II. But oral delivery could not be an automatic choice for some drugs with high first-pass metabolism susceptibility. In such cases, transdermal delivery is considered an alternative if the drug is potent and the dose is less than 10 mg. Amorphization of drugs causes supersaturation and enhances the thermodynamic activity of the drugs. Hence, drug transport through the skin could be improved. The stabilization of amorphous system is a persistent challenge that restricts its application. A polymeric system, where amorphous drug is dispersed in a polymeric carrier, helps its stability. However, high excipient load often becomes problematic for the polymeric amorphous system. Coamorphous formulation is another approach, where one drug is mixed with another drug or low molecular weight compound, which stabilizes each other, restricts crystallization, and maintains a single-phase homogenous amorphous system. Prevention of recrystallization along with enhanced skin permeation has been observed by the transdermal coamorphous system. But scalable manufacturing methods, extensive stability study and in-depth in vivo evaluation are lacking. This review has critically studied the mechanistic aspects of amorphization and transdermal permeation by analyzing recent researches in this field to propose a future direction.
Collapse
|
17
|
Liu M, Chen S, Zhiwen Z, Li H, Sun G, Yin N, Wen J. Anti-ageing peptides and proteins for topical applications: a review. Pharm Dev Technol 2021; 27:108-125. [PMID: 34957891 DOI: 10.1080/10837450.2021.2023569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skin ageing is a cumulative result of oxidative stress, predominantly caused by reactive oxygen species (ROS). Respiration, pollutants, toxins, or ultraviolet A (UVA) irradiation produce ROS with 80% of skin damage attributed to UVA irradiation. Anti-ageing peptides and proteins are considered valuable compounds for removing ROS to prevent skin ageing and maintenance of skin health. In this review, skin ageing theory has been illustrated with a focus on the mechanism and relationship with anti-ageing peptides and proteins. The effects, classification, and transport pathways of anti-ageing peptides and proteins across skin are summarized and discussed. Over the last decade, several novel formulations and advanced strategies have been developed to overcome the challenges in the dermal delivery of proteins and peptides for skin ageing. This article also provides an in-depth review of the latest advancements in the dermal delivery of anti-ageing proteins and peptides. Based on these studies, this review prospected several semi-solid dosage forms to achieve topical applicability for anti-ageing peptides and proteins.
Collapse
Affiliation(s)
- Mengyang Liu
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Shuo Chen
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Zhang Zhiwen
- Shanghai Institute of Materia Medica, Chinese Academy of Science, China
| | - Hongyu Li
- School of Pharmacy, University of Arkansas for Medical Sciences, Arkansas, USA
| | - Guiju Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, China
| | - Naibo Yin
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Berillo D, Zharkinbekov Z, Kim Y, Raziyeva K, Temirkhanova K, Saparov A. Stimuli-Responsive Polymers for Transdermal, Transmucosal and Ocular Drug Delivery. Pharmaceutics 2021; 13:2050. [PMID: 34959332 PMCID: PMC8708789 DOI: 10.3390/pharmaceutics13122050] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Despite their conventional and widespread use, oral and intravenous routes of drug administration face several limitations. In particular, orally administered drugs undergo enzymatic degradation in the gastrointestinal tract and first-pass metabolism in the liver, which tend to decrease their bioavailability. Intravenous infusions of medications are invasive, painful and stressful for patients and carry the risk of infections, tissue damage and other adverse reactions. In order to account for these disadvantages, alternative routes of drug delivery, such as transdermal, nasal, oromucosal, ocular and others, have been considered. Moreover, drug formulations have been modified in order to improve their storage stability, solubility, absorption and safety. Recently, stimuli-responsive polymers have been shown to achieve controlled release and enhance the bioavailability of multiple drugs. In this review, we discuss the most up-to-date use of stimuli-responsive materials in order to optimize the delivery of medications that are unstable to pH or undergo primary metabolism via transdermal, nasal, oromucosal and ocular routes. Release kinetics, diffusion parameters and permeation rate of the drug via the mucosa or skin are discussed as well.
Collapse
Affiliation(s)
- Dmitriy Berillo
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| | - Zharylkasyn Zharkinbekov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (Z.Z.); (Y.K.); (K.R.); (K.T.)
| | - Yevgeniy Kim
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (Z.Z.); (Y.K.); (K.R.); (K.T.)
| | - Kamila Raziyeva
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (Z.Z.); (Y.K.); (K.R.); (K.T.)
| | - Kamila Temirkhanova
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (Z.Z.); (Y.K.); (K.R.); (K.T.)
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (Z.Z.); (Y.K.); (K.R.); (K.T.)
| |
Collapse
|