1
|
Li S, Yin W, Liu Y, Yang C, Zhai Z, Xie M, Ye Z, Song X. Anisotropic conductive scaffolds for post-infarction cardiac repair. Biomater Sci 2024. [PMID: 39688676 DOI: 10.1039/d4bm01109k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Myocardial infarction (MI) remains one of the most common and lethal cardiovascular diseases (CVDs), leading to the deterioration of cardiac function due to myocardial cell necrosis and fibrous scar tissue formation. Myocardial infarction (MI) remains one of the most common and lethal cardiovascular diseases (CVDs), leading to the deterioration of cardiac function due to myocardial cell necrosis and fibrous scar tissue formation. After MI, the anisotropic structural properties of myocardial tissue are destroyed, and its mechanical and electrical microenvironment also undergoes a series of pathological changes, such as ventricular wall stiffness, abnormal contraction, conduction network disruption, and irregular electrical signal propagation, which may further induce myocardial remodeling and even lead to heart failure. Therefore, bionic reconstruction of the anisotropic structural-mechanical-electrical microenvironment of the infarct area is key to repairing damaged myocardium. This article first summarizes the pathological changes in muscle fibre structure and conductive microenvironment after cardiac injury, and focuses on the classification and preparation methods of anisotropic conductive materials. In addition, the effects of these anisotropic conductive materials on the behavior of cardiac resident cells after myocardial infarction, such as directional growth, maturation, proliferation and migration, and the differentiation fate of stem cells and the possible molecular mechanisms involved are summarized. The design strategies for anisotropic conductive scaffolds for myocardial repair in future clinical research are also discussed, with the aim of providing new insights for researchers in related fields.
Collapse
Affiliation(s)
- Shimin Li
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
| | - Wenming Yin
- Department of Neurology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Yali Liu
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong 528000, China
| | - Chang Yang
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
| | - Zitong Zhai
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
| | - Mingxiang Xie
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
| | - Ziyi Ye
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
| | - Xiaoping Song
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
- Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
2
|
He X, Han Q, Zhang Y, Zhang H, Liu J, Zhou X. Effect of collagen-based scaffolds with hydroxyapatite on the repair of cartilage defects in the rabbit knee joint. J Orthop Surg Res 2024; 19:818. [PMID: 39623498 PMCID: PMC11613844 DOI: 10.1186/s13018-024-05323-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND The repair of articular cartilage defects is always a significant clinical challenge in joint treatment. Therefore, the aim of this study was to investigate that the ColII-HA-CS-HAP scaffolds with BMSCs could repair cartilage defects of knee. METHODS Bone marrow mesenchymal stem cells (BMSCs) were extracted from rabbits, identified using immunofluorescence staining, and successfully induced into chondrocytes. Type II collagen (ColII) was isolated from bovine cartilage and constructed into scaffolds with hyaluronic acid, chondroitin sulfate, and hydroxyapatite. Then BMSCs were seeded on the ColII-HA-CS-HAP scaffold to detect biocompatibility. RESULTS The results of DAPI fluorescence staining showed that the number of BMSCs on the ColII-HA-CS-HAP scaffolds increased rapidly after culturing for 12 d. The rabbit knee cartilage defect model with a diameter of approximately 3 mm and a thickness of approximately 4 mm was selected to evaluate the regenerative potential of the scaffolds using histological and immunohistochemical analyses. At 6 months, the regenerated cartilage in the ColII-HA-CS-HAP scaffolds with BMSCs was more similar to that of native cartilage than the ColII-HA-CS-HAP scaffold group. CONCLUSIONS Our study proved that the ColII-HA-CS-HAP scaffolds with differentiated BMSCs can produce an excellent healing response and repair cartilage defects successfully in a rabbit model.
Collapse
Affiliation(s)
- Xiaoliang He
- College of Food Science and Biology, Hebei University of Science and Technology, NO. 26 Yuxiang Street, Shijiazhang, Hebei, 050018, China
| | - Qiuping Han
- College of Food Science and Biology, Hebei University of Science and Technology, NO. 26 Yuxiang Street, Shijiazhang, Hebei, 050018, China
| | - Yuxin Zhang
- College of Food Science and Biology, Hebei University of Science and Technology, NO. 26 Yuxiang Street, Shijiazhang, Hebei, 050018, China
| | - Huan Zhang
- College of Food Science and Biology, Hebei University of Science and Technology, NO. 26 Yuxiang Street, Shijiazhang, Hebei, 050018, China
| | - Jun Liu
- College of Food and Biotechnology, Qiqihar University, Qiqihaer, Heilongjiang, China
| | - Xiaohui Zhou
- College of Food Science and Biology, Hebei University of Science and Technology, NO. 26 Yuxiang Street, Shijiazhang, Hebei, 050018, China.
| |
Collapse
|
3
|
Zhan Y, Hong Y, Wang Y. Sequential release of vancomycin and BMP-2 from chitosan/nano-hydroxyapatite thermosensitive hydrogel for the treatment of chronic osteomyelitis. J Orthop Surg Res 2024; 19:602. [PMID: 39342369 PMCID: PMC11437812 DOI: 10.1186/s13018-024-05097-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
In this study, we developed scaffolds materials with microspheres to form a double sustained release system.Chitosan/nano-hydroxyapatite (CS-HA) was used as a drug carrier to construct a sustained-release system for Bone morphogenetic protein-2(BMP-2) and Vancomycin (VAN). Furthermore, VAN and BMP-2 loaded microspheres (Ms) were prepared by the emulsion ultrasonic method.The resultant composites were characterized by Scanning electron microscope (SEM), compressive strength, porosity, and biodegradation. The characterization results showed uniform porous and rough surface, enhanced thermal stability, and highest compressive strength ((1.912 ± 0.012) Kpa, the surface of the two microspheres was slightly folded and showed a regular spherical shape.The loading rate of BMP-2 was (59.611 × 10-4 ± 0.023 × 10-4)% and the encapsulation rate was (6.022 ± 0.005)%. The release rate of vancomycin and BMP-2 was 57.194% and 12.968% respectively. Osteogenic differentiation of Bone marrow mesenchymal stem cells (BMSCs) was confirmed by alkaline phosphatase quantification. The deposition of late osteogenic markers (calcium phosphates) detected by Alizarin red, which indicated extracellular matrix mineralization. The results showed that BMP-2/VAN in CS-HA hydrogel successfully achieved the sequential release of the double drugs, which could benefit bone regeneration.
Collapse
Affiliation(s)
- Yulin Zhan
- Shanghai Jiao Tong University Affiliated Sixth Peoplès Hospital, Shanghai, China.
| | - Yingying Hong
- Shanghai Jiao Tong University Affiliated Sixth Peoplès Hospital, Shanghai, China
| | - Yaqian Wang
- Shanghai Jiao Tong University Affiliated Sixth Peoplès Hospital, Shanghai, China
| |
Collapse
|
4
|
Ciardulli MC, Lovecchio J, Parolini O, Giordano E, Maffulli N, Della Porta G. Fibrin Scaffolds Perfused with Transforming Growth Factor-β1 as an In Vitro Model to Study Healthy and Tendinopathic Human Tendon Stem/Progenitor Cells. Int J Mol Sci 2024; 25:9563. [PMID: 39273510 PMCID: PMC11395617 DOI: 10.3390/ijms25179563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
A limited understanding of tendon cell biology in healthy and pathological conditions has impeded the development of effective treatments, necessitating in vitro biomimetic models for studying tendon events. We established a dynamic culture using fibrin scaffolds, bioengineered with tendon stem/progenitor cells (hTSPCs) from healthy or diseased human biopsies and perfused with 20 ng/mL of human transforming growth factor-β1 for 21 days. Both cell types showed long-term viability and upregulated Scleraxis (SCX-A) and Tenomodulin (TNMD) gene expressions, indicating tenogenic activity. However, diseased hTSPCs underexpressed collagen type I and III (COL1A1 and COL3A1) genes and exhibited lower SCX-A and TNMD protein levels, but increased type I collagen production, with a type I/type III collagen ratio > 1.5 by day 14, matching healthy cells. Diseased hTSPCs also showed constant high levels of pro-inflammatory cytokines, such as IL-8 and IL-6. This biomimetic environment is a valuable tool for studying tenogenic and inflammatory events in healthy and diseased tendon cells and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Maria Camilla Ciardulli
- Translational Nanomedicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende 43, 84081 Baronissi, Italy
| | - Joseph Lovecchio
- School of Science and Engineering, Reykjavík University, 102 Reykjavík, Iceland
- Institute of Biomedical and Neural Engineering, Reykjavik University, 102 Reykjavík, Iceland
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00136 Rome, Italy
| | - Emanuele Giordano
- Laboratory of Cellular and Molecular Engineering "Silvio Cavalcanti", Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, 47522 Cesena, Italy
- Advanced Research Center on Electronic Systems (ARCES), University of Bologna, 40126 Bologna, Italy
| | - Nicola Maffulli
- Department of Trauma and Orthopaedics, Faculty of Medicine and Psychology, Sant' Andrea Hospital, Sapienza University, 00189 Rome, Italy
| | - Giovanna Della Porta
- Translational Nanomedicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende 43, 84081 Baronissi, Italy
- Interdepartment Centre BIONAM, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
5
|
Cui M, Sun Y, Zhang X, Yang P, Jiang W. Osteochondral tissue engineering in translational practice: histological assessments and scoring systems. Front Bioeng Biotechnol 2024; 12:1434323. [PMID: 39157444 PMCID: PMC11327087 DOI: 10.3389/fbioe.2024.1434323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
Osteochondral lesions are common pathological alterations in synovial joints. Different techniques have been designed to achieve osteochondral repair, and tissue-engineered osteochondral grafts have shown the most promise. Histological assessments and related scoring systems are crucial for evaluating the quality of regenerated tissue, and the interpretation and comparison of various repair techniques require the establishment of a reliable and widely accepted histological method. To date, there is still no consensus on the type of histological assessment and scoring system that should be used for osteochondral repair. In this review, we summarize common osteochondral staining methods, discuss the criteria regarding high-quality histological images, and assess the current histological scoring systems for osteochondral regeneration. Safranin O/Fast green is the most widely used staining method for the cartilage layer, whereas Gomori and Van Gieson staining detect new bone formation. We suggest including the graft-host interface and more sections together with the basic histological information for images. An ideal scoring system should analyze both the cartilage and bone regions, especially for the subchondral bone plate. Furthermore, histological assessments should be performed over a longer period of time to minimize discrepancies caused by defect size and animal species.
Collapse
Affiliation(s)
- Mengying Cui
- The Second Hospital of Jilin University, Jilin, China
| | - Yang Sun
- Orthopedic Medical Center, The Second Hospital of Jilin University, Jilin, China
| | | | - Pengju Yang
- Orthopedic Medical Center, The Second Hospital of Jilin University, Jilin, China
| | - Weibo Jiang
- Orthopedic Medical Center, The Second Hospital of Jilin University, Jilin, China
| |
Collapse
|
6
|
Quartey BC, Sapudom J, ElGindi M, Alatoom A, Teo J. Matrix-Bound Hyaluronan Molecular Weight as a Regulator of Dendritic Cell Immune Potency. Adv Healthc Mater 2024; 13:e2303125. [PMID: 38104242 DOI: 10.1002/adhm.202303125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Hyaluronic acid (HA) is a glycosaminoglycan in the extracellular matrix with immunoregulatory properties depending on its molecular weight (MW). However, the impact of matrix-bound HA on dendritic cells (DCs) remains unclear due to varying distribution of HA MW under different physiological conditions. To investigate DCs in defined biosystems, 3D collagen matrices modified with HA of specific MW with similar microstructure and HA levels are used. It is found that HA MW influences cytokine binding to matrix, suggesting modulation of cytokine availability by the different HA MWs. These studies on DC immune potency reveal that low MW HA (8-15 kDa) enhances immature DC differentiation and antigen uptake, while medium (MMW-HA; 500-750 kDa) and high MW HA (HMW-HA; 1250-1500 kDa) increase cytokine secretion in mature DCs. The effect on DC phenotype and cytokine secretion by different MWs of HA is independent of CD44. However, blocking the CD44 receptor reveals its potential role in regulating acute inflammation through increased secretion of CCL2, CXCL8, and IL-6. Additionally, MMW- and HMW-HA matrices reduce migratory capacity of DCs, dependent on CD44. Overall, these findings provide insights into MW-dependent effects of matrix-bound HA on DCs, opening avenues for the design of DC-modulating materials to enhance DC-based therapy.
Collapse
Affiliation(s)
- Brian Chesney Quartey
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
| | - Mei ElGindi
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
| | - Aseel Alatoom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
- Department of Mechanical Engineering, Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, 11201, USA
| | - Jeremy Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
- Department of Mechanical Engineering, Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, 11201, USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| |
Collapse
|
7
|
Gargano G, Asparago G, Spiezia F, Oliva F, Maffulli N. Small interfering RNAs in the management of human osteoporosis. Br Med Bull 2023; 148:58-69. [PMID: 37675799 PMCID: PMC10788844 DOI: 10.1093/bmb/ldad023] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Osteoporosis results in reduced bone mass and consequent bone fragility. Small interfering RNAs (siRNAs) can be used for therapeutic purposes, as molecular targets or as useful markers to test new therapies. SOURCES OF DATA A systematic search of different databases to May 2023 was performed to define the role of siRNAs in osteoporosis therapy. Fourteen suitable studies were identified. AREAS OF AGREEMENT SiRNAs may be useful in studying metabolic processes in osteoporosis and identify possible therapeutic targets for novel drug therapies. AREAS OF CONTROVERSY The metabolic processes of osteoporosis are regulated by many genes and cytokines that can be targeted by siRNAs. However, it is not easy to predict whether the in vitro responses of the studied siRNAs and drugs are applicable in vivo. GROWING POINTS Metabolic processes can be affected by the effect of gene dysregulation mediated by siRNAs on various growth factors. AREAS TIMELY FOR DEVELOPING RESEARCH Despite the predictability of pharmacological response of siRNA in vitro, similar responses cannot be expected in vivo.
Collapse
Affiliation(s)
- Giuseppe Gargano
- Department of Trauma and Orthopaedic Surgery, AOU San Giovanni di Dio e Ruggi D’Aragona, Via San Leonardo 1, 84131 Salerno, Italy
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
- Department of Trauma and Orthopaedic Surgery, AOR San Carlo, Via Potito Petrone, 85100 Potenza, Italy
| | - Giovanni Asparago
- Department of Trauma and Orthopaedic Surgery, AOU San Giovanni di Dio e Ruggi D’Aragona, Via San Leonardo 1, 84131 Salerno, Italy
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| | - Filippo Spiezia
- Department of Trauma and Orthopaedic Surgery, AOR San Carlo, Via Potito Petrone, 85100 Potenza, Italy
| | - Francesco Oliva
- Department of Trauma and Orthopaedic Surgery, AOU San Giovanni di Dio e Ruggi D’Aragona, Via San Leonardo 1, 84131 Salerno, Italy
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| | - Nicola Maffulli
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, 275 Bancroft Road, London E1 4DG, UK
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent, UK
- Department of Orthopaedic Surgery and Traumatology, University of Rome La Sapienza, Hospital Sant’Andrea, Rome, Italy
| |
Collapse
|
8
|
Sun L, Xu Y, Han Y, Cui J, Jing Z, Li D, Liu J, Xiao C, Li D, Cai B. Collagen-Based Hydrogels for Cartilage Regeneration. Orthop Surg 2023; 15:3026-3045. [PMID: 37942509 PMCID: PMC10694028 DOI: 10.1111/os.13884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 11/10/2023] Open
Abstract
Cartilage regeneration remains difficult due to a lack of blood vessels. Degradation of the extracellular matrix (ECM) causes cartilage defects, and the ECM provides the natural environment and nutrition for cartilage regeneration. Until now, collagen hydrogels are considered to be excellent material for cartilage regeneration due to the similar structure to ECM and good biocompatibility. However, collagen hydrogels also have several drawbacks, such as low mechanical strength, limited ability to induce stem cell differentiation, and rapid degradation. Thus, there is a demanding need to optimize collagen hydrogels for cartilage regeneration. In this review, we will first briefly introduce the structure of articular cartilage and cartilage defect classification and collagen, then provide an overview of the progress made in research on collagen hydrogels with chondrocytes or stem cells, comprehensively expound the research progress and clinical applications of collagen-based hydrogels that integrate inorganic or organic materials, and finally present challenges for further clinical translation.
Collapse
Affiliation(s)
- Lihui Sun
- Division of Bone and Joint Surgery, Center of OrthopaedicsFirst Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Yan Xu
- Division of Bone and Joint Surgery, Center of OrthopaedicsFirst Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Yu Han
- Division of Bone and Joint Surgery, Center of OrthopaedicsFirst Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Jing Cui
- Jilin Provincial Key Laboratory of Oral Biomedical Engineering, School and Hospital of StomatologyJilin UniversityChangchunChina
| | - Zheng Jing
- Division of Bone and Joint Surgery, Center of OrthopaedicsFirst Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Dongbo Li
- Division of Bone and Joint Surgery, Center of OrthopaedicsFirst Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Jianguo Liu
- Division of Bone and Joint Surgery, Center of OrthopaedicsFirst Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Dongsong Li
- Division of Bone and Joint Surgery, Center of OrthopaedicsFirst Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Bo Cai
- Department of Ultrasound DiagnosisThe 964 Hospital of Chinese People's Liberation ArmyChangchunPeople's Republic of China
| |
Collapse
|
9
|
Atwal A, Dale TP, Snow M, Forsyth NR, Davoodi P. Injectable hydrogels: An emerging therapeutic strategy for cartilage regeneration. Adv Colloid Interface Sci 2023; 321:103030. [PMID: 37907031 DOI: 10.1016/j.cis.2023.103030] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023]
Abstract
The impairment of articular cartilage due to traumatic incidents or osteoarthritis has posed significant challenges for healthcare practitioners, researchers, and individuals suffering from these conditions. Due to the absence of an approved treatment strategy for the complete restoration of cartilage defects to their native state, the tissue condition often deteriorates over time, leading to osteoarthritic (OA). However, recent advancements in the field of regenerative medicine have unveiled promising prospects through the utilization of injectable hydrogels. This versatile class of biomaterials, characterized by their ability to emulate the characteristics of native articular cartilage, offers the distinct advantage of minimally invasive administration directly to the site of damage. These hydrogels can also serve as ideal delivery vehicles for a diverse range of bioactive agents, including growth factors, anti-inflammatory drugs, steroids, and cells. The controlled release of such biologically active molecules from hydrogel scaffolds can accelerate cartilage healing, stimulate chondrogenesis, and modulate the inflammatory microenvironment to halt osteoarthritic progression. The present review aims to describe the methods used to design injectable hydrogels, expound upon their applications as delivery vehicles of biologically active molecules, and provide an update on recent advances in leveraging these delivery systems to foster articular cartilage regeneration.
Collapse
Affiliation(s)
- Arjan Atwal
- School of Pharmacy and Bioengineering, Hornbeam building, Keele University, Staffordshire ST5 5BG, United Kingdom; Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Staffordshire ST4 7QB, United Kingdom
| | - Tina P Dale
- School of Pharmacy and Bioengineering, Hornbeam building, Keele University, Staffordshire ST5 5BG, United Kingdom; Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Staffordshire ST4 7QB, United Kingdom
| | - Martyn Snow
- Department of Arthroscopy, Royal Orthopaedic Hospital NHS Foundation Trust, Birmingham B31 2AP, United Kingdom; The Robert Jones and Agnes Hunt Hospital, Oswestry, Shropshire SY10 7AG, United Kingdom
| | - Nicholas R Forsyth
- School of Pharmacy and Bioengineering, Hornbeam building, Keele University, Staffordshire ST5 5BG, United Kingdom; Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Staffordshire ST4 7QB, United Kingdom; Vice Principals' Office, University of Aberdeen, Kings College, Aberdeen AB24 3FX, United Kingdom
| | - Pooya Davoodi
- School of Pharmacy and Bioengineering, Hornbeam building, Keele University, Staffordshire ST5 5BG, United Kingdom; Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Staffordshire ST4 7QB, United Kingdom.
| |
Collapse
|
10
|
Boretti G, Giordano E, Ionita M, Vlasceanu GM, Sigurjónsson ÓE, Gargiulo P, Lovecchio J. Human Bone-Marrow-Derived Stem-Cell-Seeded 3D Chitosan-Gelatin-Genipin Scaffolds Show Enhanced Extracellular Matrix Mineralization When Cultured under a Perfusion Flow in Osteogenic Medium. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5898. [PMID: 37687590 PMCID: PMC10488422 DOI: 10.3390/ma16175898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023]
Abstract
Tissue-engineered bone tissue grafts are a promising alternative to the more conventional use of natural donor bone grafts. However, choosing an appropriate biomaterial/scaffold to sustain cell survival, proliferation, and differentiation in a 3D environment remains one of the most critical issues in this domain. Recently, chitosan/gelatin/genipin (CGG) hybrid scaffolds have been proven as a more suitable environment to induce osteogenic commitment in undifferentiated cells when doped with graphene oxide (GO). Some concern is, however, raised towards the use of graphene and graphene-related material in medical applications. The purpose of this work was thus to check if the osteogenic potential of CGG scaffolds without added GO could be increased by improving the medium diffusion in a 3D culture of differentiating cells. To this aim, the level of extracellular matrix (ECM) mineralization was evaluated in human bone-marrow-derived stem cell (hBMSC)-seeded 3D CGG scaffolds upon culture under a perfusion flow in a dedicated custom-made bioreactor system. One week after initiating dynamic culture, histological/histochemical evaluations of CGG scaffolds were carried out to analyze the early osteogenic commitment of the culture. The analyses show the enhanced ECM mineralization of the 3D perfused culture compared to the static counterpart. The results of this investigation reveal a new perspective on more efficient clinical applications of CGG scaffolds without added GO.
Collapse
Affiliation(s)
- Gabriele Boretti
- School of Science and Engineering, Reykjavík University, 102 Reykjavík, Iceland; (G.B.); (Ó.E.S.); (P.G.); (J.L.)
| | - Emanuele Giordano
- Laboratory of Cellular and Molecular Engineering “Silvio Cavalcanti”, Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, 47522 Cesena, FC, Italy
- Advanced Research Center on Electronic Systems (ARCES), University of Bologna, 40126 Bologna, BO, Italy
| | - Mariana Ionita
- Faculty of Medical Engineering, University Politehnica of Bucharest, 060042 Bucharest, Romania; (M.I.); (G.M.V.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 060042 Bucharest, Romania
- eBio-Hub Research Centre, University Politehnica of Bucharest-Campus, 060042 Bucharest, Romania
| | - George Mihail Vlasceanu
- Faculty of Medical Engineering, University Politehnica of Bucharest, 060042 Bucharest, Romania; (M.I.); (G.M.V.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Ólafur Eysteinn Sigurjónsson
- School of Science and Engineering, Reykjavík University, 102 Reykjavík, Iceland; (G.B.); (Ó.E.S.); (P.G.); (J.L.)
- The Blood Bank, Landspitali, The National University Hospital of Iceland, 105 Reykjavík, Iceland
| | - Paolo Gargiulo
- School of Science and Engineering, Reykjavík University, 102 Reykjavík, Iceland; (G.B.); (Ó.E.S.); (P.G.); (J.L.)
- Institute of Biomedical and Neural Engineering, Reykjavik University, 102 Reykjavík, Iceland
| | - Joseph Lovecchio
- School of Science and Engineering, Reykjavík University, 102 Reykjavík, Iceland; (G.B.); (Ó.E.S.); (P.G.); (J.L.)
- Institute of Biomedical and Neural Engineering, Reykjavik University, 102 Reykjavík, Iceland
| |
Collapse
|
11
|
Manzo P, Giudice V, Napolitano F, De Novellis D, Serio B, Moscato P, Montuori N, Selleri C. Macrophages and Urokinase Plasminogen Activator Receptor System in Multiple Myeloma: Case Series and Literature Review. Int J Mol Sci 2023; 24:10519. [PMID: 37445697 DOI: 10.3390/ijms241310519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The microenvironment plays an essential role in multiple myeloma (MM) development, progression, cell proliferation, survival, immunological escape, and drug resistance. Mesenchymal stromal cells and macrophages release tolerogenic cytokines and favor anti-apoptotic signaling pathway activation, while the urokinase plasminogen activator receptor (uPAR) system contributes to migration through an extracellular matrix. Here, we first summarized the role of macrophages and the uPAR system in MM pathogenesis, and then we reported the potential therapeutic effects of uPAR inhibitors in a case series of primary MM-derived adherent cells. Our preliminary results showed that after uPAR inhibitor treatments, interleukein-6 (mean ± SD, 8734.95 ± 4169.2 pg/mL vs. 359.26 ± 393.8 pg/mL, pre- vs. post-treatment; p = 0.0012) and DKK-1 levels (mean ± SD, 7005.41 ± 6393.4 pg/mL vs. 61.74 ± 55.2 pg/mL, pre- vs. post-treatment; p = 0.0043) in culture medium were almost completely abolished, supporting further investigation of uPAR blockade as a therapeutic strategy for MM treatment. Therefore, uPAR inhibitors could exert both anti-inflammatory and pro-immunosurveillance activity. However, our preliminary results need further validation in additional in vitro and in vivo studies.
Collapse
Affiliation(s)
- Paola Manzo
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", 84131 Salerno, Italy
| | - Valentina Giudice
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", 84131 Salerno, Italy
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy
| | - Filomena Napolitano
- Department of Translational Medical Sciences, University of Naples "Federico II", 80138 Naples, Italy
| | - Danilo De Novellis
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", 84131 Salerno, Italy
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy
| | - Bianca Serio
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", 84131 Salerno, Italy
| | - Paolo Moscato
- Rheumatology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", 84131 Salerno, Italy
| | - Nunzia Montuori
- Department of Translational Medical Sciences, University of Naples "Federico II", 80138 Naples, Italy
| | - Carmine Selleri
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", 84131 Salerno, Italy
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy
| |
Collapse
|
12
|
Scala P, Manzo P, Longo R, Giudice V, Ciardulli MC, Serio B, Selleri C, Guadagno L, Rehak L, Maffulli N, Della Porta G. Contribution of peripheral blood mononuclear cells isolated by advanced filtration system to myogenesis of human bone marrow mesenchymal stem cells co-cultured with myoblasts. Heliyon 2023; 9:e17141. [PMID: 37484299 PMCID: PMC10361327 DOI: 10.1016/j.heliyon.2023.e17141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
Background Contribution of peripheral blood mononuclear cells (PBMCs) in myogenesis is still under debate, even though blood filtration systems are commonly used in clinical practice for successfully management of critic limb ischemia. Objectives A commercial blood filter used for autologous human PBMC transplantation procedures is characterized and used to collect PBMCs, that are then added to well-established 2D in vitro myogenic models assembled with a co-culture of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and skeletal myoblasts (hSkMs) whit the aim of investigating their potential contribution to stem cell myogenic commitment. Methods A commercial blood filter was physically and chemically studied to understand its morphological characteristics and composition. PBMCs were concentrated using this system, further isolated by Ficoll-Paque density gradient centrifugation, and then added in an upper transwell chamber to a 2D co-culture of hBM-MSCs and hSkMs. Myogenic commitment was investigated by RT-PCR, immunofluorescence, and flow cytometry immunophenotyping. Cytokine levels were monitored by ELISA assay in culture media. Results The blood filtration system was disassembled and appeared to be formed by twelve membranes of poly-butylene terephthalate fibers (diameters, 0.9-4.0 μm) with pore size distribution of 1-20 μm. Filter functional characterization was achieved by characterizing collected cells by flow cytometry. Subsequently, collected PBMCs fraction was added to an in-vitro model of hBM-MSC myogenic commitment. In the presence of PBMCs, stem cells significantly upregulated myogenic genes, such as Desmin and MYH2, as confirmed by qRT-PCR and expressed related proteins by immunofluorescence (IF) assay, while downregulated pro-inflammatory cytokines (IL12A at day 14) along the 21 days of culture. Novelty Our work highlights chemical-physical properties of commercial blood filter and suggests that blood filtrated fraction of PBMC might modulate cytokine expression in response to muscle injury and promote myogenic events, supporting their clinical use in autologous transplantation.
Collapse
Affiliation(s)
- Pasqualina Scala
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 43, 84081 Baronissi SA, Italy
| | - Paola Manzo
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D'Aragona”, Largo Città d'Ippocrate, 1, 84131 Salerno SA, Italy
| | - Raffaele Longo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano SA, Italy
| | - Valentina Giudice
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 43, 84081 Baronissi SA, Italy
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D'Aragona”, Largo Città d'Ippocrate, 1, 84131 Salerno SA, Italy
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 43, 84081 Baronissi SA, Italy
| | - Bianca Serio
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D'Aragona”, Largo Città d'Ippocrate, 1, 84131 Salerno SA, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 43, 84081 Baronissi SA, Italy
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D'Aragona”, Largo Città d'Ippocrate, 1, 84131 Salerno SA, Italy
| | - Liberata Guadagno
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano SA, Italy
| | - Laura Rehak
- Athena Biomedical Innovations, Viale Europa 139, Florence, 50126, Italy
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 43, 84081 Baronissi SA, Italy
- Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 275 Bancroft Road, London E1 4DG, UK
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 43, 84081 Baronissi SA, Italy
- Interdepartment Centre BIONAM, Università di Salerno, via Giovanni Paolo II, 132, 84084 Fisciano SA, Italy
| |
Collapse
|
13
|
Scala P, Manzo P, Lamparelli EP, Lovecchio J, Ciardulli MC, Giudice V, Selleri C, Giordano E, Rehak L, Maffulli N, Della Porta G. Peripheral blood mononuclear cells contribute to myogenesis in a 3D bioengineered system of bone marrow mesenchymal stem cells and myoblasts. Front Bioeng Biotechnol 2023; 10:1075715. [PMID: 36704300 PMCID: PMC9871311 DOI: 10.3389/fbioe.2022.1075715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
In this work, a 3D environment obtained using fibrin scaffold and two cell populations, such as bone marrow-derived mesenchymal stem cells (BM-MSCs), and primary skeletal muscle cells (SkMs), was assembled. Peripheral blood mononuclear cells (PBMCs) fraction obtained after blood filtration with HemaTrate® filter was then added to the 3D culture system to explore their influence on myogenesis. The best cell ratio into a 3D fibrin hydrogel was 1:1 (BM-MSCs plus SkMs:PBMCs) when cultured in a perfusion bioreactor; indeed, excellent viability and myogenic event induction were observed. Myogenic genes were significantly overexpressed when cultured with PBMCs, such as MyoD1 of 118-fold at day 14 and Desmin 6-fold at day 21. Desmin and Myosin Heavy Chain were also detected at protein level by immunostaining along the culture. Moreover, the presence of PBMCs in 3D culture induced a significant downregulation of pro-inflammatory cytokine gene expression, such as IL6. This smart biomimetic environment can be an excellent tool for investigation of cellular crosstalk and PBMC influence on myogenic processes.
Collapse
Affiliation(s)
- Pasqualina Scala
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| | - Paola Manzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy,Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, Salerno, Italy
| | | | - Joseph Lovecchio
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, Bologna, Italy
| | | | - Valentina Giudice
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy,Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, Salerno, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy,Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, Salerno, Italy
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, Bologna, Italy
| | - Laura Rehak
- Athena Biomedical innovations, Florence, Italy
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy,Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, England
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy,Interdepartment Centre BIONAM, University of Salerno, Fisciano, Italy,*Correspondence: Giovanna Della Porta,
| |
Collapse
|
14
|
Citro V, Clerici M, Boccaccini AR, Della Porta G, Maffulli N, Forsyth NR. Tendon tissue engineering: An overview of biologics to promote tendon healing and repair. J Tissue Eng 2023; 14:20417314231196275. [PMID: 37719308 PMCID: PMC10501083 DOI: 10.1177/20417314231196275] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/06/2023] [Indexed: 09/19/2023] Open
Abstract
Tendons are dense connective tissues with a hierarchical polarized structure that respond to and adapt to the transmission of muscle contraction forces to the skeleton, enabling motion and maintaining posture. Tendon injuries, also known as tendinopathies, are becoming more common as populations age and participation in sports/leisure activities increases. The tendon has a poor ability to self-heal and regenerate given its intrinsic, constrained vascular supply and exposure to frequent, severe loading. There is a lack of understanding of the underlying pathophysiology, and it is not surprising that disorder-targeted medicines have only been partially effective at best. Recent tissue engineering approaches have emerged as a potential tool to drive tendon regeneration and healing. In this review, we investigated the physiochemical factors involved in tendon ontogeny and discussed their potential application in vitro to reproduce functional and self-renewing tendon tissue. We sought to understand whether stem cells are capable of forming tendons, how they can be directed towards the tenogenic lineage, and how their growth is regulated and monitored during the entire differentiation path. Finally, we showed recent developments in tendon tissue engineering, specifically the use of mesenchymal stem cells (MSCs), which can differentiate into tendon cells, as well as the potential role of extracellular vesicles (EVs) in tendon regeneration and their potential for use in accelerating the healing response after injury.
Collapse
Affiliation(s)
- Vera Citro
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Materials Science and Engineering, Institute of Biomaterials University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
| | - Marta Clerici
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
- Interdepartmental Centre BIONAM, University of Salerno, via Giovanni Paolo I, Fisciano, Salerno, Italy
| | - Nicola Maffulli
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
- Department of Trauma and Orthopaedic Surgery, University Hospital ‘San Giovanni di Dio e Ruggi D’Aragona’, Salerno, Italy
| | - Nicholas R. Forsyth
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Vice Principals’ Office, University of Aberdeen, Kings College, Aberdeen, UK
| |
Collapse
|
15
|
Ribeiro VP, Oliveira JM, Reis RL. Special Issue: Tissue Engineered Biomaterials and Drug Delivery Systems. Pharmaceutics 2022; 14:pharmaceutics14122827. [PMID: 36559320 PMCID: PMC9781086 DOI: 10.3390/pharmaceutics14122827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Current advances in biomaterials processing and engineering for drug delivery have allowed interesting progressed in biomedical field [...].
Collapse
Affiliation(s)
- Viviana P. Ribeiro
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (V.P.R.); (J.M.O.); (R.L.R.)
| | - Joaquim M. Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (V.P.R.); (J.M.O.); (R.L.R.)
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (V.P.R.); (J.M.O.); (R.L.R.)
| |
Collapse
|
16
|
Manzo P, Scala P, Giudice V, Gorrese M, Bertolini A, Morini D, D'Alto F, Pepe R, Pedicini A, Izzo B, Verdesca F, Langella M, Serio B, Della Porta G, Selleri C. c-Kit M541L variant is related to ineffective hemopoiesis predisposing to clonal evolution in 3D in vitro biomimetic co-culture model of bone marrow niche. Heliyon 2022; 8:e11998. [DOI: 10.1016/j.heliyon.2022.e11998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/21/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
|
17
|
Scala P, Lovecchio J, Lamparelli EP, Vitolo R, Giudice V, Giordano E, Selleri C, Rehak L, Maffulli N, Della Porta G. Myogenic commitment of human stem cells by myoblasts Co-culture: a static vs. a dynamic approach. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:49-58. [PMID: 35188030 DOI: 10.1080/21691401.2022.2039684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An in-vitro model of human bone marrow mesenchymal stem cells (hBM-MSCs) myogenic commitment by synergic effect of a differentiation media coupled with human primary skeletal myoblasts (hSkMs) co-culture was developed adopting both conventional static co-seeding and perfused culture systems. Static co-seeding provided a notable outcome in terms of gene expression with a significant increase of Desmin (141-fold) and Myosin heavy chain II (MYH2, 32-fold) at day 21, clearly detected also by semi-quantitative immunofluorescence. Under perfusion conditions, myogenic induction ability of hSkMs on hBM-MSCs was exerted by paracrine effect with an excellent gene overexpression and immunofluorescence detection of MYH2 protein; furthermore, due to the dynamic cell culture in separate wells, western blot data were acquired confirming a successful cell commitment at day 14. A significant increase of anti-inflammatory cytokine gene expression, including IL-10 and IL-4 (15-fold and 11-fold, respectively) at day 14, with respect to the pro-inflammatory cytokines IL-12A (7-fold at day 21) and IL-1β (1.4-fold at day 7) was also detected during dynamic culture, confirming the immunomodulatory activity of hBM-MSCs along with commitment events. The present study opens interesting perspectives on the use of dynamic culture based on perfusion as a versatile tool to study myogenic events and paracrine cross-talk compared to the simple co-seeding static culture.
Collapse
Affiliation(s)
- Pasqualina Scala
- Translational Medicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Salerno (SA), Italy
| | - J Lovecchio
- Mol Cel Eng. Lab "S. Cavalcanti", Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Via dell'Universitá 50, 47522 Cesena, Forlí-Cesena (FC), Italy.,Health Sciences and Technologies - Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano dell'Emilia, Bologna (BO), Italy
| | - E P Lamparelli
- Translational Medicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Salerno (SA), Italy
| | - R Vitolo
- Translational Medicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Salerno (SA), Italy
| | - V Giudice
- Translational Medicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Salerno (SA), Italy
| | - E Giordano
- Mol Cel Eng. Lab "S. Cavalcanti", Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Via dell'Universitá 50, 47522 Cesena, Forlí-Cesena (FC), Italy.,Health Sciences and Technologies - Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano dell'Emilia, Bologna (BO), Italy.,Advanced Research Center on Electronic Systems (ARCES), University of Bologna, Via Vincenzo Toffano 2/2, 40125 Bologna (BO), Italy
| | - C Selleri
- Translational Medicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Salerno (SA), Italy
| | - L Rehak
- Athena Biomedical innovations, Viale Europa 139, Florence (FI), 50126, Italy
| | - N Maffulli
- Translational Medicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Salerno (SA), Italy
| | - G Della Porta
- Translational Medicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Salerno (SA), Italy.,Interdepartment Centre BIONAM, Università di Salerno, via Giovanni Paolo I, 84084 Fisciano, Salerno (SA), Italy
| |
Collapse
|
18
|
Lamparelli EP, Ciardulli MC, Giudice V, Scala P, Vitolo R, Dale TP, Selleri C, Forsyth NR, Maffulli N, Della Porta G. 3D in-vitro cultures of human bone marrow and Wharton’s jelly derived mesenchymal stromal cells show high chondrogenic potential. Front Bioeng Biotechnol 2022; 10:986310. [PMID: 36225603 PMCID: PMC9549977 DOI: 10.3389/fbioe.2022.986310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
In this study, chondrogenic potentials of 3D high-density cultures of Bone Marrow (BM) and Wharton’s Jelly (WJ)-derived mesenchymal stromal cells (MSCs) was investigated by chondrogenesis- and cytokine-related gene expression over a 16-day culture period supplemented with human transforming growth factor (hTGF)-β1 at 10 ng/ml. In BM-MSC 3D models, a marked upregulation of chondrogenesis-related genes, such as SOX9, COL2A1, and ACAN (all p < 0.05) and formation of spherical pellets with structured type II collagen fibers were observed. Similarly, WJ-based high-density culture appeared higher in size and more regular in shape, with a significant overexpression of COL2A1 and ACAN (all p < 0.05) at day 16. Moreover, a similar upregulation trend was documented for IL-6 and IL-10 expression in both BM and WJ 3D systems. In conclusion, MSC-based high-density cultures can be considered a promising in vitro model of cartilage regeneration and tissue engineering. Moreover, our data support the use of WJ-MSCs as a valid alternative for chondrogenic commitment of stem cells in regenerative medicine.
Collapse
Affiliation(s)
- Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
| | | | - Valentina Giudice
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, Salerno, SA, Italy
| | - Pasqualina Scala
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
| | - Rosa Vitolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
| | - Tina Patricia Dale
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, United Kingdom
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, Salerno, SA, Italy
| | - Nicholas Robert Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, United Kingdom
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
- Centre for Sport and Exercise Medicine, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
- Research Centre for Biomaterials BIONAM, Università di Salerno, Fisciano, SA, Italy
- *Correspondence: Giovanna Della Porta,
| |
Collapse
|
19
|
Lamparelli EP, Casagranda V, Pressato D, Maffulli N, Della Porta G, Bellini D. Synthesis and Characterization of a Novel Composite Scaffold Based on Hyaluronic Acid and Equine Type I Collagen. Pharmaceutics 2022; 14:pharmaceutics14091752. [PMID: 36145500 PMCID: PMC9505875 DOI: 10.3390/pharmaceutics14091752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
Herein, the synthesis and characterization of a novel composite biopolymer scaffold—based on equine type I collagen and hyaluronic acid—were described by using a reaction in heterogeneous phase. The resulting biomimetic structure was characterized in terms of chemical, physical, and cytotoxicity properties using human-derived lymphocytes and chondrocytes. Firstly, FT-IR data proved a successful reticulation of hyaluronic acid within collagen structure with the appearance of a new peak at a wavenumber of 1735 cm−1 associated with ester carbonyl stretch. TGA and DSC characterizations confirmed different thermal stability of cross-linked scaffolds while morphological analysis by scanning electron microscopy (SEM) suggested the presence of a highly porous structure with open and interconnected void areas suitable for hosting cells. The enzymatic degradation profile confirmed scaffold higher endurance with collagenase as compared with collagen alone. However, it was particularly interesting that the mechanical behavior of the composite scaffold showed an excellent shape memory, especially when it was hydrated, with an improved Young’s modulus of 9.96 ± 0.53 kPa (p ≤ 0.001) as well as a maximum load at 97.36 ± 3.58 kPa compared to the simple collagen scaffold that had a modulus of 1.57 ± 0.08 kPa and a maximum load of 36.91 ± 0.24 kPa. Finally, in vitro cytotoxicity confirmed good product safety with human lymphocytes (viability of 81.92 ± 1.9 and 76.37 ± 1.2 after 24 and 48 h, respectively), whereas excellent gene expression profiles of chondrocytes with a significant upregulation of SOX9 and ACAN after 10 days of culture indicated our scaffold’s ability of preserving chondrogenic phenotype. The described material could be considered a potential tool to be implanted in patients with cartilage defects.
Collapse
Affiliation(s)
- Erwin Pavel Lamparelli
- Laboratory of Translational Medicine, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | | | | | - Nicola Maffulli
- Laboratory of Translational Medicine, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Centre for Sport and Exercise Medicine, Barts and The London School of Medicine, Queen Mary University of London, London E1 4NL, UK
| | - Giovanna Della Porta
- Laboratory of Translational Medicine, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Research Centre for Biomaterials BIONAM, Università di Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
- Correspondence: ; Tel./Fax: +39-089965234
| | - Davide Bellini
- Novagenit Srl, Viale Trento 115/117, 38017 Mezzolombardo, Italy
| |
Collapse
|
20
|
Wang J, Hu J, Yuan X, Li Y, Song L, Xu F. Recombinant collagen hydrogels induced by disulfide bonds. J Biomed Mater Res A 2022; 110:1774-1785. [PMID: 35836355 PMCID: PMC9544300 DOI: 10.1002/jbm.a.37427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 11/17/2022]
Abstract
With the characteristics of low toxicity and biodegradability, recombinant collagen‐like proteins have been chemically and genetically engineered as a scaffold for cell adhesion and proliferation. However, most of the existing hydrogels crosslinked with peptides or polymers are not pure collagen, limiting their utility as biomaterials. A major roadblock in the development of biomaterials is the need for high purity collagen that can self‐assemble into hydrogels under mild conditions. In this work, we designed a recombinant protein, S‐VCL‐S, by introducing cysteine residues into the Streptococcus pyogenes collagen‐like protein at both the N‐and C‐termini of the collagen with a trimerization domain (V) and a collagen domain (CL). The S‐VCL‐S protein was properly folded in complete triple helices and formed self‐supporting hydrogels without polymer modifications. In addition, the introduction of cysteines was found to play a key role in the properties of the hydrogels, including their microstructure, pore size, mechanical properties, and drug release capability. Moreover, two/three‐dimensional cell‐culture assays showed that the hydrogels are noncytotoxic and can promote long‐term cell viability. This study explored a crosslinking collagen hydrogel based on disulfide bonds and provides a design strategy for collagen‐based biomaterials.
Collapse
Affiliation(s)
- Jie Wang
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of BiotechnologyJiangnan UniversityWuxiChina
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control TechnologyJiangsu Institute of Parasitic DiseasesWuxiChina
| | - Jinyuan Hu
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of BiotechnologyJiangnan UniversityWuxiChina
| | - Xuan Yuan
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control TechnologyJiangsu Institute of Parasitic DiseasesWuxiChina
| | - Yingnan Li
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of BiotechnologyJiangnan UniversityWuxiChina
| | - Lijun Song
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control TechnologyJiangsu Institute of Parasitic DiseasesWuxiChina
| | - Fei Xu
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of BiotechnologyJiangnan UniversityWuxiChina
| |
Collapse
|
21
|
Guadagno L, Raimondo M, Vertuccio L, Lamparelli EP, Ciardulli MC, Longo P, Mariconda A, Della Porta G, Longo R. Electrospun Membranes Designed for Burst Release of New Gold-Complexes Inducing Apoptosis of Melanoma Cells. Int J Mol Sci 2022; 23:ijms23137147. [PMID: 35806152 PMCID: PMC9267035 DOI: 10.3390/ijms23137147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
Two non-commercial metallic Au-based complexes were tested against one of the most aggressive malignant melanomas of the skin (MeWo cells), through cell viability and time-lapse live-cell imaging system assays. The tests with the complexes were carried out both in the form of free metallic complexes, directly in contact with the MeWo cell line culture, and embedded in fibers of Polycaprolactone (PCL) membranes produced by the electrospinning technique. Membranes functionalized with complexes were prepared to evaluate the efficiency of the membranes against the melanoma cells and therefore their feasibility in the application as an antitumoral patch for topical use. Both series of tests highlighted a very effective antitumoral activity, manifesting a very relevant cell viability inhibition after both 24 h and 48 h. In the case of the AuM1 complex at the concentration of 20 mM, melanoma cells completely died in this short period of time. A mortality of around 70% was detected from the tests performed using the membranes functionalized with AuM1 complex at a very low concentration (3 wt.%), even after 24 h of the contact period. The synthesized complexes also manifest high selectivity with respect to the MeWo cells. The peculiar structural and morphological organization of the nanofibers constituting the membranes allows for a very effective antitumoral activity in the first 3 h of treatment. Experimental points of the release profiles were perfectly fitted with theoretical curves, which easily allow interpretation of the kinetic phenomena occurring in the release of the synthesized complexes in the chosen medium.
Collapse
Affiliation(s)
- Liberata Guadagno
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy;
- Correspondence: (L.G.); (R.L.)
| | - Marialuigia Raimondo
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy;
| | - Luigi Vertuccio
- Department of Engineering, University of Campania “Luigi Vanvitelli”, 813031 Aversa, Italy;
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.C.C.); (G.D.P.)
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.C.C.); (G.D.P.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Italy;
| | | | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.C.C.); (G.D.P.)
- Interdepartment Centre BIONAM, Università di Salerno, 84084 Fisciano, Italy
| | - Raffaele Longo
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy;
- Correspondence: (L.G.); (R.L.)
| |
Collapse
|
22
|
Ghandforoushan P, Hanaee J, Aghazadeh Z, Samiei M, Navali AM, Khatibi A, Davaran S. Enhancing the function of PLGA-collagen scaffold by incorporating TGF-β1-loaded PLGA-PEG-PLGA nanoparticles for cartilage tissue engineering using human dental pulp stem cells. Drug Deliv Transl Res 2022; 12:2960-2978. [PMID: 35650332 DOI: 10.1007/s13346-022-01161-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 02/07/2023]
Abstract
Since cartilage has a limited capacity for self-regeneration, treating cartilage degenerative disorders is a long-standing difficulty in orthopedic medicine. Researchers have scrutinized cartilage tissue regeneration to handle the deficiency of cartilage restoration capacity. This investigation proposed to compose an innovative nanocomposite biomaterial that enhances growth factor delivery to the injured cartilage site. Here, we describe the design and development of the biocompatible poly(lactide-co-glycolide) acid-collagen/poly(lactide-co-glycolide)-poly(ethylene glycol)-poly(lactide-co-glycolide) (PLGA-collagen/PLGA-PEG-PLGA) nanocomposite hydrogel containing transforming growth factor-β1 (TGF-β1). PLGA-PEG-PLGA nanoparticles were employed as a delivery system embedding TGF-β1 as an articular cartilage repair therapeutic agent. This study evaluates various physicochemical aspects of fabricated scaffolds by 1HNMR, FT-IR, SEM, BET, and DLS methods. The physicochemical features of the developed scaffolds, including porosity, density, degradation, swelling ratio, mechanical properties, morphologies, BET, ELISA, and cytotoxicity were assessed. The cell viability was investigated with the MTT test. Chondrogenic differentiation was assessed via Alcian blue staining and RT-PCR. In real-time PCR testing, the expression of Sox-9, collagen type II, and aggrecan genes was monitored. According to the results, human dental pulp stem cells (hDPSCs) exhibited high adhesion, proliferation, and differentiation on PLGA-collagen/PLGA-PEG-PLGA-TGFβ1 nanocomposite scaffolds compared to the control groups. SEM images displayed suitable cell adhesion and distribution of hDPSCs throughout the scaffolds. RT-PCR assay data displayed that TGF-β1 loaded PLGA-PEG-PLGA nanoparticles puts forward chondroblast differentiation in hDPSCs through the expression of chondrogenic genes. The findings revealed that PLGA-collagen/PLGA-PEG-PLGA-TGF-β1 nanocomposite hydrogel can be utilized as a supportive platform to support hDPSCs differentiation by implementing specific physio-chemical features.
Collapse
Affiliation(s)
- Parisa Ghandforoushan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Hanaee
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medicinal Science, Tabriz, Iran
| | - Zahra Aghazadeh
- Stem Cell Research Center, Oral Medicine Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Samiei
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ali Khatibi
- Department of Biotechnology, Alzahra University, Tehran, Iran
| | - Soodabeh Davaran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. .,Applied Drug Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Yang Z, Yi P, Liu Z, Zhang W, Mei L, Feng C, Tu C, Li Z. Stem Cell-Laden Hydrogel-Based 3D Bioprinting for Bone and Cartilage Tissue Engineering. Front Bioeng Biotechnol 2022; 10:865770. [PMID: 35656197 PMCID: PMC9152119 DOI: 10.3389/fbioe.2022.865770] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/18/2022] [Indexed: 12/30/2022] Open
Abstract
Tremendous advances in tissue engineering and regenerative medicine have revealed the potential of fabricating biomaterials to solve the dilemma of bone and articular defects by promoting osteochondral and cartilage regeneration. Three-dimensional (3D) bioprinting is an innovative fabrication technology to precisely distribute the cell-laden bioink for the construction of artificial tissues, demonstrating great prospect in bone and joint construction areas. With well controllable printability, biocompatibility, biodegradability, and mechanical properties, hydrogels have been emerging as an attractive 3D bioprinting material, which provides a favorable biomimetic microenvironment for cell adhesion, orientation, migration, proliferation, and differentiation. Stem cell-based therapy has been known as a promising approach in regenerative medicine; however, limitations arise from the uncontrollable proliferation, migration, and differentiation of the stem cells and fortunately could be improved after stem cells were encapsulated in the hydrogel. In this review, our focus was centered on the characterization and application of stem cell-laden hydrogel-based 3D bioprinting for bone and cartilage tissue engineering. We not only highlighted the effect of various kinds of hydrogels, stem cells, inorganic particles, and growth factors on chondrogenesis and osteogenesis but also outlined the relationship between biophysical properties like biocompatibility, biodegradability, osteoinductivity, and the regeneration of bone and cartilage. This study was invented to discuss the challenge we have been encountering, the recent progress we have achieved, and the future perspective we have proposed for in this field.
Collapse
Affiliation(s)
- Zhimin Yang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ping Yi
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Zhongyue Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenchao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Mei
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chengyao Feng
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Cortesi M, Giordano E. Non-destructive monitoring of 3D cell cultures: new technologies and applications. PeerJ 2022; 10:e13338. [PMID: 35582620 PMCID: PMC9107788 DOI: 10.7717/peerj.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/05/2022] [Indexed: 01/13/2023] Open
Abstract
3D cell cultures are becoming the new standard for cell-based in vitro research, due to their higher transferrability toward in vivo biology. The lack of established techniques for the non-destructive quantification of relevant variables, however, constitutes a major barrier to the adoption of these technologies, as it increases the resources needed for the experimentation and reduces its accuracy. In this review, we aim at addressing this limitation by providing an overview of different non-destructive approaches for the evaluation of biological features commonly quantified in a number of studies and applications. In this regard, we will cover cell viability, gene expression, population distribution, cell morphology and interactions between the cells and the environment. This analysis is expected to promote the use of the showcased technologies, together with the further development of these and other monitoring methods for 3D cell cultures. Overall, an extensive technology shift is required, in order for monolayer cultures to be superseded, but the potential benefit derived from an increased accuracy of in vitro studies, justifies the effort and the investment.
Collapse
Affiliation(s)
- Marilisa Cortesi
- Department of Electrical, Electronic and Information Engineering ”G.Marconi”, University of Bologna, Bologna, Italy
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Kensington, Australia
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering ”G.Marconi”, University of Bologna, Bologna, Italy
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), University of Bologna, Ozzano Emilia, Italy
- Advanced Research Center on Electronic Systems (ARCES), University of Bologna, Bologna, Italy
| |
Collapse
|
25
|
Fabrication and evaluation of customized implantable drug delivery system for orthopedic therapy based on 3D printing technologies. Int J Pharm 2022; 618:121679. [PMID: 35314275 DOI: 10.1016/j.ijpharm.2022.121679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/18/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
A customized implantable drug delivery system with the dual functions of playing a supporting role and providing continuous bacteriostasis is of great importance during the treatment of bone defect diseases. The main objective of this study was to explore the potential of using three-dimensional (3D) printing technologies to fabricate customized implants. Ciprofloxacin hydrochloride (Cipro) was chosen as the model drug, and two printing technologies, semisolid extrusion (SSE) and fused deposition modeling (FDM) were introduced. Six kinds of implants with customized irregular shapes were printed via FDM technology. Two kinds of implants with customized dosages were constructed via SSE technology. In addition, three kinds of implants with customized internal structures were produced via FDM and SSE technologies. The data for morphology, dimensions and mechanical properties demonstrated satisfactory printability and good printing accuracy when applying SSE and FDM technologies to produce the customized implants. The dissolution curves indicated that the desired customized drug release could be achieved by designing the specific internal structures. The biocompatibility examination showed that the printed implants possessed outstanding biocompatibility. In conclusion, all results suggested that 3D printing technologies provide a feasible method and novel strategy to fabricate customized implantable drug delivery systems.
Collapse
|
26
|
Tabatabaee S, Baheiraei N, Salehnia M. Fabrication and characterization of PHEMA–gelatin scaffold enriched with graphene oxide for bone tissue engineering. J Orthop Surg Res 2022; 17:216. [PMID: 35397609 PMCID: PMC8994334 DOI: 10.1186/s13018-022-03122-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Abstract
Background
Growing investigations demonstrate that graphene oxide (GO) has an undeniable impact on repairing damaged bone tissue. Moreover, it has been stated in the literatures that poly(2-hydroxyethyl methacrylate) (PHEMA) and gelatin could provide a biocompatible structure.
Methods
In this research, we fabricated a scaffold using freeze-drying method comprised of PHEMA and gelatin, combined with GO. The validation of the successful fabrication of the scaffolds was performed utilizing Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction assay (XRD). The microstructure of the scaffolds was observed using scanning electron microscopy (SEM). The structural properties of the scaffolds including mechanical strength, hydrophilicity, electrical conductivity, and degradation rate were also evaluated. Human bone marrow‐derived mesenchymal stem cells (hBM-MSCs) were used to evaluate the cytotoxicity of the prepared scaffolds. The osteogenic potential of the GO-containing scaffolds was studied by measuring the alkaline phosphatase (ALP) activity after 7, 14, and 21 days cell culturing.
Results
SEM assay showed a porous interconnected scaffold with approximate pore size of 50–300 μm, appropriate for bone regeneration. The increase in GO concentration from 0.25 to 0.75% w/v exhibited a significant improvement in scaffolds compressive modulus from 9.03 ± 0.36 to 42.82 ± 1.63 MPa. Conventional four-probe analysis confirmed the electrical conductivity of the scaffolds in the semiconductor range. The degradation rate of the samples appeared to be in compliance with bone healing process. The scaffolds exhibited no cytotoxicity using MTT assay against hBM-MSCs. ALP analysis indicated that the PHEMA–Gel–GO scaffolds could efficiently cause the differentiation of hBM-MSCs into osteoblasts after 21 days, even without the addition of the osteogenic differentiation medium.
Conclusion
Based on the results of this research, it can be stated that the PHEMA–Gel–GO composition is a promising platform for bone tissue engineering.
Collapse
|
27
|
Lovecchio J, Cortesi M, Zani M, Govoni M, Dallari D, Giordano E. Fiber Thickness and Porosity Control in a Biopolymer Scaffold 3D Printed through a Converted Commercial FDM Device. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2394. [PMID: 35407727 PMCID: PMC8999610 DOI: 10.3390/ma15072394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/29/2022]
Abstract
3D printing has opened exciting new opportunities for the in vitro fabrication of biocompatible hybrid pseudo-tissues. Technologies based on additive manufacturing herald a near future when patients will receive therapies delivering functional tissue substitutes for the repair of their musculoskeletal tissue defects. In particular, bone tissue engineering (BTE) might extensively benefit from such an approach. However, designing an optimal 3D scaffold with adequate stiffness and biodegradability properties also guaranteeing the correct cell adhesion, proliferation, and differentiation, is still a challenge. The aim of this work was the rewiring of a commercial fuse deposition modeling (FDM) 3D printer into a 3D bioplotter, aiming at obtaining scaffold fiber thickness and porosity control during its manufacturing. Although it is well-established that FDM is a fast and low-price technology, the high temperatures required for printing lead to limitations in the biomaterials that can be used. In our hands, modifying the printing head of the FDM device with a custom-made holder has allowed to print hydrogels commonly used for embedding living cells. The results highlight a good resolution, reproducibility and repeatability of alginate/gelatin scaffolds obtained via our custom 3D bioplotter prototype, showing a viable strategy to equip a small-medium laboratory with an instrument for manufacturing good-quality 3D scaffolds for cell culture and tissue engineering applications.
Collapse
Affiliation(s)
- Joseph Lovecchio
- Laboratory of Cellular and Molecular Engineering “Silvio Cavalcanti”, Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, 47521 Cesena, FC, Italy; (M.C.); (E.G.)
| | - Marilisa Cortesi
- Laboratory of Cellular and Molecular Engineering “Silvio Cavalcanti”, Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, 47521 Cesena, FC, Italy; (M.C.); (E.G.)
- Gynaecological Cancer Research Group, Lowy Cancer Research Centre, Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney 2031, Australia
| | - Marco Zani
- Mark One S.r.l., 47521 Cesena, FC, Italy;
| | - Marco Govoni
- Reconstructive Orthopaedic Surgery and Innovative Techniques-Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, RE, Italy; (M.G.); (D.D.)
| | - Dante Dallari
- Reconstructive Orthopaedic Surgery and Innovative Techniques-Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, RE, Italy; (M.G.); (D.D.)
| | - Emanuele Giordano
- Laboratory of Cellular and Molecular Engineering “Silvio Cavalcanti”, Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, 47521 Cesena, FC, Italy; (M.C.); (E.G.)
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), Alma Mater Studiorum, University of Bologna, 40064 Ozzano Emilia, BO, Italy
- Advanced Research Center on Electronic Systems (ARCES), University of Bologna, 40064 Ozzano Emilia, BO, Italy
| |
Collapse
|
28
|
Gonzalez-Fernandez P, Rodríguez-Nogales C, Jordan O, Allémann E. Combination of mesenchymal stem cells and bioactive molecules in hydrogels for osteoarthritis treatment. Eur J Pharm Biopharm 2022; 172:41-52. [PMID: 35114357 DOI: 10.1016/j.ejpb.2022.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/13/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA) is a chronic and inflammatory disease with no effective regenerative treatments to date. The therapeutic potential of mesenchymal stem cells (MSCs) remains to be fully explored. Intra-articular injection of these cells promotes cartilage protection and regeneration by paracrine signaling and differentiation into chondrocytes. However, joints display a harsh avascular environment for these cells upon injection. This phenomenon prompted researchers to develop suitable injectable materials or systems for MSCs to enhance their function and survival. Among them, hydrogels can absorb a large amount of water and maintain their 3D structure but also allow incorporation of bioactive agents or small molecules in their matrix that maximize the action of MSCs. These materials possess advantageous cartilage-like features such as collagen or hyaluronic acid moieties that interact with MSC receptors, thereby promoting cell adhesion. This review provides an up-to-date overview of the progress and opportunities of MSCs entrapped into hydrogels, combined with bioactive/small molecules to improve the therapeutic effects in OA treatment.
Collapse
Affiliation(s)
- P Gonzalez-Fernandez
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - C Rodríguez-Nogales
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - O Jordan
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - E Allémann
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland.
| |
Collapse
|
29
|
Lovecchio J, Betti V, Cortesi M, Ravagli E, Severi S, Giordano E. Design of a custom-made device for real-time optical measurement of differential mineral concentrations in three-dimensional scaffolds for bone tissue engineering. ROYAL SOCIETY OPEN SCIENCE 2022; 9:210791. [PMID: 35242342 PMCID: PMC8753176 DOI: 10.1098/rsos.210791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/29/2021] [Indexed: 05/17/2023]
Abstract
Monitoring bone tissue engineered (TEed) constructs during their maturation is important to ensure the quality of applied protocols. Several destructive, mainly histochemical, methods are conventionally used to this aim, requiring the sacrifice of the investigated samples. This implies (i) to plan several scaffold replicates, (ii) expensive and time consuming procedures and (iii) to infer the maturity level of a given tissue construct from a cognate replica. To solve these issues, non-destructive techniques such as light spectroscopy-based methods have been reported to be useful. Here, a miniaturized and inexpensive custom-made spectrometer device is proposed to enable the non-destructive analysis of hydrogel scaffolds. Testing involved samples with a differential amount of calcium salt. When compared to a reference standard device, this custom-made spectrometer demonstrates the ability to perform measurements without requiring elaborate sample preparation and/or a complex instrumentation. This preliminary study shows the feasibility of light spectroscopy-based methods as useful for the non-destructive analysis of TEed constructs. Based on these results, this custom-made spectrometer device appears as a useful option to perform real-time/in-line analysis. Finally, this device can be considered as a component that can be easily integrated on board of recently prototyped bioreactor systems, for the monitoring of TEed constructs during their conditioning.
Collapse
Affiliation(s)
- J. Lovecchio
- Laboratory of Cellular and Molecular Engineering ‘Silvio Cavalcanti’—Department of Electrical, Electronic and Information Engineering ‘Guglielmo Marconi’ (DEI), University of Bologna, Cesena (FC), Italy
| | - V. Betti
- Laboratory of Cellular and Molecular Engineering ‘Silvio Cavalcanti’—Department of Electrical, Electronic and Information Engineering ‘Guglielmo Marconi’ (DEI), University of Bologna, Cesena (FC), Italy
| | - M. Cortesi
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), Alma Mater Studiorum—University of Bologna, Ozzano Emilia (BO), Italy
| | - E. Ravagli
- Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - S. Severi
- Laboratory of Cellular and Molecular Engineering ‘Silvio Cavalcanti’—Department of Electrical, Electronic and Information Engineering ‘Guglielmo Marconi’ (DEI), University of Bologna, Cesena (FC), Italy
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), Alma Mater Studiorum—University of Bologna, Ozzano Emilia (BO), Italy
| | - E. Giordano
- Laboratory of Cellular and Molecular Engineering ‘Silvio Cavalcanti’—Department of Electrical, Electronic and Information Engineering ‘Guglielmo Marconi’ (DEI), University of Bologna, Cesena (FC), Italy
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), Alma Mater Studiorum—University of Bologna, Ozzano Emilia (BO), Italy
- Advanced Research Center on Electronic Systems (ARCES), University of Bologna, Bologna (BO), Italy
| |
Collapse
|
30
|
Vasiliadis AV, Koukoulias N, Katakalos K. Three-Dimensional-Printed Scaffolds for Meniscus Tissue Engineering: Opportunity for the Future in the Orthopaedic World. J Funct Biomater 2021; 12:jfb12040069. [PMID: 34940548 PMCID: PMC8708065 DOI: 10.3390/jfb12040069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022] Open
Abstract
The meniscus is a critical component of a healthy knee joint. It is a complex and vital fibrocartilaginous tissue that maintains appropriate biomechanics. Injuries of the meniscus, particularly in the inner region, rarely heal and usually progress into structural breakdown, followed by meniscus deterioration and initiation of osteoarthritis. Conventional therapies range from conservative treatment, to partial meniscectomy and even meniscus transplantation. All the above have high long-term failure rates, with recurrence of symptoms. This communication presents a brief account of in vitro and in vivo studies and describes recent developments in the field of 3D-printed scaffolds for meniscus tissue engineering. Current research in meniscal tissue engineering tries to combine polymeric biomaterials, cell-based therapy, growth factors, and 3D-printed scaffolds to promote the healing of meniscal defects. Today, 3D-printing technology represents a big opportunity in the orthopaedic world to create more specific implants, enabling the rapid production of meniscal scaffolds and changing the way that orthopaedic surgeons plan procedures. In the future, 3D-printed meniscal scaffolds are likely to be available and will also be suitable substitutes in clinical applications, in an attempt to imitate the complexity of the native meniscus.
Collapse
Affiliation(s)
- Angelo V. Vasiliadis
- 2nd Orthopaedic Department, General Hospital of Thessaloniki “Papageorgiou”, 56403 Thessaloniki, Greece
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-6948402828
| | - Nikolaos Koukoulias
- Orthopaedic Department, Sports Injuries Unit, Saint Luke’s Hospital, 55236 Thessaloniki, Greece;
| | - Konstantinos Katakalos
- Laboratory for Strength of Materials and Structures, Department of Civil Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
31
|
Liu H, Rui Y, Liu J, Gao F, Jin Y. Hyaluronic acid hydrogel encapsulated BMP-14-modified ADSCs accelerate cartilage defect repair in rabbits. J Orthop Surg Res 2021; 16:657. [PMID: 34732208 PMCID: PMC8565001 DOI: 10.1186/s13018-021-02792-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
Background Cartilage defect has a limited capacity to heal. In this context, we hypothesized that hyaluronic acid (HA) hydrogel encapsulated BMP-14-modified adipose-derived mesenchymal stem cells (ADSCs) could accelerate cartilage defect repair in rabbits. Methods ADSCs were isolated and identified by flow cytometry. ADSCs were treated with adenovirus vector encoding BMP-14 (Ad-BMP-14) or adenovirus vector encoding control (Ad-ctrl). Real-time PCR (RT-PCR) and western blot assay was performed to verify the transfection efficacy and chondrogenic differentiation markers (ACAN, Collagen II and SOX9). Rabbit cartilage defect model was performed and randomly divided into following groups: control group, HA hydrogel + ADSCs, ADSCs, HA hydrogel + BMP-14 transfected ADSCs, HA hydrogel + BMP-14 transfected ADSCs. At 6, 9 and 12 weeks after surgery, scanning electron microscopy, hematoxylin–eosin, Safranin-O/Fast Green and immunohistochemical staining for Collagen II were performed to determine the role of HA hydrogel encapsulated BMP-14-modified ADSCs in cartilage repair in vivo. Results ADSCs were successfully isolated and positively expressed CD29, CD44 and CD90. Transfection efficacy of Ad-BMP-14 was verified by RT-PCR and western blot assay. Moreover, Ad-BMP-14 could significantly increased chondrogenic differentiation markers (ACAN, Collagen II and SOX9). The LV-BMP-14-ADSCs and HA hydrogel + LV-BMP-14-ADSCs groups revealed smoother surface cartilage repair that was level with the surrounding cartilage and almost complete border integration. Conclusions HA hydrogel encapsulated BMP-14-modified ADSCs accelerate cartilage defect repair in rabbits. We need to further validate the specific mechanism of action of HA hydrogel encapsulated LV-BMP-14-ADSCs involved in the repairing cartilage damage in vivo.
Collapse
Affiliation(s)
- Hao Liu
- Department of Traumatic Orthopedics, Wuxi Ninth People's Hospital Affiliated To Soochow University, No. 999, Liangxi Road, Wuxi, 214000, Jiangsu Province, People's Republic of China.
| | - Yongjun Rui
- Department of Traumatic Orthopedics, Wuxi Ninth People's Hospital Affiliated To Soochow University, No. 999, Liangxi Road, Wuxi, 214000, Jiangsu Province, People's Republic of China
| | - Jun Liu
- Department of Traumatic Orthopedics, Wuxi Ninth People's Hospital Affiliated To Soochow University, No. 999, Liangxi Road, Wuxi, 214000, Jiangsu Province, People's Republic of China
| | - Fandong Gao
- Department of Traumatic Orthopedics, Wuxi Ninth People's Hospital Affiliated To Soochow University, No. 999, Liangxi Road, Wuxi, 214000, Jiangsu Province, People's Republic of China
| | - Yesheng Jin
- Department of Traumatic Orthopedics, Wuxi Ninth People's Hospital Affiliated To Soochow University, No. 999, Liangxi Road, Wuxi, 214000, Jiangsu Province, People's Republic of China
| |
Collapse
|
32
|
Fabrication of 3D Printed Poly(lactic acid)/Polycaprolactone Scaffolds Using TGF-β1 for Promoting Bone Regeneration. Polymers (Basel) 2021; 13:polym13213731. [PMID: 34771286 PMCID: PMC8588076 DOI: 10.3390/polym13213731] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
Our research was designed to evaluate the effect on bone regeneration with 3-dimensional (3D) printed polylactic acid (PLA) and 3D printed polycaprolactone (PCL) scaffolds, determine the more effective option for enhancing bone regeneration, and offer tentative evidence for further research and clinical application. Employing the 3D printing technique, the PLA and PCL scaffolds showed similar morphologies, as confirmed via scanning electron microscopy (SEM). Mechanical strength was significantly higher in the PLA group (63.4 MPa) than in the PCL group (29.1 MPa) (p < 0.01). Average porosity, swelling ratio, and degeneration rate in the PCL scaffold were higher than those in the PLA scaffold. SEM observation after cell coculture showed improved cell attachment and activity in the PCL scaffolds. A functional study revealed the best outcome in the 3D printed PCL-TGF-β1 scaffold compared with the 3D printed PCL and the 3D printed PCL-Polydopamine (PDA) scaffold (p < 0.001). As confirmed via SEM, the 3D printed PCL- transforming growth factor beta 1 (TGF-β1) scaffold also exhibited improved cell adhesion after 6 h of cell coculture. The 3D printed PCL scaffold showed better physical properties and biocompatibility than the 3D printed PLA scaffold. Based on the data of TGF-β1, this study confirms that the 3D printed PCL scaffold may offer stronger osteogenesis.
Collapse
|
33
|
Scala P, Rehak L, Giudice V, Ciaglia E, Puca AA, Selleri C, Della Porta G, Maffulli N. Stem Cell and Macrophage Roles in Skeletal Muscle Regenerative Medicine. Int J Mol Sci 2021; 22:10867. [PMID: 34639203 PMCID: PMC8509639 DOI: 10.3390/ijms221910867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/23/2022] Open
Abstract
In severe muscle injury, skeletal muscle tissue structure and functionality can be repaired through the involvement of several cell types, such as muscle stem cells, and innate immune responses. However, the exact mechanisms behind muscle tissue regeneration, homeostasis, and plasticity are still under investigation, and the discovery of pathways and cell types involved in muscle repair can open the way for novel therapeutic approaches, such as cell-based therapies involving stem cells and peripheral blood mononucleate cells. Indeed, peripheral cell infusions are a new therapy for muscle healing, likely because autologous peripheral blood infusion at the site of injury might enhance innate immune responses, especially those driven by macrophages. In this review, we summarize current knowledge on functions of stem cells and macrophages in skeletal muscle repairs and their roles as components of a promising cell-based therapies for muscle repair and regeneration.
Collapse
Affiliation(s)
- Pasqualina Scala
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (P.S.); (V.G.); (E.C.); (A.A.P.); (C.S.); (N.M.)
| | - Laura Rehak
- Athena Biomedical innovations, Viale Europa 139, 50126 Florence, Italy;
| | - Valentina Giudice
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (P.S.); (V.G.); (E.C.); (A.A.P.); (C.S.); (N.M.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, Largo Città d’Ippocrate 1, 84131 Salerno, Italy
- Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, Largo Città d’Ippocrate 1, 84131 Salerno, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (P.S.); (V.G.); (E.C.); (A.A.P.); (C.S.); (N.M.)
| | - Annibale Alessandro Puca
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (P.S.); (V.G.); (E.C.); (A.A.P.); (C.S.); (N.M.)
- Cardiovascular Research Unit, IRCCS MultiMedica, Via Milanese 300, 20138 Milan, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (P.S.); (V.G.); (E.C.); (A.A.P.); (C.S.); (N.M.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, Largo Città d’Ippocrate 1, 84131 Salerno, Italy
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (P.S.); (V.G.); (E.C.); (A.A.P.); (C.S.); (N.M.)
- Interdepartment Centre BIONAM, University of Salerno, Via Giovanni Paolo I, 84084 Fisciano, Italy
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (P.S.); (V.G.); (E.C.); (A.A.P.); (C.S.); (N.M.)
- Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 275 Bancroft Road, London E1 4DG, UK
| |
Collapse
|
34
|
Ciardulli MC, Lovecchio J, Scala P, Lamparelli EP, Dale TP, Giudice V, Giordano E, Selleri C, Forsyth NR, Maffulli N, Della Porta G. 3D Biomimetic Scaffold for Growth Factor Controlled Delivery: An In-Vitro Study of Tenogenic Events on Wharton's Jelly Mesenchymal Stem Cells. Pharmaceutics 2021; 13:pharmaceutics13091448. [PMID: 34575523 PMCID: PMC8465418 DOI: 10.3390/pharmaceutics13091448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 11/25/2022] Open
Abstract
The present work described a bio-functionalized 3D fibrous construct, as an interactive teno-inductive graft model to study tenogenic potential events of human mesenchymal stem cells collected from Wharton’s Jelly (hWJ-MSCs). The 3D-biomimetic and bioresorbable scaffold was functionalized with nanocarriers for the local controlled delivery of a teno-inductive factor, i.e., the human Growth Differentiation factor 5 (hGDF-5). Significant results in terms of gene expression were obtained. Namely, the up-regulation of Scleraxis (350-fold, p ≤ 0.05), type I Collagen (8-fold), Decorin (2.5-fold), and Tenascin-C (1.3-fold) was detected at day 14; on the other hand, when hGDF-5 was supplemented in the external medium only (in absence of nanocarriers), a limited effect on gene expression was evident. Teno-inductive environment also induced pro-inflammatory, (IL-6 (1.6-fold), TNF (45-fold, p ≤ 0.001), and IL-12A (1.4-fold)), and anti-inflammatory (IL-10 (120-fold) and TGF-β1 (1.8-fold)) cytokine expression upregulation at day 14. The presented 3D construct opens perspectives for the study of drug controlled delivery devices to promote teno-regenerative events.
Collapse
Affiliation(s)
- Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
| | - Joseph Lovecchio
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, Via dell’Università 50, 47522 Cesena, Italy; (J.L.); (E.G.)
| | - Pasqualina Scala
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
| | - Tina Patricia Dale
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK; (T.P.D.); (N.R.F.)
| | - Valentina Giudice
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, Via dell’Università 50, 47522 Cesena, Italy; (J.L.); (E.G.)
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano dell’Emilia, Italy
- Advanced Research Center on Electronic Systems (ARCES), University of Bologna, Via Vincenzo Toffano 2/2, 40125 Bologna, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
- Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Nicholas Robert Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK; (T.P.D.); (N.R.F.)
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK; (T.P.D.); (N.R.F.)
- Centre for Sport and Exercise Medicine, Barts and The London School of Medicine, Queen Mary University of London, London E1 4NL, UK
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
- Research Centre for Biomaterials BIONAM, Università di Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
- Correspondence: ; Tel.: +39-089-965-234
| |
Collapse
|
35
|
Salidroside promoted osteogenic differentiation of adipose-derived stromal cells through Wnt/β-catenin signaling pathway. J Orthop Surg Res 2021; 16:456. [PMID: 34271966 PMCID: PMC8283984 DOI: 10.1186/s13018-021-02598-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bone disease causes short-term or long-term physical pain and disability. It is necessary to explore new drug for bone-related disease. This study aimed to explore the role and mechanism of Salidroside in promoting osteogenic differentiation of adipose-derived stromal cells (ADSCs). METHODS ADSCs were isolated and treated with different dose of Salidroside. Cell count kit-8 (CCK-8) assay was performed to assess the cell viability of ADSCs. Then, ALP and ARS staining were conducted to assess the early and late osteogenic capacity of ADSCs, respectively. Then, differentially expressed genes were obtained by R software. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the differentially expressed genes were further analyzed. The expression of OCN, COL1A1, RUNX2, WNT3A, and β-catenin were measured by real-time PCR and Western blot analysis. Last, β-catenin was silenced by small interfering RNA. RESULTS Salidroside significantly increased the ADSCs viability at a dose-response manner. Moreover, Salidroside enhanced osteogenic capacity of ADSCs, which are identified by enhanced ALP activity and calcium deposition. A total of 543 differentially expressed genes were identified between normal and Salidroside-treated ADSCs. Among these differentially expressed genes, 345 genes were upregulated and 198 genes were downregulated. Differentially expressed genes enriched in the Wnt/β-catenin signaling pathway. Western blot assay indicated that Salidroside enhanced the WNT3A and β-catenin expression. Silencing β-catenin partially reversed the promotion effects of Salidroside. PCR and Western blot results further confirmed these results. CONCLUSION Salidroside promoted osteogenic differentiation of ADSCs through Wnt/β-catenin signaling pathway.
Collapse
|