1
|
Vasukutty A, Jang Y, Han D, Park H, Park IK. Navigating Latency-Inducing Viral Infections: Therapeutic Targeting and Nanoparticle Utilization. Biomater Res 2024; 28:0078. [PMID: 39416703 PMCID: PMC11480834 DOI: 10.34133/bmr.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/17/2024] [Accepted: 08/10/2024] [Indexed: 10/19/2024] Open
Abstract
The investigation into viral latency illuminates its pivotal role in the survival strategies of diverse viruses, including herpesviruses, HIV, and HPV. This underscores the delicate balance between dormancy and the potential for reactivation. The study explores the intricate mechanisms governing viral latency, encompassing episomal and proviral forms, and their integration with the host's genetic material. This integration provides resilience against cellular defenses, substantially impacting the host-pathogen dynamic, especially in the context of HIV, with implications for clinical outcomes. Addressing the challenge of eradicating latent reservoirs, this review underscores the potential of epigenetic and genetic interventions. It highlights the use of innovative nanocarriers like nanoparticles and liposomes for delivering latency-reversing agents. The precision in delivery, capacity to navigate biological barriers, and sustained drug release by these nanocarriers present a promising strategy to enhance therapeutic efficacy. The review further explores nanotechnology's integration in combating latent viral infections, leveraging nanoparticle-based platforms for drug delivery, gene editing, and vaccination. Advances in lipid-based nanocarriers, polymeric nanoparticles, and inorganic nanoparticles are discussed, illustrating their potential for targeted, efficient, and multifunctional antiviral therapy. By merging a deep understanding of viral latency's molecular underpinnings with nanotechnology's transformative capabilities, this review underscores the promise of novel therapeutic interventions. These interventions have great potential for managing persistent viral infections, heralding a new era in the fight against diseases such as neuroHIV/AIDS, herpes, and HPV.
Collapse
Affiliation(s)
- Arathy Vasukutty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP),
Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea
| | - Yeonwoo Jang
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dongwan Han
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP),
Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea
| |
Collapse
|
2
|
Yang M, Ding C, Zhao T, Song G, Liu T, Li Z, Zhang Y. Nanoparticle-Based Therapies for Neurotropic Viral Infections: Mechanisms, Challenges, and Future Prospects. Rev Med Virol 2024; 34:e2575. [PMID: 39160646 DOI: 10.1002/rmv.2575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024]
Abstract
Neurotropic viral infections pose a significant challenge due to their ability to target the central nervous system and cause severe neurological complications. Traditional antiviral therapies face limitations in effectively treating these infections, primarily due to the blood-brain barrier, which restricts the delivery of therapeutic agents to the central nervous system. Nanoparticle-based therapies have emerged as a promising approach to overcome these challenges. Nanoparticles offer unique properties that facilitate drug delivery across biological barriers, such as the blood-brain barrier, and can be engineered to possess antiviral activities.
Collapse
Affiliation(s)
- Min Yang
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, China
| | - Ting Zhao
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, China
| | - Ge Song
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, China
| | - Tingting Liu
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, China
| | - Zeqi Li
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, China
| | - Ying Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, China
| |
Collapse
|
3
|
Tanushree, Sharma A, Monika, Singh RP, Jhawat V. Human immunodeficiency virus infection challenges: Current therapeutic limitations and strategies for improved management through long-acting injectable formulation. Rev Med Virol 2024; 34:e2563. [PMID: 38886179 DOI: 10.1002/rmv.2563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
HIV infection has been a severe global health burden, with millions living with the virus and continuing new infections each year. Antiretroviral therapy can effectively suppress HIV replication but requires strict lifelong adherence to daily oral medication regimens, which presents a significant challenge. Long-acting formulations of antiretroviral drugs administered infrequently have emerged as a promising strategy to improve treatment outcomes and adherence to HIV therapy and prevention. Long-acting injectable (LAI) formulations are designed to gradually release drugs over extended periods of weeks or months following a single injection. Critical advantages of LAIs over conventional oral dosage forms include less frequent dosing requirements, enhanced patient privacy, reduced stigma associated with daily pill regimens, and optimised pharmacokinetic/pharmacodynamic profiles. Several LAI antiretroviral products have recently gained regulatory approval, such as the integrase strand transfer inhibitor cabotegravir for HIV preexposure prophylaxis and the Cabotegravir/Rilpivirine combination for HIV treatment. A leading approach for developing long-acting antiretroviral depots involves encapsulating drug compounds in polymeric microspheres composed of biocompatible, biodegradable materials like poly (lactic-co-glycolic acid). These injectable depot formulations enable high drug loading with customisable extended-release kinetics controlled by the polymeric matrix. Compared to daily oral therapies, LAI antiretroviral formulations leveraging biodegradable polymeric microspheres offer notable benefits, including prolonged therapeutic effects, reduced dosing frequency for improved adherence, and the potential to kerb the initial HIV transmission event. The present manuscript aims to review the pathogenesis of the virus and its progression and propose therapeutic targets and long-acting drug delivery strategies that hold substantial promise for enhancing outcomes in HIV treatment and prevention.
Collapse
Affiliation(s)
- Tanushree
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Monika
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Rahul Pratap Singh
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Vikas Jhawat
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| |
Collapse
|
4
|
Lebrón JA, Ostos FJ, Martínez-Santa M, García-Moscoso F, López-López M, Moyá ML, Bernal E, Bachiller S, González-Ulloa G, Rodríguez-Lucena D, Lopes-Costa T, Fernández-Torres R, Ruiz-Mateos E, Pedrosa JM, Rafii-El-Idrissi Benhnia M, López-Cornejo P. Biocompatible metal-organic frameworks as promising platforms to eradicate HIV reservoirs ex vivo in people living with HIV. J Mater Chem B 2024; 12:5220-5237. [PMID: 38695162 DOI: 10.1039/d4tb00272e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The HIV attacks the immune system provoking an infection that is considered a global health challenge. Despite antiretroviral treatments being effective in reducing the plasma viral load in the blood to undetectable levels in people living with HIV (PLWH), the disease is not cured and has become chronic. This happens because of the existence of anatomical and cellular viral reservoirs, mainly located in the lymph nodes and gastrointestinal tract, which are composed of infected CD4+ T cells with a resting memory phenotype and inaccessible to antiretroviral therapy. Herein, a new therapeutic strategy based on nanotechnology is presented. Different combinations of antiretroviral drugs (bictegravir/tenofovir/emtricitabine and nevirapine/tenofovir/emtricitabine) and toll-like receptor agonists were encapsulated into metal-organic frameworks (MOFs) PCN-224 and ZIF-8. The encapsulation efficiencies of all the drugs, as well as their release rate from the carriers, were measured. In vitro studies about the cell viability, the hemocompatibility, and the platelet aggregation of the MOFs were carried out. Epifluorescence microscopy assays confirmed the ability of ZIF-8 to target a carboxyfluorescein probe inside HeLa cell lines and PBMCs. These results pave the way for the use of these structures to eliminate latent HIV reservoirs from anatomical compartments through the activation of innate immune cells, and a higher efficacy of the triplet combinations of antiretroviral drugs.
Collapse
Affiliation(s)
- José A Lebrón
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González 1, 41012 Seville, Spain.
| | - Francisco J Ostos
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, 41013 Seville, Spain
| | - Marta Martínez-Santa
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González 1, 41012 Seville, Spain.
| | - Francisco García-Moscoso
- Department of Physical, Chemical and Natural Systems, University Pablo de Olavide, Ctra. Utrera Km. 1, 41013, Seville, Spain
| | - Manuel López-López
- Department of Chemical Engineering, Physical Chemistry and Materials Science, Campus 'El Carmen', Faculty of Experimental Sciences, University of Huelva, 21071, Huelva, Spain
| | - María L Moyá
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González 1, 41012 Seville, Spain.
| | - Eva Bernal
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González 1, 41012 Seville, Spain.
| | - Sara Bachiller
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, 41013 Seville, Spain
| | - Gabriel González-Ulloa
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, 41013 Seville, Spain
| | - David Rodríguez-Lucena
- Department of Physical, Chemical and Natural Systems, University Pablo de Olavide, Ctra. Utrera Km. 1, 41013, Seville, Spain
| | - Tania Lopes-Costa
- Department of Physical, Chemical and Natural Systems, University Pablo de Olavide, Ctra. Utrera Km. 1, 41013, Seville, Spain
| | - Rut Fernández-Torres
- Department of Analytical Chemistry, Faculty of Chemistry, University of Seville, c/Prof. García González, 1, 41012, Seville, Spain
| | - Ezequiel Ruiz-Mateos
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, 41013 Seville, Spain
| | - José M Pedrosa
- Department of Physical, Chemical and Natural Systems, University Pablo de Olavide, Ctra. Utrera Km. 1, 41013, Seville, Spain
| | - Mohammed Rafii-El-Idrissi Benhnia
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/Virgen del Rocío University Hospital/CSIC/University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, 41013 Seville, Spain
| | - Pilar López-Cornejo
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González 1, 41012 Seville, Spain.
| |
Collapse
|
5
|
Wu D, Si M, Xue HY, Tran NT, Khalili K, Kaminski R, Wong HL. Lipid nanocarrier targeting activated macrophages for antiretroviral therapy of HIV reservoir. Nanomedicine (Lond) 2023; 18:1343-1360. [PMID: 37815117 PMCID: PMC10652294 DOI: 10.2217/nnm-2023-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/21/2023] [Indexed: 10/11/2023] Open
Abstract
Aim: To develop lipid nano-antiretrovirals (LNAs) for the treatment of HIV-infected macrophages. Materials & methods: LNAs were prepared with docosahexaenoic acid to facilitate brain penetration and surface-decorated with folate considering that infected macrophages often overexpress folate receptors. Results: Folate-decorated LNAs loading rilpivirine (RPV) were efficiently taken up by folate receptor-expressing cell types including activated macrophages. The intracellular Cmax of the RPV-LNAs in activated macrophages was 2.54-fold and the area under the curve was 3.4-fold versus free RPV, translating to comparable or higher (p < 0.01; RPV ≤6.5 ng/ml) activities against HIV infectivity and superior protection (p < 0.05) against HIV cytotoxicity. LNAs were also effective in monocyte-derived macrophages. Conclusion: These findings demonstrate the potential of LNAs for the treatment of infected macrophages, which are key players in HIV reservoirs.
Collapse
Affiliation(s)
- Di Wu
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Mengjie Si
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Hui Yi Xue
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Ngoc T Tran
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Kamel Khalili
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Rafal Kaminski
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ho Lun Wong
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| |
Collapse
|
6
|
Zhang J, Han J, Li H, Li Z, Zou P, Li J, Zhao T, Che J, Yang Y, Yang M, Wang Y, Gong W, Li Z, Li L, Gao C, Xiao H. Lymphocyte Membrane- and 12p1-Dual-Functionalized Nanoparticles for Free HIV-1 Trapping and Precise siRNA Delivery into HIV-1-Infected Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300282. [PMID: 36755201 PMCID: PMC10074117 DOI: 10.1002/advs.202300282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Despite the success of small interfering RNA (siRNA) in clinical settings and its potential value in human immunodeficiency virus (HIV) therapy, the rapid clearance and absence of precise delivery to target cells still hinder the therapeutic effect of siRNA. Herein, a new system, which can escape immune recognition, has HIV-1 neutralizing capacity, and the ability to deliver siRNA specifically into HIV-1-infected cells, is constructed by functionalizing siRNA delivery lipid nanoparticles with the lymphocyte membrane and 12p1. The constructed system is shown to escape uptake by the mononuclear phagocyte system. The constructed system exhibits strong binding ability with gp120, thus displaying distinguished neutralizing breadth and potency. The constructed system neutralizes all tested HIV-1 pseudotyped viruses with a geometric mean 80% inhibitory concentration (IC80) of 29.75 µg mL-1 and inhibits X4-tropic HIV-1 with an IC80 of 64.20 µg mL-1 , and R5-tropic HIV-1 with an IC80 of 16.39 µg mL-1 . The new system also specifically delivers siRNA into the cytoplasm of HIV-1-infected cells and exhibits evident gene silencing of tat and rev. Therefore, this new system can neutralize HIV-1 and deliver siRNA selectively into HIV-1-infected cells and may be a promising therapeutic candidate for the precise therapy of HIV.
Collapse
Affiliation(s)
- Jinbang Zhang
- State key Laboratory of Toxicology and Medical CountermeasureDepartment of PharmaceuticsBeijing Institute of Pharmacology and ToxicologyBeijing100039China
- Pharmaceutical CollegeHenan UniversityKaifeng475001China
| | - Jingwan Han
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijing100071China
| | - Hui Li
- State key Laboratory of Toxicology and Medical CountermeasureDepartment of PharmaceuticsBeijing Institute of Pharmacology and ToxicologyBeijing100039China
- Pharmaceutical CollegeHenan UniversityKaifeng475001China
| | - Zhengyang Li
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijing100071China
- School of Public Health and Health ManagementGannan Medical UniversityGanzhou341000China
| | - Pengfei Zou
- State key Laboratory of Toxicology and Medical CountermeasureDepartment of PharmaceuticsBeijing Institute of Pharmacology and ToxicologyBeijing100039China
| | - Jiaxin Li
- State key Laboratory of Toxicology and Medical CountermeasureDepartment of PharmaceuticsBeijing Institute of Pharmacology and ToxicologyBeijing100039China
- Pharmaceutical CollegeHenan UniversityKaifeng475001China
| | - Te Zhao
- State key Laboratory of Toxicology and Medical CountermeasureDepartment of PharmaceuticsBeijing Institute of Pharmacology and ToxicologyBeijing100039China
| | - Junwei Che
- State key Laboratory of Toxicology and Medical CountermeasureDepartment of PharmaceuticsBeijing Institute of Pharmacology and ToxicologyBeijing100039China
| | - Yang Yang
- State key Laboratory of Toxicology and Medical CountermeasureDepartment of PharmaceuticsBeijing Institute of Pharmacology and ToxicologyBeijing100039China
| | - Meiyan Yang
- State key Laboratory of Toxicology and Medical CountermeasureDepartment of PharmaceuticsBeijing Institute of Pharmacology and ToxicologyBeijing100039China
| | - Yuli Wang
- State key Laboratory of Toxicology and Medical CountermeasureDepartment of PharmaceuticsBeijing Institute of Pharmacology and ToxicologyBeijing100039China
| | - Wei Gong
- State key Laboratory of Toxicology and Medical CountermeasureDepartment of PharmaceuticsBeijing Institute of Pharmacology and ToxicologyBeijing100039China
| | - Zhiping Li
- State key Laboratory of Toxicology and Medical CountermeasureDepartment of PharmaceuticsBeijing Institute of Pharmacology and ToxicologyBeijing100039China
| | - Lin Li
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijing100071China
| | - Chunsheng Gao
- State key Laboratory of Toxicology and Medical CountermeasureDepartment of PharmaceuticsBeijing Institute of Pharmacology and ToxicologyBeijing100039China
- Pharmaceutical CollegeHenan UniversityKaifeng475001China
| | - Haihua Xiao
- Institute of ChemistryChinese Academy of SciencesBeijing100190China
| |
Collapse
|
7
|
Campbell GR, Spector SA. Current strategies to induce selective killing of HIV-1-infected cells. J Leukoc Biol 2022; 112:1273-1284. [PMID: 35707952 PMCID: PMC9613504 DOI: 10.1002/jlb.4mr0422-636r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/24/2022] [Indexed: 01/02/2023] Open
Abstract
Although combination antiretroviral therapy (ART) has led to significant HIV-1 suppression and improvement in immune function, persistent viral reservoirs remain that are refractory to intensified ART. ART poses many challenges such as adherence to drug regimens, the emergence of resistant virus, and cumulative toxicity resulting from long-term therapy. Moreover, latent HIV-1 reservoir cells can be stochastically activated to produce viral particles despite effective ART and contribute to the rapid viral rebound that typically occurs within 2 weeks of ART interruption; thus, lifelong ART is required for continued viral suppression. Several strategies have been proposed to address the HIV-1 reservoir such as reactivation of HIV-1 transcription using latency reactivating agents with a combination of ART, host immune clearance and HIV-1-cytotoxicity to purge the infected cells-a "shock and kill" strategy. However, these approaches do not take into account the multiple transcriptional and translational blocks that contribute to HIV-1 latency or the complex heterogeneity of the HIV-1 reservoir, and clinical trials have thus far failed to produce the desired results. Here, we describe alternative strategies being pursued that are designed to kill selectively HIV-1-infected cells while sparing uninfected cells in the absence of enhanced humoral or adaptive immune responses.
Collapse
Affiliation(s)
- Grant R. Campbell
- Department of PediatricsDivision of Infectious DiseasesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Stephen A. Spector
- Department of PediatricsDivision of Infectious DiseasesUniversity of California San DiegoLa JollaCaliforniaUSA,Division of Infectious DiseasesRady Children's HospitalSan DiegoCaliforniaUSA
| |
Collapse
|
8
|
Bhattacharjee S. Craft of Co-encapsulation in Nanomedicine: A Struggle To Achieve Synergy through Reciprocity. ACS Pharmacol Transl Sci 2022; 5:278-298. [PMID: 35592431 PMCID: PMC9112416 DOI: 10.1021/acsptsci.2c00033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 12/19/2022]
Abstract
Achieving synergism, often by combination therapy via codelivery of chemotherapeutic agents, remains the mainstay of treating multidrug-resistance cases in cancer and microbial strains. With a typical core-shell architecture and surface functionalization to ensure facilitated targeting of tissues, nanocarriers are emerging as a promising platform toward gaining such synergism. Co-encapsulation of disparate theranostic agents in nanocarriers-from chemotherapeutic molecules to imaging or photothermal modalities-can not only address the issue of protecting the labile drug payload from a hostile biochemical environment but may also ensure optimized drug release as a mainstay of synergistic effect. However, the fate of co-encapsulated molecules, influenced by temporospatial proximity, remains unpredictable and marred with events with deleterious impact on therapeutic efficacy, including molecular rearrangement, aggregation, and denaturation. Thus, more than just an art of confining multiple therapeutics into a 3D nanoscale space, a co-encapsulated nanocarrier, while aiming for synergism, should strive toward achieving a harmonious cohabitation of the encapsulated molecules that, despite proximity and opportunities for interaction, remain innocuous toward each other and ensure molecular integrity. This account will inspect the current progress in co-encapsulation in nanocarriers and distill out the key points toward accomplishing such synergism through reciprocity.
Collapse
Affiliation(s)
- Sourav Bhattacharjee
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
9
|
Nanoparticle-based strategies to target HIV-infected cells. Colloids Surf B Biointerfaces 2022; 213:112405. [PMID: 35255375 DOI: 10.1016/j.colsurfb.2022.112405] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023]
Abstract
Antiretroviral drugs employed for the treatment of human immunodeficiency virus (HIV) infections have remained largely ineffective due to their poor bioavailability, numerous adverse effects, modest uptake in infected cells, undesirable drug-drug interactions, the necessity for long-term drug therapy, and lack of access to tissues and reservoirs. Nanotechnology-based interventions could serve to overcome several of these disadvantages and thereby improve the therapeutic efficacy of antiretrovirals while reducing the morbidity and mortality due to the disease. However, attempts to use nanocarriers for the delivery of anti-retroviral drugs have started gaining momentum only in the past decade. This review explores in-depth the various nanocarriers that have been employed for the treatment of HIV infections highlighting their merits and possible demerits.
Collapse
|
10
|
Madkhali OA. Perspectives and Prospective on Solid Lipid Nanoparticles as Drug Delivery Systems. Molecules 2022; 27:1543. [PMID: 35268643 PMCID: PMC8911793 DOI: 10.3390/molecules27051543] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 01/02/2023] Open
Abstract
Combating multiple drug resistance necessitates the delivery of drug molecules at the cellular level. Novel drug delivery formulations have made it possible to improve the therapeutic effects of drugs and have opened up new possibilities for research. Solid lipid nanoparticles (SLNs), a class of colloidal drug carriers made of lipids, have emerged as potentially effective drug delivery systems. The use of SLNs is associated with numerous advantages such as low toxicity, high bioavailability of drugs, versatility in the incorporation of hydrophilic and lipophilic drugs, and the potential for production of large quantities of the carrier systems. The SLNs and nanostructured lipid carriers (NLCs) are the two most frequently used types of nanoparticles. These types of nanoparticles can be adjusted to deliver medications in specific dosages to specific tissues, while minimizing leakage and binding to non-target tissues.
Collapse
Affiliation(s)
- Osama A Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45124, Saudi Arabia
| |
Collapse
|
11
|
Zhang Y, Almazi JG, Ong HX, Johansen MD, Ledger S, Traini D, Hansbro PM, Kelleher AD, Ahlenstiel CL. Nanoparticle Delivery Platforms for RNAi Therapeutics Targeting COVID-19 Disease in the Respiratory Tract. Int J Mol Sci 2022; 23:2408. [PMID: 35269550 PMCID: PMC8909959 DOI: 10.3390/ijms23052408] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Since December 2019, a pandemic of COVID-19 disease, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread across the globe. At present, the Food and Drug Administration (FDA) has issued emergency approval for the use of some antiviral drugs. However, these drugs still have limitations in the specific treatment of COVID-19, and as such, new treatment strategies urgently need to be developed. RNA-interference-based gene therapy provides a tractable target for antiviral treatment. Ensuring cell-specific targeted delivery is important to the success of gene therapy. The use of nanoparticles (NPs) as carriers for the delivery of small interfering RNA (siRNAs) to specific tissues or organs of the human body could play a crucial role in the specific therapy of severe respiratory infections, such as COVID-19. In this review, we describe a variety of novel nanocarriers, such as lipid NPs, star polymer NPs, and glycogen NPs, and summarize the pre-clinical/clinical progress of these nanoparticle platforms in siRNA delivery. We also discuss the application of various NP-capsulated siRNA as therapeutics for SARS-CoV-2 infection, the challenges with targeting these therapeutics to local delivery in the lung, and various inhalation devices used for therapeutic administration. We also discuss currently available animal models that are used for preclinical assessment of RNA-interference-based gene therapy. Advances in this field have the potential for antiviral treatments of COVID-19 disease and could be adapted to treat a range of respiratory diseases.
Collapse
Affiliation(s)
- Yuan Zhang
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | - Juhura G. Almazi
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Matt D. Johansen
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia; (M.D.J.); (P.M.H.)
| | - Scott Ledger
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia; (M.D.J.); (P.M.H.)
| | - Anthony D. Kelleher
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | | |
Collapse
|
12
|
Liposomes as Carriers for the Delivery of Efavirenz in Combination with Glutathione—An Approach to Combat Opportunistic Infections. APPLIED SCIENCES-BASEL 2022; 12. [PMID: 35663347 PMCID: PMC9161618 DOI: 10.3390/app12031468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human immunodeficiency virus (HIV)-infected individuals display an enhanced production of reactive oxygen species (ROS). This reduction of antioxidant capacity in host tissues has been related to the decrease in total levels of ROS scavengers such as glutathione (GSH). Prevention of opportunistic infections due to a weakened immune system is becoming a key strategy along with HIV elimination. Research in these directions is clearly warranted, especially a combination of antiretrovirals and antioxidants to ameliorate oxidative stress, improve intracellular uptake and target viral reservoirs. Hence, we aimed to formulate liposomes loaded with the antiretroviral drug efavirenz (EFA) in the presence of glutathione, as these carriers can be engineered to enhance the ability to reach the target reservoirs. The goal of the present work was to investigate the intracellular uptake of EFA-loaded liposome (with and without GSH) by human monocytic leukemia cells (THP-1 cells) and examine cell viability and ROS scavenging activity. Results obtained provided significant data as follows: (i) treatment with EFA and GSH combination could enhance the uptake and reduce cytotoxicity; (ii) encapsulation of EFA into liposomes increased its levels in the macrophages, which was further enhanced in the presence of GSH; (iii) delivery of EFA in the presence of GSH quenched the intracellular ROS, which was significantly higher when delivered via liposomes. Data revealed that a combination of EFA and GSH encompasses advantages; hence, GSH supplementation could be a safe and cost-effective treatment to slow the development of HIV infection and produce an immune-enhancing effect.
Collapse
|