1
|
Li H, Wang Z, Zhu F, Li G. Alginate-based active and intelligent packaging: Preparation, properties, and applications. Int J Biol Macromol 2024; 279:135441. [PMID: 39260631 DOI: 10.1016/j.ijbiomac.2024.135441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Alginate-based packaging materials have emerged as promising alternatives to conventional petroleum-based plastics due to their biodegradability, renewability, and versatile functionalities. This review provides a comprehensive analysis of the recent advances in the development and application of alginate-based films and coatings for food packaging. The composition and fabrication methods of alginate-based packaging materials are discussed, highlighting the incorporation of various functional compounds to enhance their physicochemical properties. The mechanisms of action and the factors influencing the release and migration of active compounds from the alginate matrix are explored. The application of alginate-based packaging materials for the preservation of various food products, including meat, fish, dairy, fruits, and vegetables, is reviewed, demonstrating their effectiveness in extending shelf-life and maintaining quality. The development of alginate-based pH-sensitive indicators for intelligent food packaging is also discussed, focusing on the colorimetric response of natural pigments to spoilage-related pH changes. Furthermore, the review highlights the challenges and future perspectives of alginate-based packaging materials, emphasizing the need for novel strategies to improve their performance, sustainability, and industrial adoption.
Collapse
Affiliation(s)
- Hang Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| | - Zongji Wang
- Regenerative Medicine Institute, Linyi University, Linyi 276000, China
| | - Fan Zhu
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Guantian Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China.
| |
Collapse
|
2
|
Sheng W, Yang L, Yang Y, Wang C, Jiang G, Tian Y. Photo-responsive Cu-tannic acid nanoparticle-mediated antibacterial film for efficient preservation of strawberries. Food Chem 2024; 464:141711. [PMID: 39447267 DOI: 10.1016/j.foodchem.2024.141711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
The existing films used for fruit preservation suffer from insufficient preservation abilities. This study introduces Cu-tannic acid (Cu-TA) nanoparticles, synthesized from tannic acid (TA) and Cu2+, to enhance food packaging properties. Integrated into a chitosan-gelatin (CG) matrix, the resultant Cu-TA nanocomposite films exhibit superior antibacterial efficacy and killing rates of Escherichia coli and Staphylococcus aureus more than 99 %, and double the shelf life of strawberries, underscoring the exceptional freshness preservation capabilities of film. Additionally, the tensile strength of the Cu-TA nanocomposite films increased by 1.75 times, the DPPH radical scavenging percentage increased from 29.4 % to 68.4 %, and the water vapor permeability (WVP) decreased by about 60 % compared to the pure CG films. Comprehensive cytotoxicity and migration assessments confirm the safety of film, paving the way for their application in food packaging. The excellent performance of the Cu-TA nanocomposite films positions them as a formidable solution for protecting perishable food items.
Collapse
Affiliation(s)
- Wenyang Sheng
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Li Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Yichen Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Chenzhi Wang
- Institute of Agro-products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China.
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China.
| |
Collapse
|
3
|
Wang J, Li L, Li Y, Song Q, Hu Y, Wang Q, Lu S. Characterization of thyme essential oil microcapsules and potato starch/pectin composite films and their impact on the quality of chilled mutton. Food Chem 2024; 464:141692. [PMID: 39447272 DOI: 10.1016/j.foodchem.2024.141692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
This study used chitosan-embedded thyme essential oil (TEO-CN) microcapsules to prepare a potato starch-pectin (P-P) composite film. The effects of different concentrations of TEO-CN microcapsules (0 %, 0.25 %, 0.5 %, 1.0 %, and 2.0 %) on the physical, mechanical, antioxidant, and antimicrobial properties of P-P composite films were investigated. The results revealed that the TEO-CN microcapsules were cross-linked with the P-P film matrix and could be uniformly distributed. Additionally, the water vapor permeability [1.98 ± 0.32 mg.m.(m2.h.kPa)-1] and elongation at break exhibited (28 ± 0.32 %) minimum values in P-P composite films containing 1 % TEO-CN microcapsules. Moreover, the P-P composite films containing TEO-CN microcapsules exhibited excellent antioxidant and antibacterial properties. Among them, the P-P composite film containing 2 % TEO-CN microcapsules showed an inhibitory circle diameter of 4.34 mm and 4.98 mm against Escherichia coli and Staphylococcus aureus, respectively. The application of TEO-CNs/P-P composite films in chilled mutton packaging can extend shelf life up to 15 days.
Collapse
Affiliation(s)
- Jingyun Wang
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty(Co-construction by Ministry and Province),School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps,School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education,School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Lingrui Li
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty(Co-construction by Ministry and Province),School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps,School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education,School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yuhan Li
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty(Co-construction by Ministry and Province),School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps,School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education,School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Qianqian Song
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty(Co-construction by Ministry and Province),School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps,School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education,School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yiqing Hu
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty(Co-construction by Ministry and Province),School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps,School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education,School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Qingling Wang
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty(Co-construction by Ministry and Province),School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps,School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education,School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Shiling Lu
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty(Co-construction by Ministry and Province),School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps,School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education,School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
4
|
Liu Q, Wang L, Wang Z, Li Y, Chen H. Preparation and characterization ofcarvacrol/soybean protein isolate composite film with efficient antimicrobial and antioxidant activities and its application in grape preservation. Food Chem 2024; 464:141572. [PMID: 39418950 DOI: 10.1016/j.foodchem.2024.141572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
There is an urgent need for a simple and effective method to enhance the freshness of fruits during transportation. In this study, we developed a composite antibacterial film (CAR film) using carvacrol and soy protein isolate (SPI). The mechanical properties, hydrophobicity, antibacterial activity, and antioxidant capacity of the film were characterized. The results demonstrated that, compared to the soy protein isolate film, the film with 2.5 % carvacrol content exhibited superior mechanical properties (tear strength decreased by approximately 37 %, elongation at break increased by about 108 %), hydrophobicity (water vapor permeability decreased by 38 %), antibacterial activity (inhibition zone diameters against E. coli and S. aureus were 14.21 mm and 11.83 mm, respectively), antioxidant capacity (increased by 5 to 6 times), and biocompatibility (cell survival rate exceeded 90 %). Grape preservation experiments further confirmed that the CAR film effectively prolongs shelf life. Therefore, CAR film is a promising packaging material for fruit preservation.
Collapse
Affiliation(s)
- Qi Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China.
| | - Longgang Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Zixuan Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Yao Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Hong Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Rezghi Rami M, Forouzandehdel S, Aalizadeh F. Enhancing biodegradable smart food packaging: Fungal-synthesized nanoparticles for stabilizing biopolymers. Heliyon 2024; 10:e37692. [PMID: 39315154 PMCID: PMC11417270 DOI: 10.1016/j.heliyon.2024.e37692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
The increasing global concern over environmental plastic waste has propelled the progress of biodegradable supplies for food packaging. Biopolymer-based packaging is undergoing modifications to enhance its mechanical properties, aligning with the requirements of smart food packaging. Polymer nanocomposites, incorporating reinforcements such as fibers, platelets, and nanoparticles, demonstrate significantly improved mechanical, thermal, optical, and physicochemical characteristics. Fungi, in particular, have garnered significant interest for producing metallic nanoparticles, offering advantages such as easy scaling up, streamlined downstream handling, economic feasibility, and a large surface area. This review provides an overview of nano-additives utilized in biopackaging, followed by an exploration of the recent advancements in using microbial-resistant metal nanoparticles for food packaging. The mycofabrication process, involving fungi in the extracellular or intracellular synthesis of metal nanoparticles, is introduced. Fungal functionalized nanostructures represent a promising avenue for application across various stages of food processing, packaging, and safety. The integration of fungal-derived nanostructures into food packaging materials presents a sustainable and effective approach to combatting microbial contamination." By harnessing fungal biomass, this research contributes to the development of economical and environmentally friendly methods for enhancing food packaging functionality. The findings underscore the promising role of fungal-based nanotechnologies in advancing the field of active food packaging, addressing both safety and sustainability concerns. The study concludes with an investigation into potential fungal isolates for nanoparticle biosynthesis, highlighting their relevance and potential in advancing sustainable and efficient packaging solutions.
Collapse
Affiliation(s)
- Mina Rezghi Rami
- Department of Chemistry, KN Toosi University of Technology, Tehran, Iran
| | | | - Farhad Aalizadeh
- Department of Mechanical and Aerospace Engineering, Brunel University London, Uxbridge, UB8 3PH, UK
| |
Collapse
|
6
|
Motelica L, Ficai D, Petrisor G, Oprea OC, Trușcǎ RD, Ficai A, Andronescu E, Hudita A, Holban AM. Antimicrobial Hydroxyethyl-Cellulose-Based Composite Films with Zinc Oxide and Mesoporous Silica Loaded with Cinnamon Essential Oil. Pharmaceutics 2024; 16:1225. [PMID: 39339261 PMCID: PMC11435203 DOI: 10.3390/pharmaceutics16091225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Cellulose derivatives are gaining much attention in medical research due to their excellent properties such as biocompatibility, hydrophilicity, non-toxicity, sustainability, and low cost. Unfortunately, cellulose does not exhibit antimicrobial activity. However, derivatives like hydroxyethyl cellulose represent a proper matrix to incorporate antimicrobial agents with beneficial therapeutic effects. Methods: Combining more antimicrobial agents into a single composite material can induce stronger antibacterial activity by synergism. Results: Therefore, we have obtained a hydroxyethyl-cellulose-based material loaded with zinc oxide nanoparticles and cinnamon essential oil as the antimicrobial agents. The cinnamon essential oil was loaded in mesoporous silica particles to control its release. Conclusions: The composite films demonstrated high antibacterial activity against Staphylococcus aureus and Escherichia coli strains, impairing the bacterial cells' viability and biofilm development. Such antimicrobial films can be used in various biomedical applications such as topical dressings or as packaging for the food industry.
Collapse
Affiliation(s)
- Ludmila Motelica
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. Polizu, 011061 Bucharest, Romania; (L.M.); (G.P.)
- National Center of Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania;
- Academy of Romanian Scientists, 3 Ilfov St., 050044 Bucharest, Romania
| | - Denisa Ficai
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. Polizu, 011061 Bucharest, Romania; (L.M.); (G.P.)
- National Center of Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania;
- Academy of Romanian Scientists, 3 Ilfov St., 050044 Bucharest, Romania
| | - Gabriela Petrisor
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. Polizu, 011061 Bucharest, Romania; (L.M.); (G.P.)
- Academy of Romanian Scientists, 3 Ilfov St., 050044 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. Polizu, 011061 Bucharest, Romania; (L.M.); (G.P.)
- National Center of Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania;
- Academy of Romanian Scientists, 3 Ilfov St., 050044 Bucharest, Romania
| | - Roxana-Doina Trușcǎ
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. Polizu, 011061 Bucharest, Romania; (L.M.); (G.P.)
- National Center of Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania;
| | - Anton Ficai
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. Polizu, 011061 Bucharest, Romania; (L.M.); (G.P.)
- National Center of Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania;
- Academy of Romanian Scientists, 3 Ilfov St., 050044 Bucharest, Romania
| | - Ecaterina Andronescu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. Polizu, 011061 Bucharest, Romania; (L.M.); (G.P.)
- National Center of Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania;
- Academy of Romanian Scientists, 3 Ilfov St., 050044 Bucharest, Romania
| | - Ariana Hudita
- Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania;
| | - Alina Maria Holban
- National Center of Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania;
- Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania;
| |
Collapse
|
7
|
Zhang H, Wang X, Liu J, Mai G, Liu S, Cui W, Guan R, Jiang S, Han Y, He T. Alginate composite films incorporated with Zn-based inorganic antimicrobials for food packaging: Effects of morphology. J Food Sci 2024; 89:5734-5747. [PMID: 39098814 DOI: 10.1111/1750-3841.17272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024]
Abstract
Biopolymers-based food packaging materials have drawn attention as potential candidates for substitution of petroleum-based materials. In this study, composite alginate films were developed by incorporating Zn-based antimicrobials to overcome the intrinsic disadvantages of alginates that hinder their wide applications. Antimicrobials with different morphologies (nanoplatelets, nanorods, and nanospheres) were employed to investigate the effects of antimicrobials' morphology on antibacterial, thermal, mechanical, and barrier performance of composite alginate films. Meanwhile, morphological and structural characterizations were carried out to explore the interactions between antimicrobials and alginate matrix. Results indicated that films with nanospheres exhibited superior antibacterial property, while those with one-dimensional nanorods possessed better mechanical and barrier performance. Besides, preliminary test on fresh-cut potatoes and chicken breasts indicated that the composite films showed potential in extending shelf life of foods. By incorporating antimicrobials with three different morphologies, this study provides particular insights into improving properties of composite packaging materials.
Collapse
Affiliation(s)
- Huiling Zhang
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, Yantai, P. R. China
| | - Xinglong Wang
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, Yantai, P. R. China
| | - Jiyi Liu
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, Yantai, P. R. China
| | - Guangqing Mai
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, Yantai, P. R. China
| | - Shanshan Liu
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, Yantai, P. R. China
| | - Wei Cui
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, Yantai, P. R. China
| | - Rengui Guan
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, Yantai, P. R. China
| | - Shasha Jiang
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, Yantai, P. R. China
| | - Yanyang Han
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, Yantai, P. R. China
| | - Tao He
- College of Chemistry and Chemical Engineering, Technology and Engineering Center of Multi-scale Functional Materials, Yantai University, Yantai, P. R. China
| |
Collapse
|
8
|
Yang Y, Wang X, Li Y, Yang F, Liu X, Wang A. Dencichine/palygorskite nanocomposite incorporated chitosan/polyvinylpyrrolidone film for accelerating wound hemostasis. Int J Biol Macromol 2024; 275:133399. [PMID: 38945323 DOI: 10.1016/j.ijbiomac.2024.133399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/24/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
The development of efficient, safe, environmentally friendly, and user-friendly hemostatic dressings remains a great challenge for researchers. A variety of clay minerals and plant extracts have garnered considerable attention due to their outstanding hemostatic efficacy and favorable biosafety. In this study, a facile solution casting strategy was employed to prepare nanocomposite films by incorporating natural nanorod-like palygorskite (Pal) and herb-derived hemostat dencichine (DC) based on chitosan and polyvinylpyrrolidone. The dynamic blood clotting index demonstrated that the nanocomposite film with a DC addition of 1.0 wt% exhibited significantly superior hemostatic properties compared to both pure DC powder or commercial hemostatic agent Yunnan Baiyao. This improvement was primarily attributed to proper blood affinity, increased porosity, enhanced adhesion of platelets and erythrocytes, as well as the accelerated activation of coagulation factors and platelets. Under the synergistic effect of Pal and DC, the nanocomposite film displayed suitable tensile strength (20.58 MPa) and elongation at break (47.29 %), which may be due to the strong intermolecular hydrogen bonding and electrostatic interaction between Pal/DC and macropolymers. Notably, the nanocomposite film exhibited remarkable antibacterial effectiveness and desirable cytocompatibility, as well as the capability of promoting wound healing in vitro. Taken together, the nanocomposite film synergized with Pal and DC is expected to be an efficacious and suitable wound dressing.
Collapse
Affiliation(s)
- Yinfeng Yang
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, PR China
| | - Xiaomei Wang
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Yalong Li
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, PR China
| | - Fangfang Yang
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Xinyue Liu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, PR China.
| | - Aiqin Wang
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
9
|
Zhang Y, Yang W, Zhu Z, Zhang L, Peng W. Temperature-Sensitive Template for Preparation of ZnO/CeO 2 Composite Photocatalytic Materials and Its Catalytic Performance. Molecules 2024; 29:3589. [PMID: 39124993 PMCID: PMC11313708 DOI: 10.3390/molecules29153589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
In this work, a series of thermosensitive ionic liquid functionalized polymers, PNx(IL)y, with controllable morphology and particle size were prepared by free radical polymerization. Then, using the polymer PN64(IL)8 with uniform morphology as a templating agent, the ZnO composite photocatalytic materials doped with rare earth metal Ce were prepared in combination with a microwave-assisted and templated hydrothermal reaction method. Series different Ce-doping amount photocatalytic materials ZnO-Ce-x‱ were characterized by XRD, SEM, TEM, XPS, and other methods. The results demonstrated that the templated materials PN64(IL)8 can prepare ZnO-Ce-2‱ with uniform petaloid ambulacra shape, good distribution of elements, and excellent photocatalytic performance. Photocatalytic degradation experiments of methyl orange (MO) showed that when the Ce-doping amount is only 2‱, the degradation rate of organic dyes can reach 96.5% by reacting the photocatalytic materials in water for 1 h. In addition, this kind of photocatalyst can be used for the degradation of high-concentration MO, as well as being easily recovered and effectively reused by simple filtration. Therefore, the structure of this kind of photocatalyst is controllable in the preparation process with an extremely low Ce-doping amount compared with current reports, and it has a good application prospect in the field of wastewater treatment technology.
Collapse
Affiliation(s)
- Yaoyao Zhang
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China; (W.Y.); (Z.Z.); (L.Z.)
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Wenjie Yang
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China; (W.Y.); (Z.Z.); (L.Z.)
| | - Zhengyuan Zhu
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China; (W.Y.); (Z.Z.); (L.Z.)
| | - Lin Zhang
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China; (W.Y.); (Z.Z.); (L.Z.)
| | - Wenju Peng
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China; (W.Y.); (Z.Z.); (L.Z.)
- School of Civil Engineering, Hubei Engineering University, Xiaogan 432000, China
| |
Collapse
|
10
|
Mîrț AL, Ficai D, Oprea OC, Vasilievici G, Ficai A. Current and Future Perspectives of Bioactive Glasses as Injectable Material. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1196. [PMID: 39057873 PMCID: PMC11280465 DOI: 10.3390/nano14141196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
This review covers recent compositions of bioactive glass, with a specific emphasis on both inorganic and organic materials commonly utilized as matrices for injectable materials. The major objective is to highlight the predominant bioactive glass formulations and their clinical applications in the biomedical field. Previous studies have highlighted the growing interest among researchers in bioactive glasses, acknowledging their potential to yield promising outcomes in this field. As a result of this increased interest, investigations into bioactive glass have prompted the creation of composite materials and, notably, the development of injectable composites as a minimally invasive method for administering the material within the human body. Injectable materials have emerged as a promising avenue to mitigate various challenges. They offer several advantages, including minimizing invasive surgical procedures, reducing patient discomfort, lowering the risk of postoperative infection and decreasing treatment expenses. Additionally, injectable materials facilitate uniform distribution, allowing for the filling of defects of any shape.
Collapse
Affiliation(s)
- Andreea-Luiza Mîrț
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu 1–7, 011061 Bucharest, Romania;
- National Center for Scientific Research for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (D.F.); (O.-C.O.)
- National Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | - Denisa Ficai
- National Center for Scientific Research for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (D.F.); (O.-C.O.)
- National Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu 1–7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Center for Scientific Research for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (D.F.); (O.-C.O.)
- National Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu 1–7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Gabriel Vasilievici
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | - Anton Ficai
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu 1–7, 011061 Bucharest, Romania;
- National Center for Scientific Research for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (D.F.); (O.-C.O.)
- National Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| |
Collapse
|
11
|
Motelica L, Ficai D, Oprea OC, Trusca RD, Ficai A, Stelescu MD, Sonmez M, Nituica M, Mustatea G, Holban AM. Antimicrobial Packaging for Plum Tomatoes Based on ZnO Modified Low-Density Polyethylene. Int J Mol Sci 2024; 25:6073. [PMID: 38892267 PMCID: PMC11172566 DOI: 10.3390/ijms25116073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Food safety and quality are major concerns in the food industry. Despite numerous studies, polyethylene remains one of the most used materials for packaging due to industry reluctance to invest in new technologies and equipment. Therefore, modifications to the current materials are easier to implement than adopting whole new solutions. Antibacterial activity can be induced in low-density polyethylene films only by adding antimicrobial agents. ZnO nanoparticles are well known for their strong antimicrobial activity, coupled with low toxicity and UV shielding capability. These characteristics recommend ZnO for the food industry. By incorporating such safe and dependable antimicrobial agents in the polyethylene matrix, we have obtained composite films able to inhibit microorganisms' growth that can be used as packaging materials. Here we report the obtaining of highly homogenous composite films with up to 5% ZnO by a melt mixing process at 150 °C for 10 min. The composite films present good transparency in the visible domain, permitting consumers to visualize the food, but have good UV barrier properties. The composite films exhibit good antimicrobial and antibiofilm activity from the lowest ZnO composition (1%), against both Gram-positive and Gram-negative bacterial strains. The homogenous dispersion of ZnO nanoparticles into the polyethylene matrix was assessed by Fourier transform infrared microscopy and scanning electron microscopy. The optimal mechanical barrier properties were obtained for composition with 3% ZnO. The thermal analysis indicates that the addition of ZnO nanoparticles has increased thermal stability by more than 100 °C. The UV-Vis spectra indicate a low transmittance in the UV domain, lower than 5%, making the films suitable for blocking photo-oxidation processes. The obtained films proved to be efficient packaging films, successfully preserving plum (Rome) tomatoes for up to 14 days.
Collapse
Affiliation(s)
- Ludmila Motelica
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. Polizu, 011061 Bucharest, Romania; (L.M.); (D.F.); (R.-D.T.); (A.F.); (A.M.H.)
- Academy of Romanian Scientists, 3 Ilfov St., 050044 Bucharest, Romania
| | - Denisa Ficai
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. Polizu, 011061 Bucharest, Romania; (L.M.); (D.F.); (R.-D.T.); (A.F.); (A.M.H.)
- Academy of Romanian Scientists, 3 Ilfov St., 050044 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. Polizu, 011061 Bucharest, Romania; (L.M.); (D.F.); (R.-D.T.); (A.F.); (A.M.H.)
- Academy of Romanian Scientists, 3 Ilfov St., 050044 Bucharest, Romania
| | - Roxana-Doina Trusca
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. Polizu, 011061 Bucharest, Romania; (L.M.); (D.F.); (R.-D.T.); (A.F.); (A.M.H.)
| | - Anton Ficai
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. Polizu, 011061 Bucharest, Romania; (L.M.); (D.F.); (R.-D.T.); (A.F.); (A.M.H.)
- Academy of Romanian Scientists, 3 Ilfov St., 050044 Bucharest, Romania
| | - Maria Daniela Stelescu
- National Research and Development Institute for Textile and Leather, Leather and Footwear Institute, 93 Ion Minulescu Street, 031215 Bucharest, Romania; (M.D.S.); (M.S.); (M.N.)
| | - Maria Sonmez
- National Research and Development Institute for Textile and Leather, Leather and Footwear Institute, 93 Ion Minulescu Street, 031215 Bucharest, Romania; (M.D.S.); (M.S.); (M.N.)
| | - Mihaela Nituica
- National Research and Development Institute for Textile and Leather, Leather and Footwear Institute, 93 Ion Minulescu Street, 031215 Bucharest, Romania; (M.D.S.); (M.S.); (M.N.)
| | - Gabriel Mustatea
- National R&D Institute for Food Bioresources—IBA Bucharest, Dinu Vintila Street 6, 021102 Bucharest, Romania;
| | - Alina Maria Holban
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. Polizu, 011061 Bucharest, Romania; (L.M.); (D.F.); (R.-D.T.); (A.F.); (A.M.H.)
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania
| |
Collapse
|
12
|
Bai Y, Cao Y, Sun Y, Alfaiz FA, Garalleh HAL, El-Shamy EF, Almujibah H, Ali E, Assilzadeh H. Seaweed biomass as a sustainable resource for synthesis of ZnO nanoparticles using Sargassum wightii ethanol extract and their environmental and biomedical applications through Gaussian mixture model. ENVIRONMENTAL RESEARCH 2024; 249:117464. [PMID: 37980983 DOI: 10.1016/j.envres.2023.117464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/21/2023]
Abstract
Zinc oxide nanoparticles (ZnO) possess unique features that mak them a common matter among different industries. Nevertheless, traditional models of synthesizing ZnO-NPs are related with health and environmental and risks due to harmful chemicals. The biosynthesis of zinc oxide nanoparticles was achieved using the hot water extract of Sargassum wightii (SW), which serves as a reducing agent. This extract is mixed with zinc precursors, initiating a bio-reduction process. UV-vis, FTIR, XRD, Raman, DLS, SEM, EDX, TEM imaging, and XPS analysis are used. The novelty of this research lies in utilizing a bio-reduction process involving hot water extract of SW to synthesize zinc oxide nanoparticles, providing a safer and eco-friendly alternative to traditional chemical methods. Here, the zinc oxide nanoparticles produced through the biosynthesis process effectively addressed oral infections (Streptococcus mutans) due to their ability to disrupt the integrity of bacterial cell membranes, interfere with cellular processes, and inhibit the growth and proliferation of bacteria responsible for oral infections. Gaussian Mixture Models (GMMs) uncover intricate patterns within medical data, enabling enhanced diagnostics, treatment personalization, and patient outcomes. This study aims to apply Gaussian Mixture Models (GMMs) to medical data for subpopulation identification and disease subtyping, contributing to personalized treatment strategies and improved patient care. With a dataset comprising 300 samples, the application of GMM showed lower BIC and AIC values (2500, 3200), a high Silhouette Score (0.65 from -1 to 1) reflecting well-defined clusters, Calinski-Harabasz (120) and Davies-Bouldin Indices (0.45). These metrics collectively underscored the model's success in revealing distinct patterns within the data. ZnO-nanocoated aligners were effective against Streptococcus mutans, with the maximum antibacterial effect observed for 2 days and lasting for 7 days.
Collapse
Affiliation(s)
- Yu Bai
- School of Mechatronic Engineering, Xi'an Technological University, Xi'an, 710021, China
| | - Yan Cao
- School of Computer Science and Engineering, Xi'an Technological University, Xi'an, 710021, China
| | - Yiding Sun
- School of Computer Science and Engineering, Xi'an Technological University, Xi'an, 710021, China
| | - Faiz Abdulaziz Alfaiz
- Department of Biology, College of Science, Majmaah University, Al-Majmaah, 11952, Saudi Arabia.
| | - Hakim A L Garalleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology - Dahban, Jeddah, 21361, Saudi Arabia
| | - E F El-Shamy
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Hamad Almujibah
- Department of Civil Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif City, 21974, Saudi Arabia
| | - Elimam Ali
- Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Hamid Assilzadeh
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India.
| |
Collapse
|
13
|
Nooshi Manjili Z, Sadeghi Mahoonak A, Ghorbani M, Shahiri Tabarestani H. Multi-layer encapsulation of pumpkin ( Cucurbita maxima L.) seed protein hydrolysate and investigating its release and antioxidant activity in simulated gastrointestinal digestion. Heliyon 2024; 10:e29669. [PMID: 38681570 PMCID: PMC11053274 DOI: 10.1016/j.heliyon.2024.e29669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/17/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024] Open
Abstract
Because of their high protein content, easy access and low cost, pumpkin seeds are a valuable raw material for the preparation of antioxidant protein hydrolysates. Micro-coating is an effective method to protect bioactive compounds against destruction. In order to strengthen the alginate hydrogel network loaded with pumpkin seed protein hydrolysate (PSPH), CMC was added as part of its formulation in the first step, and chitosan coating was used in the second step. Then, swelling amount, release in the simulated gastrointestinal environment (SGI), antioxidant activity after SGI, Fourier transform infrared spectroscopy (FTIR), zeta potential, dynamic light scattering (DLS), polydispersity index (PDI) and scanning electron microscopy (SEM) of the samples were evaluated. The results showed that, the swelling amount of the chitosan-alginate hydrogel was lower than the chitosan-alginate-CMC sample, and with the increase in chitosan concentration, the swelling amount decreased. The release amount in the chitosan-alginate sample was higher than that in the chitosan-alginate-CMC sample, and with the increase in chitosan concentration, the release rate decreased. Also, the amount of release increased with the passage of time. The highest antioxidant activity belonged to the chitosan-alginate sample in SGI, and it increased with increasing the chitosan concentration. All findings demonstrated that the use of multi-component hybrid systems is a useful method for the protection of bioactive compounds against destruction, their antioxidant activities and their release behavior.
Collapse
Affiliation(s)
- Zeinab Nooshi Manjili
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Alireza Sadeghi Mahoonak
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Ghorbani
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hoda Shahiri Tabarestani
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
14
|
Wathoni N, Suhandi C, Ghassani Purnama MF, Mutmainnah A, Nurbaniyah NS, Syafra DW, Elamin KM. Alginate and Chitosan-Based Hydrogel Enhance Antibacterial Agent Activity on Topical Application. Infect Drug Resist 2024; 17:791-805. [PMID: 38444772 PMCID: PMC10913799 DOI: 10.2147/idr.s456403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Untreated topical infections can become chronic, posing serious health issues. Optimal skin adherence is crucial in addressing such infections. In this context, chitosan and alginate emerge as promising candidates for use as a foundation in the development of topical hydrogels. The aim of this review is to examine the literature on topical hydrogel formulations that use chitosan and alginate as foundations, specifically in the context of topical antibacterial agents. The research methodology involves a literature review by examining articles published in databases such as PubMed, Scopus, ScienceDirect, and Google Scholar. The keywords employed during the research were "Alginate", "Chitosan", "Hydrogel", and "Antibacterial". Chitosan and alginate serve as bases in topical hydrogels to deliver various active ingredients, particularly antibacterial agents, as indicated by the search results. Both have demonstrated significant antibacterial effectiveness, as evidenced by a reduction in bacterial colony counts and an increase in inhibition zones. This strongly supports the idea that chitosan and alginate could be used together to make topical hydrogels that kill bacteria that work well. In conclusion, chitosan and alginate-based hydrogels show great potential in treating bacterial infections on the skin surface. The incorporation of chitosan and alginate into hydrogel formulations aids in retaining antibacterial agents, allowing for their gradual release over an optimal period. Therefore, hydrogels specifically formulated with chitosan and alginate have the potential to serve as a solution to address challenges in the treatment of topical bacterial infections.
Collapse
Affiliation(s)
- Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Muhammad Fadhil Ghassani Purnama
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Annisa Mutmainnah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Neng Sani Nurbaniyah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Desra Widdy Syafra
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Khaled M Elamin
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| |
Collapse
|
15
|
Grande-Tovar CD, Castro JI, Tenorio DL, Zapata PA, Florez-López E, Valencia-Llano CH. Chitosan-Polyvinyl Alcohol Nanocomposites for Regenerative Therapy. Polymers (Basel) 2023; 15:4595. [PMID: 38232016 PMCID: PMC10708655 DOI: 10.3390/polym15234595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Tissue accidents provide numerous pathways for pathogens to invade and flourish, causing additional harm to the host tissue while impeding its natural healing and regeneration. Essential oils (EOs) exhibit rapid and effective antimicrobial properties without promoting bacterial resistance. Clove oils (CEO) demonstrate robust antimicrobial activity against different pathogens. Chitosan (CS) is a natural, partially deacetylated polyamine widely recognized for its vast antimicrobial capacity. In this study, we present the synthesis of four membrane formulations utilizing CS, polyvinyl alcohol (PVA), and glycerol (Gly) incorporated with CEO and nanobioglass (n-BGs) for applications in subdermal tissue regeneration. Our analysis of the membranes' thermal stability and chemical composition provided strong evidence for successfully blending polymers with the entrapment of the essential oil. The incorporation of the CEO in the composite was evidenced by the increase in the intensity of the band of C-O-C in the FTIR; furthermore, the increase in diffraction peaks, as well as the broadening, provide evidence that the introduction of CEO perturbed the crystal structure. The morphological examination conducted using scanning electron microscopy (SEM) revealed that the incorporation of CEO resulted in smooth surfaces, in contrast to the porous morphologies observed with the n-BGs. A histological examination of the implanted membranes demonstrated their biocompatibility and biodegradability, particularly after a 60-day implantation period. The degradation process of more extensive membranes involved connective tissue composed of type III collagen fibers, blood vessels, and inflammatory cells, which supported the reabsorption of the composite membranes, evidencing the material's biocompatibility.
Collapse
Affiliation(s)
- Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Jorge Ivan Castro
- Tribology, Polymers, Powder Metallurgy and Solid Waste Transformations Research Group, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia;
| | - Diego López Tenorio
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia; (D.L.T.); (C.H.V.-L.)
| | - Paula A. Zapata
- Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile;
| | - Edwin Florez-López
- Grupo de Investigación en Química y Biotecnología QUIBIO, Universidad Santiago de Cali, Calle 5 No. 62-00, Cali 760035, Colombia;
| | - Carlos Humberto Valencia-Llano
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia; (D.L.T.); (C.H.V.-L.)
| |
Collapse
|
16
|
Huq MA, Apu MAI, Ashrafudoulla M, Rahman MM, Parvez MAK, Balusamy SR, Akter S, Rahman MS. Bioactive ZnO Nanoparticles: Biosynthesis, Characterization and Potential Antimicrobial Applications. Pharmaceutics 2023; 15:2634. [PMID: 38004613 PMCID: PMC10675506 DOI: 10.3390/pharmaceutics15112634] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/22/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, biosynthesized zinc oxide nanoparticles (ZnONPs) have gained tremendous attention because of their safe and non-toxic nature and distinctive biomedical applications. A diverse range of microbes (bacteria, fungi and yeast) and various parts (leaf, root, fruit, flower, peel, stem, etc.) of plants have been exploited for the facile, rapid, cost-effective and non-toxic synthesis of ZnONPs. Plant extracts, microbial biomass or culture supernatant contain various biomolecules including enzymes, amino acids, proteins, vitamins, alkaloids, flavonoids, etc., which serve as reducing, capping and stabilizing agents during the biosynthesis of ZnONPs. The biosynthesized ZnONPs are generally characterized using UV-VIS spectroscopy, TEM, SEM, EDX, XRD, FTIR, etc. Antibiotic resistance is a serious problem for global public health. Due to mutation, shifting environmental circumstances and excessive drug use, the number of multidrug-resistant pathogenic microbes is continuously rising. To solve this issue, novel, safe and effective antimicrobial agents are needed urgently. Biosynthesized ZnONPs could be novel and effective antimicrobial agents because of their safe and non-toxic nature and powerful antimicrobial characteristics. It is proven that biosynthesized ZnONPs have strong antimicrobial activity against various pathogenic microorganisms including multidrug-resistant bacteria. The possible antimicrobial mechanisms of ZnONPs are the generation of reactive oxygen species, physical interactions, disruption of the cell walls and cell membranes, damage to DNA, enzyme inactivation, protein denaturation, ribosomal destabilization and mitochondrial dysfunction. In this review, the biosynthesis of ZnONPs using microbes and plants and their characterization have been reviewed comprehensively. Also, the antimicrobial applications and mechanisms of biosynthesized ZnONPs against various pathogenic microorganisms have been highlighted.
Collapse
Affiliation(s)
- Md. Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Md. Aminul Islam Apu
- Department of Nutrition and Hospitality Management, The University of Mississippi, Oxford, MS 38677, USA;
| | - Md. Ashrafudoulla
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Md. Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh;
| | | | - Sri Renukadevi Balusamy
- Department of Food Science and Technology, Sejong University, Seoul 05006, Republic of Korea;
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea;
| | - Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
17
|
Sun H, Wang B, Xie Y, Li F, Xu T, Yu B. Development of Active Antibacterial CEO/CS@PLA Nonwovens and the Application on Food Preservation. ACS OMEGA 2023; 8:42907-42920. [PMID: 38024704 PMCID: PMC10652727 DOI: 10.1021/acsomega.3c06024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023]
Abstract
The biodegradable activity antibacterial materials have been widely applied on food preservation because they not only protect foods from pathogenic attacks but also relieve environmental pollution. Biodegradable melt-blown nonwovens (MB) have several advantages over the other materials in terms of a simpler and more environmentally friendly fabrication process, higher specific surface area, and lower cost. Herein, polylactic acid (PLA) MB is first modified by polydopamine (PDA) to activate the surface. Then, chitosan (CS) and cinnamon essential oil (CEO) are used to decorate the surface of the modified PLA MB via a simple one-pot method to prepare CEO/CS@PLA MB with different CEO contents. Compared with PLA MB, CEO/CS@PLA MB had a rougher surface and larger average fiber diameter, while the average pore diameter and air permeability reduced. The input of CEO led to a decrease in the tensile strength of CEO/CS@PLA MB and an obvious increase in the elongation at break. The combination of CS and CEO shows excellent synergistic antibacterial effect. The antibacterial efficiencies of CEO/CS@PLA MB against Escherichia coli and Staphylococcus aureus enhance with the increase of the CEO content. When the weight ratio of CS to CEO is 1:2, the antibacterial efficiencies of CEO2/CS@PLA MB against E. coli and S. aureus are 99.98 and 99.99%, respectively. When being applied to the preservation of fresh strawberry, CEO2/CS@PLA MB can effectively inhibit the microbial growth in strawberry and reduce decay, which extends the shelf time of strawberry.
Collapse
Affiliation(s)
- Hui Sun
- College
of Textiles Science and Engineering, Zhejiang
Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China
- Zhejiang
Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Bingbing Wang
- College
of Textiles Science and Engineering, Zhejiang
Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China
- Zhejiang
Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Youxiu Xie
- College
of Textiles Science and Engineering, Zhejiang
Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China
- Zhejiang
Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Fengchun Li
- College
of Textiles Science and Engineering, Zhejiang
Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China
- Zhejiang
Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Tao Xu
- College
of Textiles Science and Engineering, Zhejiang
Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China
- Zhejiang
Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Bin Yu
- College
of Textiles Science and Engineering, Zhejiang
Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China
- Zhejiang
Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| |
Collapse
|
18
|
Bahsaine K, El Allaoui B, Benzeid H, El Achaby M, Zari N, Qaiss AEK, Bouhfid R. Hemp cellulose nanocrystals for functional chitosan/polyvinyl alcohol-based films for food packaging applications. RSC Adv 2023; 13:33294-33304. [PMID: 37964908 PMCID: PMC10641453 DOI: 10.1039/d3ra06586c] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023] Open
Abstract
Hemp is known for its swift growth and remarkable sustainability, requiring significantly less water, an adaptable cultivation to a wide range of climates when compared to other fibers sources, making it a practical and environmentally friendly choice for packaging materials. The current research seeks to extract cellulose nanocrystals (CNCs) from hemp fibers using alkali treatment followed by acid hydrolysis and assess their reinforcing capacity in polyvinyl alcohol (PVA) and chitosan (CS) films. AFM analysis confirmed the existence of elongated, uniquely nanosized CNC fibers. The length of the isolated CNCs was approximately 277.76 ± 61 nm, diameter was 6.38 ± 1.27 nm and its aspect ratio was 44.69 ± 11.08. The FTIR and SEM analysis indicated the successful removal of non-cellulosic compounds. Furthermore, the study explored the impact of adding CNCs at varying weight percentages (0, 0.5, 1, 2.5, and 5 wt%) as a strengthening agent on the chemical composition, structure, tensile characteristics, transparency, and water solubility of the bionanocomposite films. Adding CNCs to the CS/PVA film, up to 5 wt%, resulted in an improvement in both the Young's modulus and tensile strength of the bionanocomposite film, which are measured at (412.46 ± 10.49 MPa) and (18.60 ± 3.42 MPa), respectively, in contrast to the control films with values of (202.32 ± 22.50 MPa) and (13.72 ± 2.61 MPa), respectively. The scanning electron microscopy (SEM) images reveal the creation of a CS/PVA/CNC film that appears smooth, with no signs of clumping or clustering. The blending and introduction of CNCs have yielded transparent and biodegradable CS/PVA films. This incorporation has led to a reduction in the gas transmission rate (from 7.013 to 4.159 cm3 (m2 day·0.1 MPa))-1, a decrease in transparency (from 90.23% to 82.47%), and a lowered water solubility (from 48% to 33%). This study is the inaugural effort to propose the utilization of hemp-derived CNC as a strengthening component in the development of mechanically robust and transparent CS/PVA-CNC bio-nanocomposite films, holding substantial potential for application in the field of food packaging.
Collapse
Affiliation(s)
- Kenza Bahsaine
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center Rue Mohamed El Jazouli, Madinat El Irfane 10100 Rabat Morocco
- Laboratoire de Chimie Analytique, Faculté de Médecine et de Pharmacie, Université Mohammed V de Rabat Rabat Morocco
| | - Brahim El Allaoui
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center Rue Mohamed El Jazouli, Madinat El Irfane 10100 Rabat Morocco
- Laboratoire de Chimie Analytique, Faculté de Médecine et de Pharmacie, Université Mohammed V de Rabat Rabat Morocco
| | - Hanane Benzeid
- Laboratoire de Chimie Analytique, Faculté de Médecine et de Pharmacie, Université Mohammed V de Rabat Rabat Morocco
| | - Mounir El Achaby
- Materials Science and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P) Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir Morocco
| | - Nadia Zari
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center Rue Mohamed El Jazouli, Madinat El Irfane 10100 Rabat Morocco
- Mohammed VI Polytechnic University Lot 660 - Hay Moulay Rachid, 43150 Ben Guerir Morocco
| | - Abou El Kacem Qaiss
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center Rue Mohamed El Jazouli, Madinat El Irfane 10100 Rabat Morocco
- Mohammed VI Polytechnic University Lot 660 - Hay Moulay Rachid, 43150 Ben Guerir Morocco
| | - Rachid Bouhfid
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center Rue Mohamed El Jazouli, Madinat El Irfane 10100 Rabat Morocco
- Mohammed VI Polytechnic University Lot 660 - Hay Moulay Rachid, 43150 Ben Guerir Morocco
| |
Collapse
|
19
|
Anugrah DSB, Darmalim LV, Sinanu JD, Pramitasari R, Subali D, Prasetyanto EA, Cao XT. Development of alginate-based film incorporated with anthocyanins of red cabbage and zinc oxide nanoparticles as freshness indicator for prawns. Int J Biol Macromol 2023; 251:126203. [PMID: 37579908 DOI: 10.1016/j.ijbiomac.2023.126203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/18/2023] [Accepted: 08/05/2023] [Indexed: 08/16/2023]
Abstract
The objective of this study was to develop pH-sensitive film indicators for intelligent food packaging by incorporating red cabbage anthocyanins (RCA) and zinc oxide nanoparticles (ZnO NPs) into an alginate (Alg) film, aiming to mitigate the risk of foodborne illnesses. The films were fabricated using a solvent-casting method and crosslinked with a calcium chloride (CaCl2) solution. Thorough evaluations of the films' physical, mechanical, and structural properties demonstrated significant improvements in elastic modulus and UV/vis light barrier characteristics, reduced water vapor permeability (WVP), and moisture content attributed to integrating RCA and ZnO NPs. The resulting film displayed discernible color changes when exposed to various pH buffer solutions and ammonia vapor, indicating heightened sensitivity to pH fluctuations due to the presence of ZnO NPs. Visual assessment using prawns as test specimens revealed a color shift from violet (indicating satisfactory condition) to blue-greenish (indicating spoilage), corroborated by colorimetric analysis. Moreover, the Alg/ZnO/RCA film exhibited antioxidant and antibacterial properties, demonstrated biodegradation activity, and showed no toxic effects on RSC96 cells, further underscoring its potential as an effective freshness indicator for food products.
Collapse
Affiliation(s)
- Daru Seto Bagus Anugrah
- Biotechnology Study Program, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia.
| | - Laura Virdy Darmalim
- Biotechnology Study Program, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia
| | - Juan David Sinanu
- Biotechnology Study Program, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia
| | - Rianita Pramitasari
- Food Technology Study Program, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia
| | - Dionysius Subali
- Biotechnology Study Program, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia
| | - Eko Adi Prasetyanto
- Pharmacy Study Program, Faculty of Medicine and Health Science, Atma Jaya Catholic University of Indonesia, Pluit Campus, Tangerang 15345, Indonesia
| | - Xuan Thang Cao
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| |
Collapse
|
20
|
Motelica L, Vasile BS, Ficai A, Surdu AV, Ficai D, Oprea OC, Andronescu E, Mustățea G, Ungureanu EL, Dobre AA. Antibacterial Activity of Zinc Oxide Nanoparticles Loaded with Essential Oils. Pharmaceutics 2023; 15:2470. [PMID: 37896230 PMCID: PMC10610287 DOI: 10.3390/pharmaceutics15102470] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
One major problem with the overuse of antibiotics is that the microorganisms acquire resistance; thus the dose must be increased unsustainably. To overcome this problem, researchers from around the world are actively investigating new types of antimicrobials. Zinc oxide (ZnO) nanoparticles (NPs) have been proven to exhibit strong antimicrobial effects; moreover, the Food and Drugs Administration (FDA) considers ZnO as GRAS (generally recognized as safe). Many essential oils have antimicrobial activity and their components do not generate resistance over time. One of the drawbacks is the high volatility of some components, which diminishes the antimicrobial action as they are eliminated. The combination of ZnO NPs and essential oils can synergistically produce a stronger antimicrobial effect, and some of the volatile compounds can be retained on the nanoparticles' surface, ensuring a better-lasting antimicrobial effect. The samples were characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), and thermal analysis (TG-DSC) coupled with analysis of evolved gases using FTIR. The ZnO NPs, with a size of ~35 nm, exhibited a loading between 1.44% and 15.62%-the lower values were specific for limonene-containing oils (e.g., orange, grapefruit, bergamot, or limette), while high values were obtained from cinnamon, minzol, thyme, citronella, and lavender oils-highlighting differences among non-polar terpenes and alcohol or aldehyde derivatives. The antibacterial assay indicated the existence of a synergic action among components and a high dependency on the percentage of loaded oil. Loaded nanoparticles offer immense potential for the development of materials with specific applications, such as wound dressings or food packaging. These nanoparticles can be utilized in scenarios where burst delivery is desired or when prolonged antibacterial activity is sought.
Collapse
Affiliation(s)
- Ludmila Motelica
- National Research Center for Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (L.M.); (E.A.)
- National Research Center for Food Safety, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Bogdan-Stefan Vasile
- National Research Center for Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (L.M.); (E.A.)
- National Research Center for Food Safety, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Anton Ficai
- National Research Center for Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (L.M.); (E.A.)
- National Research Center for Food Safety, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Adrian-Vasile Surdu
- National Research Center for Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (L.M.); (E.A.)
- National Research Center for Food Safety, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Denisa Ficai
- National Research Center for Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (L.M.); (E.A.)
- National Research Center for Food Safety, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Research Center for Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (L.M.); (E.A.)
- National Research Center for Food Safety, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Ecaterina Andronescu
- National Research Center for Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (L.M.); (E.A.)
- National Research Center for Food Safety, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Gabriel Mustățea
- National R&D Institute for Food Bioresources—IBA Bucharest, Dinu Vintila Street 6, 021102 Bucharest, Romania
| | - Elena Loredana Ungureanu
- National R&D Institute for Food Bioresources—IBA Bucharest, Dinu Vintila Street 6, 021102 Bucharest, Romania
| | - Alina Alexandra Dobre
- National R&D Institute for Food Bioresources—IBA Bucharest, Dinu Vintila Street 6, 021102 Bucharest, Romania
| |
Collapse
|
21
|
Valtsifer VA, Sivtseva AV, Kondrashova NB, Shamsutdinov AS, Averkina AS, Valtsifer IV, Feklistova IN, Strelnikov VN. Influence of Synthesis Conditions on the Properties of Zinc Oxide Obtained in the Presence of Nonionic Structure-Forming Compounds. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2537. [PMID: 37764565 PMCID: PMC10536475 DOI: 10.3390/nano13182537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
This work investigated the influence of synthesis conditions, including the use of nonionic structure-forming compounds (surfactants) with different molecular weights (400-12,600 g/mol) and various hydrophilic/hydrophobic characteristics, as well as the use of a glass substrate and hydrothermal exposure on the texture and structural properties of ZnO samples. By X-ray analysis, it was determined that the synthesis intermediate in all cases is the compound Zn5(OH)8(NO3)2∙2H2O. It was shown that thermolysis of this compound at 600 °C, regardless of the physicochemical properties of the surfactants, leads to the formation of ZnO with a wurtzite structure and spherical or oval particles. The particle size increased slightly as the molecular weight and viscosity of the surfactants grew, from 30 nm using Pluronic F-127 (MM = 12,600) to 80 nm using Pluronic L-31 (MM = 1100), PE-block-PEG (MM = 500) and PEG (MM = 400). Holding the pre-washed synthetic intermediates (Zn5(OH)8(NO3)2∙2H2O) under hydrothermal conditions resulted in the formation of hexagonal ZnO rod crystal structures of various sizes. It was shown that the largest ZnO particles (10-15 μm) were observed in a sample obtained during hydrothermal exposure using Pluronic P-123 (MM = 5800). Atomic adsorption spectroscopy performed comparative quantitative analysis of residual Zn2+ ions in the supernatant of ZnO samples with different particle sizes and shapes. It was shown that the residual amount of Zn2+ ions was higher in the case of examining ZnO samples which have spherical particles of 30-80 nm. For example, in the supernatant of a ZnO sample that had a particle size of 30 nm, the quantitative content of Zn2+ ions was 10.22 mg/L.
Collapse
Affiliation(s)
- Viktor A. Valtsifer
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | - Anastasia V. Sivtseva
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | - Natalia B. Kondrashova
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | - Artem S. Shamsutdinov
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | - Anastasia S. Averkina
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | - Igor V. Valtsifer
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | | | - Vladimir N. Strelnikov
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| |
Collapse
|
22
|
Castro JI, Araujo-Rodríguez DG, Valencia-Llano CH, López Tenorio D, Saavedra M, Zapata PA, Grande-Tovar CD. Biocompatibility Assessment of Polycaprolactone/Polylactic Acid/Zinc Oxide Nanoparticle Composites under In Vivo Conditions for Biomedical Applications. Pharmaceutics 2023; 15:2196. [PMID: 37765166 PMCID: PMC10535598 DOI: 10.3390/pharmaceutics15092196] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The increasing demand for non-invasive biocompatible materials in biomedical applications, driven by accidents and diseases like cancer, has led to the development of sustainable biomaterials. Here, we report the synthesis of four block formulations using polycaprolactone (PCL), polylactic acid (PLA), and zinc oxide nanoparticles (ZnO-NPs) for subdermal tissue regeneration. Characterization by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) confirmed the composition of the composites. Additionally, the interaction of ZnO-NPs mainly occurred with the C=O groups of PCL occurring at 1724 cm-1, which disappears for F4, as evidenced in the FT-IR analysis. Likewise, this interaction evidenced the decrease in the crystallinity of the composites as they act as crosslinking points between the polymer backbones, inducing gaps between them and weakening the strength of the intermolecular bonds. Thermogravimetric (TGA) and differential scanning calorimetry (DSC) analyses confirmed that the ZnO-NPs bind to the carbonyl groups of the polymer, acting as weak points in the polymer backbone from where the different fragmentations occur. Scanning electron microscopy (SEM) showed that the increase in ZnO-NPs facilitated a more compact surface due to the excellent dispersion and homogeneous accumulation between the polymeric chains, facilitating this morphology. The in vivo studies using the nanocomposites demonstrated the degradation/resorption of the blocks in a ZnO-NP-dependant mode. After degradation, collagen fibers (Type I), blood vessels, and inflammatory cells continue the resorption of the implanted material. The results reported here demonstrate the relevance and potential impact of the ZnO-NP-based scaffolds in soft tissue regeneration.
Collapse
Affiliation(s)
- Jorge Iván Castro
- Laboratorio SIMERQO, Departamento de Química, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia;
| | - Daniela G. Araujo-Rodríguez
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia;
| | - Carlos Humberto Valencia-Llano
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia; (C.H.V.-L.); (D.L.T.)
| | - Diego López Tenorio
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia; (C.H.V.-L.); (D.L.T.)
| | - Marcela Saavedra
- Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile; (M.S.); (P.A.Z.)
| | - Paula A. Zapata
- Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile; (M.S.); (P.A.Z.)
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia;
| |
Collapse
|
23
|
Alvarado N, Abarca RL, Linares-Flores C. Use of Chitosan-Based Polyelectrolyte Complexes for Its Potential Application in Active Food Packaging: A Review of Recent Literature. Int J Mol Sci 2023; 24:11535. [PMID: 37511293 PMCID: PMC10381007 DOI: 10.3390/ijms241411535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The current challenges in the food packaging field are, on one side, replacing plastic from non-renewable sources with biopolymers and, on the other hand, generating a packaging material with attractive properties for the consumer. Currently, the consumer is ecologically concerned; the food packaging industry must think ahead to satisfy their needs. In this context, the utilization of polyelectrolyte complexes (PECs) in this industry presents itself as an excellent candidate for fulfilling these requirements. PECs possess enticing characteristics such as encapsulation, protection, and transportation, among others. On the other hand, diverse types of biopolymers have been used in the formation of PECs, such as alginate, cellulose, gelatin, collagen, and so on. Hence, this paper reviews the use of PECs in food packaging where chitosan forms polyelectrolyte complexes.
Collapse
Affiliation(s)
- Nancy Alvarado
- Grupo QBAB, Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile
| | - Romina L Abarca
- Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Macul, Santiago 7820436, Chile
| | - Cristian Linares-Flores
- Instituto de Ciencias Naturales, Universidad de Las Américas, Manuel Montt 948, Providencia, Santiago 7500975, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Campus Los Leones, Lota 2465, Providencia, Santiago 7510157, Chile
| |
Collapse
|
24
|
Spoială A, Ilie CI, Dolete G, Petrișor G, Trușcă RD, Motelica L, Ficai D, Ficai A, Oprea OC, Dițu ML. The Development of Alginate/Ag NPs/Caffeic Acid Composite Membranes as Adsorbents for Water Purification. MEMBRANES 2023; 13:591. [PMID: 37367795 DOI: 10.3390/membranes13060591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Since the water pollution problem still affects the environmental system and human health, the need to develop innovative membranes has become imperious. Lately, researchers have focused on developing novel materials to help diminish the contamination problem. The aim of present research was to obtain innovative adsorbent composite membranes based on a biodegradable polymer, alginate, to remove toxic pollutants. Of all pollutants, lead was chosen due to its high toxicity. The composite membranes were successfully obtained through a direct casting method. The silver nanoparticles (Ag NPs) and caffeic acid (CA) from the composite membranes were kept at low concentrations, which proved enough to bestow antimicrobial activity to the alginate membrane. The obtained composite membranes were characterised by Fourier transform infrared spectroscopy and microscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetric analysis (TG-DSC). Swelling behaviour, lead ion (Pb2+) removal capacity, regeneration and reusability were also determined. Further, the antimicrobial activity was tested against selected pathogenic strains (S. aureus, E. faecalis sp., P. aeruginosa, E. coli and C. albicans). The presence of Ag NPs and CA improves the antimicrobial activity of the newly developed membranes. Overall, the composite membranes are suitable for complex water treatment (removal of heavy metal ions and antimicrobial treatment).
Collapse
Affiliation(s)
- Angela Spoială
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials & National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials & National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials & National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Gabriela Petrișor
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials & National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Roxana-Doina Trușcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials & National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Ludmila Motelica
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials & National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Denisa Ficai
- National Centre for Micro and Nanomaterials & National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials & National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Centre for Micro and Nanomaterials & National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Mara-Lia Dițu
- Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania
| |
Collapse
|
25
|
Dang X, Du Y, Wang X, Liu X, Yu Z. New indoleacetic acid-functionalized soluble oxidized starch-based nonionic biopolymers as natural antibacterial materials. Int J Biol Macromol 2023:125071. [PMID: 37245777 DOI: 10.1016/j.ijbiomac.2023.125071] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
This study aims to develop a new soluble oxidized starch-based nonionic antibacterial polymer (OCSI) featuring high antibacterial activity and non-leachability by grafting indoleacetic acid monomer (IAA) onto the oxidized corn starch (OCS). The synthesized OCSI was characterized analytically by Nuclear magnetic resonance H-spectrometer (1H NMR), Fourier transform infrared spectroscopy (FTIR), Ultraviolet-visible spectroscopy (UV-Vis), X-ray diffractometer (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning Electronic Microscopy (SEM), Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The results showed that the synthesized OCSI was endowed with high thermal stability and favorable solubility, and the substitution degree reached 0.6. Besides, the disk diffusion test revealed a lowest OCSI inhibitory concentration of 5 μg disk-1, and showed significant bactericidal activity against Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli). Moreover, the antibacterial films (OCSI-PCL), featuring their good compatibility, mechanical properties, antibacterial activity, non-leachability, and low water vapor permeability (WVP), were also successfully prepared by blending OCSI with biodegradable polycaprolactone (PCL). Finally, CCK-8 assay results confirmed the excellent biocompatibility of the OCSI-PCL films. Overall, this very study evidenced the applicability of the obtained oxidized starch-based biopolymers as an eco-friendly non-ionic antibacterial material and confirmed their promising applications in areas including biomedical materials, medical devices, and food packaging.
Collapse
Affiliation(s)
- Xugang Dang
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University, Wuhan 430200, PR China.
| | - Yongmei Du
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Xuechuan Wang
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Xinhua Liu
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Zhenfu Yu
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| |
Collapse
|
26
|
Liao Q, Si W, Zhang J, Sun H, Qin L. In Situ Silver Nanonets for Flexible Stretchable Electrodes. Int J Mol Sci 2023; 24:ijms24119319. [PMID: 37298270 DOI: 10.3390/ijms24119319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Shape-controlled synthesis is an effective method for controlling the physicochemical properties of nanomaterials, especially single-crystal nanomaterials, but it is difficult to control the morphology of single-crystal metallic nanomaterials. Silver nanowires (AgNWs) are regarded as key materials for the new generation of human-computer interaction, which can be applied in large-scale flexible and foldable devices, large-size touch screens, transparent LED films, photovoltaic cells, etc. When used on a large scale, the junction resistance will be generated at the overlap between AgNWs and the conductivity will decrease. When stretched, the overlap of AgNWs will be easily disconnected, which will lead to a decrease in electrical conductivity or even system failure. We propose that in situ silver nanonets (AgNNs) can solve the above two problems. The AgNNs exhibited excellent electrical conductivity (0.15 Ω∙sq-1, which was 0.2 Ω∙sq-1 lower than the 0.35 Ω∙sq-1 square resistance of AgNWs) and extensibility (the theoretical tensile rate was 53%). In addition to applications in flexible stretchable sensing and display industries, they also have the potential to be used as plasmonic materials in molecular recognition, catalysis, biomedicine and other fields.
Collapse
Affiliation(s)
- Qingwei Liao
- Key Laboratory of Sensors, Beijing Information Science & Technology University, Beijing 100192, China
- Key Laboratory of Modern Measurement & Control Technology, Ministry of Education, Beijing Information Science & Technology University, Beijing 100192, China
- Key Laboratory of Photoelectric Testing Technology, Beijing Information Science & Technology University, Beijing 100192, China
| | - Wei Si
- Key Laboratory of Sensors, Beijing Information Science & Technology University, Beijing 100192, China
| | - Jingxin Zhang
- Key Laboratory of Sensors, Beijing Information Science & Technology University, Beijing 100192, China
| | - Hanchen Sun
- Key Laboratory of Sensors, Beijing Information Science & Technology University, Beijing 100192, China
| | - Lei Qin
- Key Laboratory of Sensors, Beijing Information Science & Technology University, Beijing 100192, China
- Key Laboratory of Modern Measurement & Control Technology, Ministry of Education, Beijing Information Science & Technology University, Beijing 100192, China
- Key Laboratory of Photoelectric Testing Technology, Beijing Information Science & Technology University, Beijing 100192, China
| |
Collapse
|
27
|
Hamouda RA, Alharbi AA, Al-Tuwaijri MM, Makharita RR. The Antibacterial Activities and Characterizations of Biosynthesized Zinc Oxide Nanoparticles, and Their Coated with Alginate Derived from Fucus vesiculosus. Polymers (Basel) 2023; 15:polym15102335. [PMID: 37242910 DOI: 10.3390/polym15102335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/07/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Zinc oxide nanoparticles have many advantages for nano-biotechnologists due to their intense biomedical applications. ZnO-NPs are used as antibacterial agents, which influence bacterial cells through the rupture of the cell membrane and the generation of reactive free radicals. Alginate is a polysaccharide of natural origin due to its excellent properties that are used in various biomedical applications. Brown algae are good sources of alginate and are used as a reducing agent in the synthesis of nanoparticles. This study aims to synthesize ZnO-NPs by using brown alga Fucus vesiculosus (Fu/ZnO-NPs) and also to extract alginate from the same alga, which is used in coating the ZnO-NPs (Fu/ZnO-Alg-NCMs). The characterizations of Fu/ZnO-NPs and Fu/ZnO-Alg-NCMs were determined by FTIR, TEM, XRD, and zeta potential. The antibacterial activities were applied against multidrug resistance bacteria of both gram-positive and negative. The results obtained in FT-TR showed there are some shifts in the peak positions of Fu/ZnO-NPs and Fu/ZnO-Alg-NCMs. The peak at 1655 cm-1, which assigned amide I-III, is present in both Fu/ZnO-NPs and Fu-Alg-ZnO-NCMs; this band is responsible for bio-reductions and stabilization of both nanoparticles. The TEM images proved the Fu/ZnO-NPs have rod shapes with sizes ranging from 12.68 to 17.66 and are aggregated, but Fu/ZnO/Alg-NCMs are spherical in shape with sizes ranging from 12.13 to 19.77. XRD-cleared Fu/ZnO-NPs have nine sharp peaks that are considered good crystalline, but Fu/ZnO-Alg-NCMs have four broad and sharp peaks that are considered semi-crystalline. Both Fu/ZnO-NPs and Fu/ZnO-Alg-NCMs have negative charges (-1.74 and -3.56, respectively). Fu/ZnO-NPs have more antibacterial activities than Fu/ZnO/Alg-NCMs in all tested multidrug-resistant bacterial strains. Fu/ZnO/Alg-NCMs had no effect on Acinetobacter KY856930, Staphylococcus epidermidis, and Enterobacter aerogenes, whereas there was an apparent effect of ZnO-NPs against the same strains.
Collapse
Affiliation(s)
- Ragaa A Hamouda
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
- Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City 32897, Egypt
| | - Asrar A Alharbi
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Majdah M Al-Tuwaijri
- Department of Biology, Faculty of Applied Science, Umm-Al-Qura University, Makkah Al-Mukarramah 21955, Saudi Arabia
| | - Rabab R Makharita
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
28
|
Castro-Muñoz R, Boczkaj G, Cabezas R. A Perspective on Missing Aspects in Ongoing Purification Research towards Melissa officinalis. Foods 2023; 12:foods12091916. [PMID: 37174453 PMCID: PMC10178074 DOI: 10.3390/foods12091916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Melissa officinalis L. is a medicinal plant used worldwide for ethno-medical purposes. Today, it is grown everywhere; while it is known to originate from Southern Europe, it is now found around the world, from North America to New Zealand. The biological properties of this medicinal plant are mainly related to its high content of phytochemical (bioactive) compounds, such as flavonoids, polyphenolic compounds, aldehydes, glycosides and terpenes, among many other groups of substances. Among the main biological activities associated with this plant are antimicrobial activity (against fungi and bacteria), and antispasmodic, antioxidant and insomnia properties. Today, this plant is still used by society (as a natural medicine) to alleviate many other illnesses and symptoms. Therefore, in this perspective, we provide an update on the phytochemical profiling analysis of this plant, as well as the relationships of specific biological and pharmacological effects of specific phytochemicals. Currently, among the organic solvents, ethanol reveals the highest effectiveness for the solvent extraction of precious components (mainly rosmarinic acid). Additionally, our attention is devoted to current developments in the extraction and fractionation of the phytochemicals of M. officinalis, highlighting the ongoing progress of the main strategies that the research community has employed. Finally, after analyzing the literature, we suggest potential perspectives in the field of sustainable extraction and purification of the phytochemical present in the plant. For instance, some research gaps concern the application of cavitation-assisted extraction processes, which can effectively enhance mass transfer while reducing the particle size of the extracted material in situ. Meanwhile, membrane-assisted processes could be useful in the fractionation and purification of obtained extracts. On the other hand, further studies should include the application of ionic liquids and deep eutectic solvents (DES), including DESs of natural origin (NADES) and hydrophobic DESs (hDES), as extraction or fractionating solvents, along with new possibilities for effective extraction related to DESs formed in situ, assisted by mechanical mixing (mechanochemistry-based approach).
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
| | - René Cabezas
- Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| |
Collapse
|
29
|
Salama HE, Abdel Aziz MS. Non-toxic chitosan-pyrazole adsorbent enriched with greenly synthesized zinc oxide nanoparticles for dye removal from wastewater. Int J Biol Macromol 2023; 241:124632. [PMID: 37119918 DOI: 10.1016/j.ijbiomac.2023.124632] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
The limited usage of chitosan as a dye adsorbent is attributed to its compact structure and low swelling ability, despite its exceptional properties. The present study aimed to prepare novel chitosan/pyrazole Schiff base (ChS) adsorbents enriched with greenly synthesized zinc oxide nanoparticles. The preparation of ZnO-NPs was carried out through a green approach using the Coriandrum sativum extract. The presence of ZnO-NPs at the nanoscale was validated through TEM, DLS and XRD analyses. FTIR, 1H NMR confirmed the successful preparation of the Schiff base and its ZnO-NPs adsorbents. The incorporation of ZnO-NPs improved the thermal, swelling and antimicrobial properties of the chitosan Schiff base. In addition, a significant improvement in the adsorption of Maxilon Blue dye from its aqueous solution by the Schiff base/ZnO-NPs adsorbent. The prepared ChS/ZnO-NPs adsorbent has the potential to be used as an alternative to conventional adsorbents for the removal of dyes from wastewater.
Collapse
Affiliation(s)
- Hend E Salama
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | |
Collapse
|
30
|
Valinezhad N, Talebi AF, Alamdari S. Biosynthesize, physicochemical characterization and biological investigations of chitosan-Ferula gummosa essential oil (CS-FEO) nanocomposite. Int J Biol Macromol 2023; 241:124503. [PMID: 37085080 DOI: 10.1016/j.ijbiomac.2023.124503] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
The bioavailability, solubility, stability, and evaporation rate of essential oils can all be improved by using appropriate nanocarriers. This study describes the simple biosynthesize, physicochemical, optical, and biological activity of Chitosan-Ferula gummosa essential oil (CS-FEO) nanocomposite. The prepared nanocomposite was evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) mapping, transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), UV-vis and photoluminescence (PL) techniques. The XRD investigation showed that crystallinity indexes of CS-FEO nanocomposite were lower than that of the pure CS and higher than nano-CS. According to SEM/TEM images, a spherical shape with a particle size distribution of around 50-250 nm for nanocomposite was obtained. PL measurement exhibited the addition of FEO caused a strong red emission. GC-MS analysis showed 40 various components in FEO. The antibacterial activity was studied using broth micro-dilution, disc diffusion, colony counts, and well agar diffusion methods against Gram-positive and Gram-negative bacteria. The results revealed that CS-FEO has stronger antibacterial activities than pure CS. It was also observed that the combined use of CS with FEO resulted in synergistic effects against studied bacteria. Obtained results imply that the CS-FEO may provide a new outlook in biomedical applications.
Collapse
Affiliation(s)
- Negin Valinezhad
- Department of Microbial Biotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| | - Ahmad Farhad Talebi
- Department of Microbial Biotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran.
| | - Sanaz Alamdari
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| |
Collapse
|
31
|
Smola-Dmochowska A, Lewicka K, Macyk A, Rychter P, Pamuła E, Dobrzyński P. Biodegradable Polymers and Polymer Composites with Antibacterial Properties. Int J Mol Sci 2023; 24:ijms24087473. [PMID: 37108637 PMCID: PMC10138923 DOI: 10.3390/ijms24087473] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Antibiotic resistance is one of the greatest threats to global health and food security today. It becomes increasingly difficult to treat infectious disorders because antibiotics, even the newest ones, are becoming less and less effective. One of the ways taken in the Global Plan of Action announced at the World Health Assembly in May 2015 is to ensure the prevention and treatment of infectious diseases. In order to do so, attempts are made to develop new antimicrobial therapeutics, including biomaterials with antibacterial activity, such as polycationic polymers, polypeptides, and polymeric systems, to provide non-antibiotic therapeutic agents, such as selected biologically active nanoparticles and chemical compounds. Another key issue is preventing food from contamination by developing antibacterial packaging materials, particularly based on degradable polymers and biocomposites. This review, in a cross-sectional way, describes the most significant research activities conducted in recent years in the field of the development of polymeric materials and polymer composites with antibacterial properties. We particularly focus on natural polymers, i.e., polysaccharides and polypeptides, which present a mechanism for combating many highly pathogenic microorganisms. We also attempt to use this knowledge to obtain synthetic polymers with similar antibacterial activity.
Collapse
Affiliation(s)
- Anna Smola-Dmochowska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
| | - Kamila Lewicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Alicja Macyk
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Rychter
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Dobrzyński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| |
Collapse
|
32
|
Liu J, Wang Y, Liu Y, Shao S, Zheng X, Tang K. Synergistic effect of nano zinc oxide and tea tree essential oil on the properties of soluble soybean polysaccharide films. Int J Biol Macromol 2023; 239:124361. [PMID: 37028629 DOI: 10.1016/j.ijbiomac.2023.124361] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Soluble soybean polysaccharide (SSPS)-based composite films with the addition of nano zinc oxide (nZnO, 5 wt% based on SSPS) and tea tree essential oil (TTEO, 10 wt% based on SSPS) were developed by the casting method. The effect of the combination of nZnO and TTEO on the microstructure and physical, mechanical and functional properties of SSPS films was evaluated. The results showed that the SSPS/TTEO/nZnO film exhibited enhanced water vapor barrier properties, thermal stability, water resistance, surface wettability, and total color difference, and almost completely prevented ultraviolet light transmission. The addition of TTEO and nZnO had no significant effect on the tensile strength and elongation at break of the films, but decreased the percentage of light transmittance of the films at 600 nm from 85.5 % to 10.1 %. The DPPH radical scavenging activity of the films significantly increased from 46.8 % (SSPS) to 67.7 % (SSPS/TTEO/nZnO) due to the presence of TTEO. Scanning electron microscopy analysis indicated that nZnO and TTEO were evenly dispersed in the SSPS matrix. The synergistic effect of nZnO and TTEO endowed the SSPS film with excellent antibacterial activity against E. coli and S. aureus, suggesting that the SSPS/TTEO/nZnO film could be a promising material for active packaging applications.
Collapse
Affiliation(s)
- Jie Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Yiwei Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Yanchun Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Shuaiqi Shao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Xuejing Zheng
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
33
|
Antibacterial Activity of Solvothermal Obtained ZnO Nanoparticles with Different Morphology and Photocatalytic Activity against a Dye Mixture: Methylene Blue, Rhodamine B and Methyl Orange. Int J Mol Sci 2023; 24:ijms24065677. [PMID: 36982751 PMCID: PMC10058279 DOI: 10.3390/ijms24065677] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
In this paper, we report the synthesis of ZnO nanoparticles (NPs) by forced solvolysis of Zn(CH3COO)2·2H2O in alcohols with a different number of –OH groups. We study the influence of alcohol type (n-butanol, ethylene glycol and glycerin) on the size, morphology, and properties of the obtained ZnO NPs. The smallest polyhedral ZnO NPs (<30 nm) were obtained in n-butanol, while in ethylene glycol the NPs measured on average 44 nm and were rounded. Polycrystalline particles of 120 nm were obtained in glycerin only after water refluxing. In addition, here, we report the photocatalytic activity, against a dye mixture, of three model pollutants: methyl orange (MO), methylene blue (MB), and rhodamine B (RhB), a model closer to real situations where water is polluted with many chemicals. All samples exhibited good photocatalytic activity against the dye mixture, with degradation efficiency reaching 99.99%. The sample with smallest nanoparticles maintained a high efficiency >90%, over five catalytic cycles. Antibacterial tests were conducted against Gram-negative strains Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa, and Escherichia coli, and Gram-positive strains Enterococcus faecalis, Bacillus subtilis, Staphylococcus aureus, and Bacillus cereus. The ZnO samples presented strong inhibition of planktonic growth for all tested strains, indicating that they can be used for antibacterial applications, such as water purification.
Collapse
|
34
|
Bîrcă AC, Chircov C, Niculescu AG, Hildegard H, Baltă C, Roșu M, Mladin B, Gherasim O, Mihaiescu DE, Vasile BȘ, Grumezescu AM, Andronescu E, Hermenean AO. H2O2-PLA-(Alg)2Ca Hydrogel Enriched in Matrigel® Promotes Diabetic Wound Healing. Pharmaceutics 2023; 15:pharmaceutics15030857. [PMID: 36986719 PMCID: PMC10057140 DOI: 10.3390/pharmaceutics15030857] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/17/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Hydrogel-based dressings exhibit suitable features for successful wound healing, including flexibility, high water-vapor permeability and moisture retention, and exudate absorption capacity. Moreover, enriching the hydrogel matrix with additional therapeutic components has the potential to generate synergistic results. Thus, the present study centered on diabetic wound healing using a Matrigel-enriched alginate hydrogel embedded with polylactic acid (PLA) microspheres containing hydrogen peroxide (H2O2). The synthesis and physicochemical characterization of the samples, performed to evidence their compositional and microstructural features, swelling, and oxygen-entrapping capacity, were reported. For investigating the three-fold goal of the designed dressings (i.e., releasing oxygen at the wound site and maintaining a moist environment for faster healing, ensuring the absorption of a significant amount of exudate, and providing biocompatibility), in vivo biological tests on wounds of diabetic mice were approached. Evaluating multiple aspects during the healing process, the obtained composite material proved its efficiency for wound dressing applications by accelerating wound healing and promoting angiogenesis in diabetic skin injuries.
Collapse
Affiliation(s)
- Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Adelina Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Herman Hildegard
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| | - Cornel Baltă
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| | - Marcel Roșu
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| | - Bianca Mladin
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| | - Oana Gherasim
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
- Correspondence:
| | - Anca Oana Hermenean
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| |
Collapse
|
35
|
Yao X, Li L, Lu W, Yin X, Cao L. Anticancer activity of Zinc-Sodium alginate-Polyethylene glycol- Brucine nanocomposite in gallbladder cancer NOZ cells via modulation of apoptosis and P13K/mTOR pathway. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
36
|
Cheng J, Wang H. Construction and application of nano ZnO/eugenol@yam starch/microcrystalline cellulose active antibacterial film. Int J Biol Macromol 2023; 239:124215. [PMID: 36996962 DOI: 10.1016/j.ijbiomac.2023.124215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
The goal of this study was to develop new biocomposite films that can better protect and prolong the shelf life of food. Here, a ZnO: eugenol@yam starch/microcrystalline cellulose (ZnO:Eu@SC) antibacterial active film was constructed. Because of the advantages of metal oxides and plant essential oils, codoping with these can effectively improve the physicochemical and functional properties of composite films. The addition of an appropriate amount of nano-ZnO improved the compactness and thermostability, reduced the moisture sensitivity, and enhanced the mechanical and barrier properties of the film. ZnO:Eu@SC exhibited good controlled release of nano-ZnO and Eu in food simulants. Nano-ZnO and Eu release was controlled by two mechanisms: diffusion (primary) and swelling (secondary). After loading Eu, the antimicrobial activity of ZnO:Eu@SC was significantly enhanced, resulting in a synergistic antibacterial effect. Z4:Eu@SC film extended the pork shelf life by 100 % (25 °C). In humus, the ZnO:Eu@SC film was effectively degraded into fragments. Therefore, the ZnO:Eu@SC film has excellent potential in food active packaging.
Collapse
Affiliation(s)
- Junfeng Cheng
- School of Food and Health, Zhejiang A&F University, 311300, Hangzhou, Zhejiang, PR China; School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China.
| | - Hualin Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China; Anhui Institute of Agro-Products Intensive Processing Technology, 230009 Hefei, Anhui, PR China.
| |
Collapse
|
37
|
Richert A, Kalwasińska A, Jankiewicz U, Brzezinska MS. Effect of birch tar embedded in polylactide on its biodegradation. Int J Biol Macromol 2023; 239:124226. [PMID: 36996957 DOI: 10.1016/j.ijbiomac.2023.124226] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023]
Abstract
The plasticized film was made of polylactide and birch tar, which was used in a concentration of 1, 5 and 10 % by weight. Tar was added to the polymer to obtain materials with antimicrobial properties. The main purpose of this work is to characterize and biodegradation of this film after the end of its use. Therefore, the following analyzes were performed: enzymatic activity of microorganisms in the presence of polylactide (PLA) film containing birch tar (BT), biodegradation process in compost, barrier changes and structural properties of the film before and after biodegradation and bioaugmentation. Biological oxygen demand BOD21, water vapor permeability (Pv), oxygen permeability (Po), scanning electron microscopy (SEM) and enzymatic activity of microorganisms were assessed. Microorganism strains Bacillus toyonensis AK2 and Bacillus albus AK3 were isolated and identified, which constituted an effective consortium increasing the susceptibility of polylactide polymer material with tar to biodegradation in compost. Analyses with the use of the above-mentioned strains had an impact on the change of physicochemical properties, e.g. the presence of biofilm on the surface of the analyzed films and the reduction of the barrier properties of the film, which translates into the recorded susceptibility to biodegradation of these materials. The analyzed films can be used in the packaging industry, and after use, subjected to intentional biodegradation processes, including bioaugmentation.
Collapse
Affiliation(s)
- Agnieszka Richert
- Department of Genetics, Faculty of Biology and Veterinary Science, Nicolaus Copernicus University in Toruń, Gagarina 11, 87-100 Torun, Poland.
| | - Agnieszka Kalwasińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Gagarina 11, 87-100 Torun, Poland
| | - Urszula Jankiewicz
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Gagarina 11, 87-100 Torun, Poland
| |
Collapse
|
38
|
Increasing Bioavailability of Trans-Ferulic Acid by Encapsulation in Functionalized Mesoporous Silica. Pharmaceutics 2023; 15:pharmaceutics15020660. [PMID: 36839982 PMCID: PMC9968071 DOI: 10.3390/pharmaceutics15020660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Two types of mesoporous materials, MCM-41 and MCM-48, were functionalized by the soft-template method using (3-aminopropyl)triethoxysilane (APTES) as a modifying agent. The obtained mesoporous silica materials were loaded with trans-ferulic acid (FA). In order to establish the morphology and structure of mesoporous materials, a series of specific techniques were used such as: X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Brunauer-Emmet-Teller (BET), Fourier Transform Infrared Spectroscopy (FTIR) and thermogravimetric analysis (TGA). We monitored the in vitro release of the loaded FA at two different pH values, by using simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). Additionally, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and Candida albicans ATCC 10231 were used to evaluate the antimicrobial activity of FA loaded mesoporous silica materials. In conclusion such functionalized mesoporous materials can be employed as controlled release systems for polyphenols extracted from natural sources.
Collapse
|
39
|
Sharafi H, Moradi M, Sharafi K. A systematic review and meta-analysis of the use of plant essential oils and extracts in the development of antimicrobial edible films for dairy application. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2023; 14:179-194. [PMID: 37181858 PMCID: PMC10170464 DOI: 10.30466/vrf.2022.1986122.3730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/19/2023] [Indexed: 05/16/2023]
Abstract
The purpose of this review was to assess the use of plant essential oils and extracts (PEOE) in the development of antimicrobial edible films for dairy application through a systematic review and meta-analysis. All studies published in multiple databases were explored via PRISMA protocol on November 1, 2022. According to the results, the interquartile range of pathogen reduction potential of essential oil (EO) in dairy products, irrespective of EO, film and product type, was 0.10 - 4.70 log CFU g-1 per % concentration. The findings from 38 articles indicate that among all EOs or their compounds, Zataria multiflora Boiss in protein film, thyme in protein film, Z. multiflora Boiss EO in protein film, Trans-cinnamaldehyde in carbohydrate film and lemongrass EO in protein film had extraordinary pathogen reduction potential on important foodborne pathogens. In the case of plant extract, fish gelatin film with Lepidium sativum extract, whey protein isolate film loaded with oregano EO and carboxymethyl cellulose film with clove EOs had the highest antimicrobial effect on mesophilic bacteria (9.50 log CFU g-1 per % concentration), yeast-mold (2.63 log CFU g-1 per % concentration) and mesophilic/ psychrophilic counts (> 9.06 log CFU g-1 per % concentration), respectively. Listeria monocytogenes is the primary species of interest; whereas, mesophiles and mold-yeast populations were the most investigated microbiota/mycobiota in cheese with PEOE-incorporated film. In light of these findings, the choice of PEOE at appropriate concentrations with the selection of appropriate edible film may improve the safety, sensory, and shelf life of dairy products.
Collapse
Affiliation(s)
- Houshmand Sharafi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran;
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran;
- Correspondence Mehran Moradi. DVM, PhD Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran E-mail:
| | - Kiomars Sharafi
- Research Center for Environmental Determinants of Health, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
40
|
Motelica L, Vasile BS, Ficai A, Surdu AV, Ficai D, Oprea OC, Andronescu E, Jinga DC, Holban AM. Influence of the Alcohols on the ZnO Synthesis and Its Properties: The Photocatalytic and Antimicrobial Activities. Pharmaceutics 2022; 14:2842. [PMID: 36559334 PMCID: PMC9783502 DOI: 10.3390/pharmaceutics14122842] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Zinc oxide (ZnO) nanomaterials are used in various health-related applications, from antimicrobial textiles to wound dressing composites and from sunscreens to antimicrobial packaging. Purity, surface defects, size, and morphology of the nanoparticles are the main factors that influence the antimicrobial properties. In this study, we are comparing the properties of the ZnO nanoparticles obtained by solvolysis using a series of alcohols: primary from methanol to 1-hexanol, secondary (2-propanol and 2-butanol), and tertiary (tert-butanol). While the synthesis of ZnO nanoparticles is successfully accomplished in all primary alcohols, the use of secondary or tertiary alcohols does not lead to ZnO as final product, underlining the importance of the used solvent. The shape of the obtained nanoparticles depends on the alcohol used, from quasi-spherical to rods, and consequently, different properties are reported, including photocatalytic and antimicrobial activities. In the photocatalytic study, the ZnO obtained in 1-butanol exhibited the best performance against methylene blue (MB) dye solution, attaining a degradation efficiency of 98.24%. The comparative study among a series of usual model dyes revealed that triarylmethane dyes are less susceptible to photo-degradation. The obtained ZnO nanoparticles present a strong antimicrobial activity on a broad range of microorganisms (bacterial and fungal strains), the size and shape being the important factors. This permits further tailoring for use in medical applications.
Collapse
Affiliation(s)
- Ludmila Motelica
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Bogdan-Stefan Vasile
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Anton Ficai
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Adrian-Vasile Surdu
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Denisa Ficai
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Ecaterina Andronescu
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Dan Corneliu Jinga
- Department of Medical Oncology, Neolife Medical Center, Ficusului Bd. 40, 077190 Bucharest, Romania
| | - Alina Maria Holban
- Microbiology and Immunology Department, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania
| |
Collapse
|
41
|
Nastulyavichus A, Khaertdinova L, Tolordava E, Yushina Y, Ionin A, Semenova A, Kudryashov S. Additive Nanosecond Laser-Induced Forward Transfer of High Antibacterial Metal Nanoparticle Dose onto Foodborne Bacterial Biofilms. MICROMACHINES 2022; 13:2170. [PMID: 36557469 PMCID: PMC9788456 DOI: 10.3390/mi13122170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Additive laser-induced forward transfer (LIFT) of metal bactericidal nanoparticles from a polymer substrate directly onto food bacterial biofilms has demonstrated its unprecedented efficiency in combating pathogenic microorganisms. Here, a comprehensive study of laser fluence, metal (gold, silver and copper) film thickness, and the transfer distance effects on the antibacterial activity regarding biofilms of Gram-negative and Gram-positive food bacteria (Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Listeria monocytogenes, Salmonella spp.) indicated the optimal operation regimes of the versatile modality. LIFT-induced nanoparticle penetration into a biofilm was studied by energy-dispersion X-ray spectroscopy, which demonstrated that nanoparticles remained predominantly on the surface of the biofilm.
Collapse
Affiliation(s)
| | | | - Eteri Tolordava
- Lebedev Physical Institute, 119991 Moscow, Russia
- N.F. Gamaleya Federal Research Center of Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Yulia Yushina
- Federal State Budgetary Scientific Institution “Federal Scientific Center for Food Systems named after V.M. Gorbatov” Russian Academy of Sciences, 109316 Moscow, Russia
| | - Andrey Ionin
- Lebedev Physical Institute, 119991 Moscow, Russia
| | - Anastasia Semenova
- Federal State Budgetary Scientific Institution “Federal Scientific Center for Food Systems named after V.M. Gorbatov” Russian Academy of Sciences, 109316 Moscow, Russia
| | | |
Collapse
|
42
|
Rizal S, Alfatah T, Abdul Khalil HPS, Yahya EB, Abdullah CK, Mistar EM, Ikramullah I, Kurniawan R, Bairwan RD. Enhanced Functional Properties of Bioplastic Films Using Lignin Nanoparticles from Oil Palm-Processing Residue. Polymers (Basel) 2022; 14:5126. [PMID: 36501521 PMCID: PMC9740209 DOI: 10.3390/polym14235126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
The development of bioplastic materials that are biobased and/or degradable is commonly presented as an alleviating alternative, offering sustainable and eco-friendly properties over conventional petroleum-derived plastics. However, the hydrophobicity, water barrier, and antimicrobial properties of bioplastics have hindered their utilization in packaging applications. In this study, lignin nanoparticles (LNPs) with a purification process were used in different loadings as enhancements in a Kappaphycus alvarezii matrix to reduce the hydrophilic nature and improve antibacterial properties of the matrix and compared with unpurified LNPs. The influence of the incorporation of LNPs on functional properties of bioplastic films, such as morphology, surface roughness, structure, hydrophobicity, water barrier, antimicrobial, and biodegradability, was studied and found to be remarkably enhanced. Bioplastic film containing 5% purified LNPs showed the optimum enhancement in almost all of the ultimate performances. The enhancement is related to strong interfacial interaction between the LNPs and matrix, resulting in high compatibility of films. Bioplastic films could have additional advantages and provide breakthroughs in packaging materials for a wide range of applications.
Collapse
Affiliation(s)
- Samsul Rizal
- Department of Mechanical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Tata Alfatah
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - H. P. S. Abdul Khalil
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Esam Bashir Yahya
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - C. K. Abdullah
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Eka Marya Mistar
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Ikramullah Ikramullah
- Department of Mechanical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Rudi Kurniawan
- Department of Mechanical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - R. D. Bairwan
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
43
|
Nanoreinforcement as a strategy to improve physical properties of biodegradable composite films based on biopolymers. Food Res Int 2022; 162:112178. [DOI: 10.1016/j.foodres.2022.112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/31/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
|
44
|
Rout S, Tambe S, Deshmukh RK, Mali S, Cruz J, Srivastav PP, Amin PD, Gaikwad KK, Andrade EHDA, Oliveira MSD. Recent trends in the application of essential oils: The next generation of food preservation and food packaging. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Dolete G, Chircov C, Motelica L, Ficai D, Oprea OC, Gheorghe M, Ficai A, Andronescu E. Magneto-Mechanically Triggered Thick Films for Drug Delivery Micropumps. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3598. [PMID: 36296787 PMCID: PMC9607447 DOI: 10.3390/nano12203598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Given the demanding use of controlled drug delivery systems, our attention was focused on developing a magnetic film that can be triggered in the presence of a magnetic field for both drug delivery and the actuating mechanism in micropump biomedical microelectromechanical systems (BioMEMS). Magnetic alginate films were fabricated in three steps: the co-precipitation of iron salts in an alkaline environment to obtain magnetite nanoparticles (Fe3O4), the mixing of the obtained nanoparticles with a sodium alginate solution containing glycerol as a plasticizer and folic acid as an active substance, and finally the casting of the final solution in a Petri dish followed by cross-linking with calcium chloride solution. Magnetite nanoparticles were incorporated in the alginate matrix because of the well-established biocompatibility of both materials, a property that would make the film convenient for implantable BioMEMS devices. The obtained film was analyzed in terms of its magnetic, structural, and morphological properties. To demonstrate the hypothesis that the magnetic field can be used to trigger drug release from the films, we studied the release profile in an aqueous medium (pH = 8) using a NdFeB magnet as a triggering factor.
Collapse
Affiliation(s)
- Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Ludmila Motelica
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Denisa Ficai
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry, and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry, and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Marin Gheorghe
- SC NANOMEMS SRL, George Coșbuc 9, 505400 Râșnov, Romania
- Center for Technological Electronics and Interconnection Techniques, University Politehnica of Bucharest, Bulevardul Iuliu Maniu, 061071 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| |
Collapse
|
46
|
Spoială A, Ilie CI, Dolete G, Croitoru AM, Surdu VA, Trușcă RD, Motelica L, Oprea OC, Ficai D, Ficai A, Andronescu E, Dițu LM. Preparation and Characterization of Chitosan/TiO 2 Composite Membranes as Adsorbent Materials for Water Purification. MEMBRANES 2022; 12:membranes12080804. [PMID: 36005719 PMCID: PMC9414885 DOI: 10.3390/membranes12080804] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 05/30/2023]
Abstract
As it is used in all aspects of human life, water has become more and more polluted. For the past few decades, researchers and scientists have focused on developing innovative composite adsorbent membranes for water purification. The purpose of this research was to synthesize a novel composite adsorbent membrane for the removal of toxic pollutants (namely heavy metals, antibiotics and microorganisms). The as-synthesized chitosan/TiO2 composite membranes were successfully prepared through a simple casting method. The TiO2 nanoparticle concentration from the composite membranes was kept low, at 1% and 5%, in order not to block the functional groups of chitosan, which are responsible for the adsorption of metal ions. Nevertheless, the concentration of TiO2 must be high enough to bestow good photocatalytic and antimicrobial activities. The synthesized composite membranes were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and swelling capacity. The antibacterial activity was determined against four strains, Escherichia coli, Citrobacter spp., Enterococcus faecalis and Staphylococcus aureus. For the Gram-negative strains, a reduction of more than 5 units log CFU/mL was obtained. The adsorption capacity for heavy metal ions was maximum for the chitosan/TiO2 1% composite membrane, the retention values being 297 mg/g for Pb2+ and 315 mg/g for Cd2+ ions. These values were higher for the chitosan/TiO2 1% than for chitosan/TiO2 5%, indicating that a high content of TiO2 can be one of the reasons for modest results reported previously in the literature. The photocatalytic degradation of a five-antibiotic mixture led to removal efficiencies of over 98% for tetracycline and meropenem, while for vancomycin and erythromycin the efficiencies were 86% and 88%, respectively. These values indicate that the chitosan/TiO2 composite membranes exhibit excellent photocatalytic activity under visible light irradiation. The obtained composite membranes can be used for complex water purification processes (removal of heavy metal ions, antibiotics and microorganisms).
Collapse
Affiliation(s)
- Angela Spoială
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Alexa-Maria Croitoru
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Vasile-Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Roxana-Doina Trușcă
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Ludmila Motelica
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Denisa Ficai
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Lia-Mara Dițu
- Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania
| |
Collapse
|
47
|
Navarro-López DE, Sánchez-Huerta TM, Flores-Jimenez MS, Tiwari N, Sanchez-Martinez A, Ceballos-Sanchez O, Garcia-Gonzalez A, Fuentes-Aguilar RQ, Sanchez-Ante G, Corona-Romero K, Rincón-Enríquez G, López-Mena ER. Nanocomposites based on doped ZnO nanoparticles for antibacterial applications. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Soltanzadeh M, Peighambardoust SH, Ghanbarzadeh B, Amjadi S, Mohammadi M, Lorenzo JM, Hamishehkar H. Active gelatin/cress seed gum-based films reinforced with chitosan nanoparticles encapsulating pomegranate peel extract: Preparation and characterization. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107620] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
49
|
Tang H, Zhou H, Zhang R. Antibiotic Resistance and Mechanisms of Pathogenic Bacteria in Tubo-Ovarian Abscess. Front Cell Infect Microbiol 2022; 12:958210. [PMID: 35967860 PMCID: PMC9363611 DOI: 10.3389/fcimb.2022.958210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
A tubo-ovarian abscess (TOA) is a common type of inflammatory lump in clinical practice. TOA is an important, life-threatening disease, and it has become more common in recent years, posing a major health risk to women. Broad-spectrum antimicrobial agents are necessary to cover the most likely pathogens because the pathogens that cause TOA are polymicrobial. However, the response rate of antibiotic treatment is about 70%, whereas one-third of patients have poor clinical consequences and they require drainage or surgery. Rising antimicrobial resistance serves as a significant reason for the unsatisfactory medical outcomes. It is important to study the antibiotic resistance mechanism of TOA pathogens in solving the problems of multi-drug resistant strains. This paper focuses on the most common pathogenic bacteria isolated from TOA specimens and discusses the emerging trends and epidemiology of resistant Escherichia coli, Bacteroides fragilis, and gram-positive anaerobic cocci. Besides that, new methods that aim to solve the antibiotic resistance of related pathogens are discussed, such as CRISPR, nanoparticles, bacteriophages, antimicrobial peptides, and pathogen-specific monoclonal antibodies. Through this review, we hope to reveal the current situation of antibiotic resistance of common TOA pathogens, relevant mechanisms, and possible antibacterial strategies, providing references for the clinical treatment of drug-resistant pathogens.
Collapse
Affiliation(s)
- Huanna Tang
- Women’s Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Zhou
- Department of Infectious Disease, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hui Zhou, ; Runju Zhang,
| | - Runju Zhang
- Women’s Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hui Zhou, ; Runju Zhang,
| |
Collapse
|
50
|
Optimization of Technological Parameters of the Process of Forming Therapeutic Biopolymer Nanofilled Films. NANOMATERIALS 2022; 12:nano12142413. [PMID: 35889643 PMCID: PMC9318775 DOI: 10.3390/nano12142413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/17/2022]
Abstract
The prospects of using biopolymer nano-containing films for wound healing were substantiated. The main components of biopolymer composites are gelatin, polyvinyl alcohol, glycerin, lactic acid, distilled water, and zinc oxide (ZnO) nanoparticles (NPs). Biopolymer composites were produced according to various technological parameters using a mould with a chrome coating. The therapeutic properties of biopolymer films were evaluated by measuring the diameter of the protective effect. Physico-mechanical properties were studied: elasticity, vapour permeability, degradation time, and swelling. To study the influence of technological parameters of the formation process of therapeutic biopolymer nanofilled films on their therapeutic and physico-mechanical properties, the planning of the experiment was used. According to the results of the experiments, mathematical models of the second-order were built. The optimal values of technological parameters of the process are determined, which provide biopolymer nanofilled films with maximum healing ability (diameter of protective action) and sufficiently high physical and mechanical properties: elasticity, vapour permeability, degradation time and swelling. The research results showed that the healing properties of biopolymer films mainly depend on the content of ZnO NPs. Degradation of these biopolymer films provides dosed drug delivery to the affected area. The products of destruction are carbon dioxide, water, and a small amount of ZnO in the bound state, which indicates the environmental safety of the developed biopolymer film.
Collapse
|