1
|
McLoughlin ST, Wilcox P, Han S, Caccamese JF, Fisher JP. Comparison of cation and anion-mediated resolution enhancement of bioprinted hydrogels for membranous tissue fabrication. J Biomed Mater Res A 2024; 112:2329-2345. [PMID: 39101685 DOI: 10.1002/jbm.a.37783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/13/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Fabrication of engineered thin membranous tissues (TMTs) presents a significant challenge to researchers, as these structures are small in scale, but present complex anatomies containing multiple stratified cell layers. While numerous methodologies exist to fabricate such tissues, many are limited by poor mechanical properties, need for post-fabrication, or lack of cytocompatibility. Extrusion bioprinting can address these issues, but lacks the resolution necessary to generate biomimetic, microscale TMT structures. Therefore, our goal was to develop a strategy that enhances bioprinting resolution below its traditional limit of 150 μm and delivers a viable cell population. We have generated a system to effectively shrink printed gels via electrostatic interactions between anionic and cationic polymers. Base hydrogels are composed of gelatin methacrylate type A (cationic), or B (anionic) treated with anionic alginate, and cationic poly-L-lysine, respectively. Through a complex coacervation-like mechanism, the charges attract, causing compaction of the base GelMA network, leading to reduced sample dimensions. In this work, we evaluate the role of both base hydrogel and shrinking polymer charge on effective print resolution and cell viability. The alginate anion-mediated system demonstrated the ability to reach bioprinting resolutions of 70 μm, while maintaining a viable cell population. To our knowledge, this is the first study that has produced such significant enhancement in extrusion bioprinting capabilities, while also remaining cytocompatible.
Collapse
Affiliation(s)
- Shannon T McLoughlin
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Paige Wilcox
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| | - Sarang Han
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - John F Caccamese
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
2
|
Karanfil AS, Louis F, Sowa Y, Matsusaki M. Polyelectrolyte nanofilms on cell surface can induce brown adipogenic differentiation of DFATs. Biochem Biophys Res Commun 2024; 733:150432. [PMID: 39043001 DOI: 10.1016/j.bbrc.2024.150432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024]
Abstract
Obesity and its related health issues significantly burden public health systems. Brown adipose tissue holds promise for addressing metabolic disorders and balancing the body's energy, making it a key research focus. Stimulating brown adipogenesis from stem cells could advance regenerative medicine and healthcare. In our previous research, we discovered that poly-l-lysine (PLL) significantly stimulates brown adipogenesis in three-dimensional differentiation of dedifferentiated fat cells (DFATs) within fibrin gels. In this study, we evaluated polyelectrolyte (PE) nanofilms made of PLL and dextran sulfate, applied directly to DFAT surfaces to improve brown adipogenic differentiation through an innovative approach. This approach involved coating the DFAT surfaces with PE nanofilms, forming a multilayer structure that not only provided a supportive matrix but also facilitated the adsorption of essential molecules like T3 and insulin for brown adipogenesis. DFATs coated with three PE layers and encapsulated in fibrin gel showed a significant increase in the adipogenic marker UCP1 gene expression and content. This PLL-based PE nanofilm coating on DFAT surfaces can be a novel and crucial technology for promoting brown adipogenesis in regenerative medicine and healthcare.
Collapse
Affiliation(s)
- Aslı Sena Karanfil
- Department of Applied Chemistry, Graduate School of Osaka University, Japan
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Osaka University, Japan
| | - Yoshihiro Sowa
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke, Tochigi Japan; Department of Plastic and Reconstructive Surgery, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Japan; Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Osaka University, Japan; Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Osaka University, Japan.
| |
Collapse
|
3
|
Back F, Barras A, Nyam-Erdene A, Yang JC, Melinte S, Rumipamba J, Burnouf T, Boukherroub R, Szunerits S, Chuang EY. Platelet Extracellular Vesicles Loaded Gelatine Hydrogels for Wound Care. Adv Healthc Mater 2024:e2401914. [PMID: 39449544 DOI: 10.1002/adhm.202401914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/19/2024] [Indexed: 10/26/2024]
Abstract
Platelet extracellular vesicles (pEVs) isolated from clinical-grade human platelet concentrates are attracting attention as a promising agent for wound healing therapies. Although pEVs have shown potential for skin regeneration, their incorporation into wound bandages has remained limitedly explored. Herein, gelatine-based hydrogel (PAH-G) foams for pEVs loading and release are formulated by crosslinking gelatine with poly(allylamine) hydrochloride (PAH) in the presence of glutaraldehyde and sodium bicarbonate. The optimized PAH-G hydrogel foam, PAH0.24G37, displayed an elastic modulus G' = 8.5 kPa at 37 °C and retained a rubbery state at elevated temperatures. The excellent swelling properties of PAH0.24G37 allowed to easily absorb pEVs at high concentration (1 × 1011 particles mL-1). The therapeutic effect of pEVs was evaluated in vivo on a chronic wound rat model. These studies demonstrated full wound closure after 14 days upon treatment with PAH0.24G37@pEVs. The maintenance of a reduced-inflammatory environment from the onset of treatment promoted a quicker transition to skin remodeling. Promotion of follicle activation and angiogenesis as well as M1-M2 macrophage modulation are evidenced. Altogether, the multifunctional properties of PAH0.24G37@pEVs addressed the complex challenges associated with chronic diabetic wounds, representing a significant advance toward personalized treatment regimens for these conditions.
Collapse
Affiliation(s)
- Florence Back
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille, F-59000, France
| | - Alexandre Barras
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille, F-59000, France
| | - Ariunjargal Nyam-Erdene
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, 23561, Taiwan
| | - Jen-Chang Yang
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, 23561, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, 23561, Taiwan
| | - Sorin Melinte
- Université catholique de Louvain, ICTEAM, Louvain-la-Neuve, 1348, Belgium
| | - José Rumipamba
- Université catholique de Louvain, ICTEAM, Louvain-la-Neuve, 1348, Belgium
| | - Thierry Burnouf
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, 23561, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, 23561, Taiwan
| | - Rabah Boukherroub
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille, F-59000, France
| | - Sabine Szunerits
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille, F-59000, France
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, Krems, 3500, Austria
| | - Er-Yuan Chuang
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, 23561, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, 23561, Taiwan
| |
Collapse
|
4
|
Kurzyna JM, Kopiasz RJ, Paul M, Flont M, Baranowska P, Mierzejewska J, Drężek K, Tomaszewski W, Jastrzębska E, Jańczewski D. Unlocking the Potential: PEGylation and Molecular Weight Reduction of Ionenes for Enhanced Antifungal Activity and Biocompatibility. Macromol Biosci 2024; 24:e2400032. [PMID: 39018491 DOI: 10.1002/mabi.202400032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Numerous synthetic polymers, imitating natural antimicrobial peptides, have demonstrated potent antimicrobial activity, positioning them as potential candidates for new antimicrobial drugs. However, the high activity of these molecules often comes at the cost of elevated toxicity against eukaryotic organisms. In this study, a series of cationic ionenes with varying molecular weights to assess the influence of polymer chain length on ionene activity is investigated. To enhance polymer antimicrobial activity and limit toxicity a PEG side chain is introduced into the repeating unit. The resulting molecules consistently exhibited high activity against three model organisms: E. coli, S. aureus and C. albicans. The incorporation of side PEG chain improves antifungal properties and biocompatibility, regardless of molecular weight. The most important finding of this work is that the reduction of polymer molecular mass led to increased antifungal activity and reduced cytotoxicity against HMF and MRC-5 cell lines simultaneously. As a result, the best-performing molecules reported herein displayed minimal inhibitory concentrations (MIC) as low as 2 and 0.0625 µg mL1 for C. albicans and C. tropicalis respectively, demonstrating exceptional selectivity. It is plausible that some of described herein molecules can serve as potential lead candidates for new antifungal drugs.
Collapse
Affiliation(s)
- Jan M Kurzyna
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| | - Rafał J Kopiasz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
- School of Pharmacy, University of Nottingham, Boots Science Building, University Park, Nottingham, NG7 2RD, UK
| | - Martyna Paul
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
- Laboratory of White Biotechnology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Magdalena Flont
- Centre for Advanced Materials and Technology (CEZAMAT), Warsaw University of Technology, Poleczki 19, Warsaw, 02-822, Poland
| | - Patrycja Baranowska
- Centre for Advanced Materials and Technology (CEZAMAT), Warsaw University of Technology, Poleczki 19, Warsaw, 02-822, Poland
| | - Jolanta Mierzejewska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| | - Karolina Drężek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| | - Waldemar Tomaszewski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| | - Elżbieta Jastrzębska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
- Centre for Advanced Materials and Technology (CEZAMAT), Warsaw University of Technology, Poleczki 19, Warsaw, 02-822, Poland
| | - Dominik Jańczewski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| |
Collapse
|
5
|
Karanfil AS, Louis F, Sowa Y, Matsusaki M. Cationic polymer effect on brown adipogenic induction of dedifferentiated fat cells. Mater Today Bio 2024; 27:101157. [PMID: 39113911 PMCID: PMC11304885 DOI: 10.1016/j.mtbio.2024.101157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Obesity and its associated comorbidities place a substantial burden on public health. Given the considerable potential of brown adipose tissue in addressing metabolic disorders that contribute to dysregulation of the body's energy balance, this area is an intriguing avenue for research. This study aimed to assess the impact of various polymers, including collagen type I, fibronectin, laminin, gelatin, gellan gum, and poly-l-lysine (PLL), on the in vitro brown adipogenic differentiation of dedifferentiated fat cells within a fibrin gel matrix. The findings, obtained through RT-qPCR, immunofluorescent imaging, ELISA assay, and mitochondria assessment, revealed that PLL exhibited a significant browning-inducing effect. Compared to fibrin-only brown-like drops after two weeks of incubation in brown adipogenic medium, PLL showed 6 (±3) times higher UCP1 gene expression, 5 (±2) times higher UCP1 concentration by ELISA assay, and 2 (±1) times higher mitochondrial content. This effect can be attributed to PLL's electrostatic properties, which potentially facilitate the cellular uptake of crucial brown adipogenic inducers such as the thyroid hormone, triiodothyronine (T3), and insulin from the induction medium.
Collapse
Affiliation(s)
- Aslı Sena Karanfil
- Department of Applied Chemistry, Graduate School of Osaka University, Japan
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Osaka University, Japan
| | - Yoshihiro Sowa
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
- Department of Plastic and Reconstructive Surgery, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Japan
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Osaka University, Japan
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Osaka University, Japan
| |
Collapse
|
6
|
Desmond L, Margini S, Barchiesi E, Pontrelli G, Phan AN, Gentile P. Layer-by-layer assembly of nanotheranostic particles for simultaneous delivery of docetaxel and doxorubicin to target osteosarcoma. APL Bioeng 2024; 8:016113. [PMID: 38445236 PMCID: PMC10913103 DOI: 10.1063/5.0180831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Osteosarcoma (OS) is a rare form of primary bone cancer, impacting approximately 3.4 × 106 individuals worldwide each year, primarily afflicting children. Given the limitations of existing cancer therapies, the emergence of nanotheranostic platforms has generated considerable research interest in recent decades. These platforms seamlessly integrate therapeutic potential of drug compounds with the diagnostic capabilities of imaging probes within a single construct. This innovation has opened avenues for enhanced drug delivery to targeted sites while concurrently enabling real-time monitoring of the vehicle's trajectory. In this study, we developed a nanotheranostic system employing the layer-by-layer (LbL) technique on a core containing doxorubicin (DOXO) and in-house synthesized carbon quantum dots. By utilizing chitosan and chondroitin sulfate as polyelectrolytes, we constructed a multilayered coating to encapsulate DOXO and docetaxel, achieving a coordinated co-delivery of both drugs. The LbL-functionalized nanoparticles exhibited an approximate size of 150 nm, manifesting a predominantly uniform and spherical morphology, with an encapsulation efficiency of 48% for both drugs. The presence of seven layers in these systems facilitated controlled drug release over time, as evidenced by in vitro release tests. Finally, the impact of the LbL-functionalized nanoparticles was evaluated on U2OS and Saos-2 osteosarcoma cells. The synergistic effect of the two drugs was found to be crucial in inducing cell death, particularly in Saos-2 cells treated with nanoparticles at concentrations higher than 10 μg/ml. Transmission electron microscopy analysis confirmed the internalization of the nanoparticles into both cell types through endocytic mechanisms, revealing an underlying mechanism of necrosis-induced cell death.
Collapse
Affiliation(s)
- Liam Desmond
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simone Margini
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emilio Barchiesi
- Department of Architecture, Design and Urban Planning, University of Sassari, Alghero, Italy
| | | | - Anh N. Phan
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
7
|
Salehi N, Ghaee A, Moris H, Derhambakhsh S, Sharifloo MM, Safshekan F. Electrospun zein nanofibers loaded with curcumin as a wound dressing: enhancing properties with PSS and PDADMAC layers. Biomed Mater 2024; 19:025044. [PMID: 38364281 DOI: 10.1088/1748-605x/ad2a39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/16/2024] [Indexed: 02/18/2024]
Abstract
Development of wound dressings with enhanced therapeutic properties is of great interest in the modern healthcare. In this study, a zein-based nanofibrous wound dressing containing curcumin as a therapeutic agent was fabricated through electrospinning technique. In order to achieve desirable properties, such as antibacterial characteristics, reduced contact angle, and enhanced mechanical properties, the layer-by-layer technique was used for coating the surfaces of drug-loaded nanofibers by sequentially incorporating poly (sodium 4-styrene sulfonate) as a polyanion and poly (diallyldimethylammonium chloride) (PDADMAC) as a polycation. Various analyses, including scanning electron microscopy, Fourier transform infrared spectroscopy, drug release assessment., and mechanical tests were employed to assess the characteristics of the prepared wound dressings. Based on the results, coating with polyelectrolytes enhanced the Young's modulus and tensile strength of the electrospun mat from 1.34 MPa and 4.21 MPa to 1.88 MPa and 8.83 MPa, respectively. The coating also improved the controlled release of curcumin and antioxidant activity, while the outer layer, PDADMAC, exhibited antibacterial properties. The cell viability tests proved the appropriate biocompatibility of the prepared wound dressings. Moreover, our findings show that incorporation of the coating layers enhances cell migration and provides a favorable surface for cell attachment. According to the findings of this study, the fabricated nanofibrous wound dressing can be considered a promising and effective therapeutic intervention for wound management, facilitating the healing process.
Collapse
Affiliation(s)
- Nasrin Salehi
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Azadeh Ghaee
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Hanieh Moris
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Sara Derhambakhsh
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Mehdi Mansour Sharifloo
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Farzaneh Safshekan
- Department of Mechanical Engineering, Ahrar Institute of Technology and Higher Education, Rasht, Iran
| |
Collapse
|
8
|
Wasilewska M, Dąbkowska M, Pomorska A, Batys P, Kowalski B, Michna A, Adamczyk Z. Mechanisms of Fibroblast Growth Factor 21 Adsorption on Macroion Layers: Molecular Dynamics Modeling and Kinetic Measurements. Biomolecules 2023; 13:1709. [PMID: 38136581 PMCID: PMC10741725 DOI: 10.3390/biom13121709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Molecular dynamic modeling and various experimental techniques, including multi-angle dynamic light scattering (MADLS), streaming potential, optical waveguide light spectroscopy (OWLS), quartz crystal microbalance with dissipation (QCM), and atomic force microscopy (AFM), were applied to determine the basic physicochemical parameters of fibroblast growth factor 21 in electrolyte solutions. The protein size and shape, cross-section area, dependence of the nominal charge on pH, and isoelectric point of 5.3 were acquired. These data enabled the interpretation of the adsorption kinetics of FGF 21 on bare and macrocation-covered silica investigated by OWLS and QCM. It was confirmed that the protein molecules irreversibly adsorbed on the latter substrate, forming layers with controlled coverage up to 0.8 mg m-2, while their adsorption on bare silica was much smaller. The viability of two cell lines, CHO-K1 and L-929, on both bare and macrocation/FGF 21-covered substrates was also determined. It is postulated that the acquired results can serve as useful reference systems for designing complexes that can extend the half-life of FGF 21 in its active state.
Collapse
Affiliation(s)
- Monika Wasilewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.W.); (A.P.); (P.B.)
| | - Maria Dąbkowska
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University, Rybacka 1, 70-204 Szczecin, Poland; (M.D.); (B.K.)
| | - Agata Pomorska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.W.); (A.P.); (P.B.)
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.W.); (A.P.); (P.B.)
| | - Bogusław Kowalski
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University, Rybacka 1, 70-204 Szczecin, Poland; (M.D.); (B.K.)
| | - Aneta Michna
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.W.); (A.P.); (P.B.)
| | - Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.W.); (A.P.); (P.B.)
| |
Collapse
|
9
|
Tymecka M, Hac-Wydro K, Obloza M, Bonarek P, Kaminski K. The Use of a Barley-Based Well to Define Cationic Betaglucan to Study Mammalian Cell Toxicity Associated with Interactions with Biological Structures. Pharmaceutics 2023; 15:2009. [PMID: 37514195 PMCID: PMC10385077 DOI: 10.3390/pharmaceutics15072009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Among potential macromolecule-based pharmaceuticals, polycations seem particularly interesting due to their proven antimicrobial properties and use as vectors in gene therapy. This makes an understanding of the mechanisms of these molecules' interaction with living structures important, so the goal of this paper was to propose and carry out experiments that will allow us to characterize these phenomena. Of particular importance is the question of toxicity of such structures to mammalian cells and, in the work presented here, two lines, normal fibroblasts 3T3-L1 and A549 lung cancer, were used to determine this. In this work, three well-defined cationic derivatives of barley-derived betaglucans obtained in a reaction with glycidyltrimethylammonium chloride (BBGGTMAC) with different degrees of cationization (50, 70, and 100% per one glucose unit) and electrostatic charge were studied. The studies address interactions of these polymers with proteins (bovine serum proteins and BSA), nucleic acids (DNA), glycosaminoglycans (heparin), and biological membranes. The results described in this study make it possible to indicate that toxicity is most strongly influenced by interactions with biological membranes and is closely related to the electrostatic charge of the macromolecule. The presentation of this observation was the goal of this publication. This paper also shows, using fluorescently labeled variants of polymers, the penetration and impact on cell structure (only for the polymer with the highest substitution binding to cell membranes is observed) by using confocal and SEM (for the polymer with the highest degree of substitution, and the appearance of additional structures on the surface of the cell membrane is observed). The labeled polymers are also tools used together with dynamic light scattering and calorimetric titration to study their interaction with other biopolymers. As for the interactions with biological membranes, lipid Langmuir monolayers as model membrane systems were used.
Collapse
Affiliation(s)
- Malgorzata Tymecka
- Doctoral School of Exact and Natural Sciences, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Katarzyna Hac-Wydro
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Magdalena Obloza
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Piotr Bonarek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Kamil Kaminski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
10
|
Konnova S, Fakhrullin R, Akhatova F, Lama N, Lvov Y, Cavallaro G, Lazzara G, Fakhrullin R. Magnetic coiffure: Engineering of human hair surfaces with polyelectrolyte-stabilised magnetite nanoparticles. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
11
|
Ishmukhametov I, Batasheva S, Rozhina E, Akhatova F, Mingaleeva R, Rozhin A, Fakhrullin R. DNA/Magnetic Nanoparticles Composite to Attenuate Glass Surface Nanotopography for Enhanced Mesenchymal Stem Cell Differentiation. Polymers (Basel) 2022; 14:344. [PMID: 35054750 PMCID: PMC8779295 DOI: 10.3390/polym14020344] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have extensive pluripotent potential to differentiate into various cell types, and thus they are an important tool for regenerative medicine and biomedical research. In this work, the differentiation of hTERT-transduced adipose-derived MSCs (hMSCs) into chondrocytes, adipocytes and osteoblasts on substrates with nanotopography generated by magnetic iron oxide nanoparticles (MNPs) and DNA was investigated. Citrate-stabilized MNPs were synthesized by the chemical co-precipitation method and sized around 10 nm according to microscopy studies. It was shown that MNPs@DNA coatings induced chondrogenesis and osteogenesis in hTERT-transduced MSCs. The cells had normal morphology and distribution of actin filaments. An increase in the concentration of magnetic nanoparticles resulted in a higher surface roughness and reduced the adhesion of cells to the substrate. A glass substrate modified with magnetic nanoparticles and DNA induced active chondrogenesis of hTERT-transduced MSC in a twice-diluted differentiation-inducing growth medium, suggesting the possible use of nanostructured MNPs@DNA coatings to obtain differentiated cells at a reduced level of growth factors.
Collapse
Affiliation(s)
| | | | - Elvira Rozhina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russian Federation; (I.I.); (S.B.); (F.A.); (R.M.); (A.R.)
| | | | | | | | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russian Federation; (I.I.); (S.B.); (F.A.); (R.M.); (A.R.)
| |
Collapse
|
12
|
Gao H, Hu P, Sun G, Tian Y, Wang L, Mo H, Liu C, Zhang J, Shen J. Decellularized Scaffold-based Poly(ethylene glycol) Biomimetic Vascular Patches Modified with Polyelectrolyte Multilayer of Heparin and Chitosan: Preparation and Vascular Tissue Engineering Applications in a Porcine Model. J Mater Chem B 2022; 10:1077-1084. [DOI: 10.1039/d1tb02631c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanical property mismatch between vascular patches and native blood vessels can result in post-operation failure, so it is important to develop vascular patches that mimic the biomechanical properties of...
Collapse
|
13
|
Batasheva S, Fakhrullin R. Sequence Does Not Matter: The Biomedical Applications of DNA-Based Coatings and Cores. Int J Mol Sci 2021; 22:ijms222312884. [PMID: 34884687 PMCID: PMC8658021 DOI: 10.3390/ijms222312884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022] Open
Abstract
Biomedical applications of DNA are diverse but are usually associated with specific recognition of target nucleotide sequences or proteins and with gene delivery for therapeutic or biotechnological purposes. However, other aspects of DNA functionalities, like its nontoxicity, biodegradability, polyelectrolyte nature, stability, thermo-responsivity and charge transfer ability that are rather independent of its sequence, have recently become highly appreciated in material science and biomedicine. Whereas the latest achievements in structural DNA nanotechnology associated with DNA sequence recognition and Watson–Crick base pairing between complementary nucleotides are regularly reviewed, the recent uses of DNA as a raw material in biomedicine have not been summarized. This review paper describes the main biomedical applications of DNA that do not involve any synthesis or extraction of oligo- or polynucleotides with specified sequences. These sequence-independent applications currently include some types of drug delivery systems, biocompatible coatings, fire retardant and antimicrobial coatings and biosensors. The reinforcement of DNA properties by DNA complexation with nanoparticles is also described as a field of further research.
Collapse
|