1
|
Liu S, Chen Y, Wang Z, Liu M, Zhao Y, Tan Y, Qu Z, Du L, Wu C. The cutting-edge progress in bioprinting for biomedicine: principles, applications, and future perspectives. MedComm (Beijing) 2024; 5:e753. [PMID: 39314888 PMCID: PMC11417428 DOI: 10.1002/mco2.753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Bioprinting is a highly promising application area of additive manufacturing technology that has been widely used in various fields, including tissue engineering, drug screening, organ regeneration, and biosensing. Its primary goal is to produce biomedical products such as artificial implant scaffolds, tissues and organs, and medical assistive devices through software-layered discrete and numerical control molding. Despite its immense potential, bioprinting technology still faces several challenges. It requires concerted efforts from researchers, engineers, regulatory bodies, and industry stakeholders are principal to overcome these challenges and unlock the full potential of bioprinting. This review systematically discusses bioprinting principles, applications, and future perspectives while also providing a topical overview of research progress in bioprinting over the past two decades. The most recent advancements in bioprinting are comprehensively reviewed here. First, printing techniques and methods are summarized along with advancements related to bioinks and supporting structures. Second, interesting and representative cases regarding the applications of bioprinting in tissue engineering, drug screening, organ regeneration, and biosensing are introduced in detail. Finally, the remaining challenges and suggestions for future directions of bioprinting technology are proposed and discussed. Bioprinting is one of the most promising application areas of additive manufacturing technology that has been widely used in various fields. It aims to produce biomedical products such as artificial implant scaffolds, tissues and organs, and medical assistive devices. This review systematically discusses bioprinting principles, applications, and future perspectives, which provides a topical description of the research progress of bioprinting.
Collapse
Affiliation(s)
- Shuge Liu
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Yating Chen
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Zhiyao Wang
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Minggao Liu
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Yundi Zhao
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Yushuo Tan
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Zhan Qu
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Liping Du
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Chunsheng Wu
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| |
Collapse
|
2
|
Algahtani MS, Ahmad J, Mohammed AA, Ahmad MZ. Extrusion-based 3D printing for development of complex capsular systems for advanced drug delivery. Int J Pharm 2024; 663:124550. [PMID: 39103062 DOI: 10.1016/j.ijpharm.2024.124550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/16/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
This review explores the feasibility of extrusion-based 3D printing techniques for producing complex dosage forms (such as capsular shells/devices) that provide controlled drug release and targeted delivery. The current discussion explores how extrusion-based 3D printing techniques, particularly Fused Deposition Modelling (FDM) and Pressure-Assisted Modelling (PAM), offer significant advantages in fabricating such complex dosage forms. This technology enables the fabrication of single-, dual-, or multi-compartment capsular systems with customized designs/geometry of the capsular shell to achieve delayed, sustained, or pulsatile drug release. The impact of customized design/geometry on the biopharmaceutical performances of loaded therapeutics is comprehensively discussed. The potential of 3D printing techniques for different specialized drug delivery purposes like gastric floating, implants, suppositories, and printfills are also addressed. This technique has the potential to significantly improve the therapeutic outcomes, and patient adherence to medication regimens, and pave the way for personalized medicine.
Collapse
Affiliation(s)
- Mohammed S Algahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia.
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia
| | - Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia
| |
Collapse
|
3
|
Tonk M, Gupta V, Dhwaj A, Sachdeva M. Current developments and advancements of 3-dimensional printing in personalized medication and drug screening. Drug Metab Pers Ther 2024:dmdi-2024-0024. [PMID: 39331538 DOI: 10.1515/dmpt-2024-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/06/2024] [Indexed: 09/29/2024]
Abstract
OBJECTIVES 3-Dimensional printing (3DP) is an additive manufacturing (AM) technique that is expanding quickly because of its low cost and excellent efficiency. The 3D printing industry grew by 19.5 % in 2021 in spite of the COVID-19 epidemic, and by 2026, the worldwide market is expected to be valued up to 37.2 billion US dollars. CONTENT Science Direct, Scopus, MEDLINE, EMBASE, PubMed, DOAJ, and other academic databases provide evidence of the increased interest in 3DP technology and innovative drug delivery approaches in recent times. SUMMARY In this review four main 3DP technologies that are appropriate for pharmaceutical applications: extrusion-based, powder-based, liquid-based, and sheet lamination-based systems are discussed. This study is focused on certain 3DP technologies that may be used to create dosage forms, pharmaceutical goods, and other items with broad regulatory acceptance and technological viability for use in commercial manufacturing. It also discusses pharmaceutical applications of 3DP in drug delivery and drug screening. OUTLOOK The pharmaceutical sector has seen the prospect of 3D printing in risk assessment, medical personalisation, and the manufacture of complicated dose formulas at a reasonable cost. AM has great promise to revolutionise the manufacturing and use of medicines, especially in the field of personalized medicine. The need to understand more about the potential applications of 3DP in medical and pharmacological contexts has grown over time.
Collapse
Affiliation(s)
- Megha Tonk
- Raj Kumar Goel Institute of Technology (Pharmacy), Ghaziabad, Uttar Pradesh, India
| | - Vishal Gupta
- Raj Kumar Goel Institute of Technology (Pharmacy), Ghaziabad, Uttar Pradesh, India
| | | | - Monika Sachdeva
- Raj Kumar Goel Institute of Technology (Pharmacy), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
4
|
Pavon N, Sun Y, Pak C. Cell type specification and diversity in subpallial organoids. Front Genet 2024; 15:1440583. [PMID: 39391063 PMCID: PMC11465425 DOI: 10.3389/fgene.2024.1440583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Neural organoids have emerged as valuable tools for studying the developing brain, sparking enthusiasm and driving their adoption in disease modeling, drug screening, and investigating fetal neural development. The increasing popularity of neural organoids as models has led to a wide range of methodologies aimed at continuous improvement and refinement. Consequently, research groups often improve and reconfigure protocols to create region-specific organoids, resulting in diverse phenotypes, including variations in morphology, gene expression, and cell populations. While these improvements are exciting, routine adoptions of such modifications and protocols in the research laboratories are often challenging due to the reiterative empirical testing necessary to validate the cell types generated. To address this challenge, we systematically compare the similarities and differences that exist across published protocols that generates subpallial-specific organoids to date. In this review, we focus specifically on exploring the production of major GABAergic neuronal subtypes, especially Medium Spiny Neurons (MSNs) and Interneurons (INs), from multiple subpallial organoid protocols. Importantly, we look to evaluate the cell type diversity and the molecular pathways manipulated to generate them, thus broadening our understanding of the existing subpallial organoids as well as assessing the in vitro applicability of specific patterning factors. Lastly, we discuss the current challenges and outlook on the improved patterning of region-specific neural organoids. Given the critical roles MSN and IN dysfunction play in neurological disorders, comprehending the GABAergic neurons generated by neural organoids will undoubtedly facilitate clinical translation.
Collapse
Affiliation(s)
- Narciso Pavon
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
- Graduate Program in Neuroscience and Behavior, University of Massachusetts Amherst, Amherst, MA, United States
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - ChangHui Pak
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
5
|
Tegegne AM, Ayenew KD, Selam MN. Review on Recent Advance of 3DP-Based Pediatric Drug Formulations. BIOMED RESEARCH INTERNATIONAL 2024; 2024:4875984. [PMID: 39364267 PMCID: PMC11449557 DOI: 10.1155/2024/4875984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/14/2024] [Accepted: 08/24/2024] [Indexed: 10/05/2024]
Abstract
Three-dimensional printing (3DP) has emerged as a game-changing technology in the pharmaceutical industry, providing novel formulation development in the pharmaceutical sector as a whole, which improved patients' individualized therapy. The pediatric population is among the key targets for individualized therapy. Children are a diverse group that includes neonates, infants, and toddlers, each with unique physiological characteristics. Treatment adherence has a significant impact on safe and effective pharmacotherapy in the pediatric population. Improvement of therapeutic dosage forms that provide for the special demands of the pediatric population is a significant challenge for the pharmaceutical industry. Scientists have actively explored 3DP, a quick prototype manufacturing method that has emerged in recent years from many occupations due to its benefits of modest operation, excellent reproducibility, and vast adaptability. This review illuminates the most widely used 3DP technology and its application in the development of pediatric-friendly drug formulations. This 3DP technology allows optimization of pediatric dosage regimens and cases that require individualized treatment, such as geriatrics, renal impairment, liver impairment, critically ill, pregnancy populations, and drugs with nonlinear pharmacokinetics. The fast evolution of 3DP expertise, in addition to the introduction of pharmaceutical inks, has enormous promise for patient dosage form customization.
Collapse
Affiliation(s)
- Aychew Mekuriaw Tegegne
- Department of PharmacyMedicine and Health Science CollegeDebre Berhan University, Debre Berhan, Ethiopia
| | - Kassahun Dires Ayenew
- Department of PharmacyMedicine and Health Science CollegeDebre Berhan University, Debre Berhan, Ethiopia
| | - Muluken Nigatu Selam
- Department of Pharmaceutics and Social PharmacySchool of PharmacyCollege of Health SciencesAddis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Buckley C, Montgomery TR, Szank T, Major I. Hyaluronic acid hybrid formulations optimised for 3D printing of nerve conduits and the delivery of the novel neurotrophic-like compound tyrosol to enhance peripheral nerve regeneration via Schwann cell proliferation. Int J Pharm 2024; 661:124477. [PMID: 39013530 DOI: 10.1016/j.ijpharm.2024.124477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/18/2024]
Abstract
Peripheral nerve injuries, predominantly affecting individuals aged 20-40, pose significant healthcare challenges, with current surgical methods often failing to achieve complete functional recovery. This study focuses on the development of 3D printed hydrogel nerve conduits using modified hyaluronic acid (HA) for potentially enhancing peripheral nerve regeneration. Hyaluronic acid was chemically altered with cysteamine HCl and methacrylic anhydride to create thiolated HA (HA-SH) and methacrylated HA (HA-MA), achieving a modification degree of approximately 20 %. This modification was crucial to maintain the receptor interaction of HA. The modified HA was rigorously tested to ensure cytocompatibility in neuronal and glial cell lines. Subsequently, various 3D printed HA formulations were evaluated, focusing on improving HA's inherent mechanical weaknesses. These formulations were assessed for cytotoxicity through direct contact and elution extract testing, confirming their safety over a 24-h period. Among the neurotrophic compounds tested, Tyrosol emerged as the most effective in promoting Schwann cell proliferation in vitro. The 3D printed HA system demonstrated proficiency in loading and releasing Tyrosol at physiological pH. The findings from this research highlight the promising role of 3D printed HA and Tyrosol in the field of nerve tissue engineering, offering a novel approach to peripheral nerve regeneration.
Collapse
Affiliation(s)
- Ciara Buckley
- PRISM Research Institute, Technological University of the Shannon, Athlone N37 HD68, Ireland
| | - Therese R Montgomery
- School of Science and Computing, Atlantic Technological University, Galway H91 T8NW, Ireland
| | - Tomasz Szank
- Bioscience Research Institute, Technological University of the Shannon, Athlone N37 HD68, Ireland
| | - Ian Major
- PRISM Research Institute, Technological University of the Shannon, Athlone N37 HD68, Ireland.
| |
Collapse
|
7
|
Guptha PM, Kanoujia J, Kishore A, Raina N, Wahi A, Gupta PK, Gupta M. A comprehensive review of the application of 3D-bioprinting in chronic wound management. Expert Opin Drug Deliv 2024:1-22. [PMID: 38809187 DOI: 10.1080/17425247.2024.2355184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
INTRODUCTION Chronic wounds require more sophisticated care than standard wound care because they are becoming more severe as a result of diseases like diabetes. By resolving shortcomings in existing methods, 3D-bioprinting offers a viable path toward personalized, mechanically strong, and cell-stimulating wound dressings. AREAS COVERED This review highlights the drawbacks of traditional approaches while navigating the difficulties of managing chronic wounds. The conversation revolves around employing natural biomaterials for customized dressings, with a particular emphasis on 3D-bioprinting. A thorough understanding of the uses of 3D-printed dressings in a range of chronic wound scenarios is provided by insights into recent research and patents. EXPERT OPINION The expert view recognizes wounds as a historical human ailment and emphasizes the growing difficulties and expenses related to wound treatment. The expert acknowledges that 3D printing is revolutionary, but also points out that it is still in its infancy and has the potential to enhance mass production rather than replace it. The review highlights the benefits of 3D printing for wound dressings by providing instances of smart materials that improve treatment results by stimulating angiogenesis, reducing pain, and targeting particular enzymes. The expert advises taking action to convert the technology's prospective advantages into real benefits for patients, even in the face of resistance to change in the healthcare industry. It is believed that the increasing evidence from in-vivo studies is promising and represents a positive change in the treatment of chronic wounds toward sophisticated 3D-printed dressings.
Collapse
Affiliation(s)
| | - Jovita Kanoujia
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, India
| | - Ankita Kishore
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, India
| | - Neha Raina
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Abhishek Wahi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, Sharda School of Basic Sciences & Research, Sharda University, Greater Noida, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| |
Collapse
|
8
|
Mihaylova A, Shopova D, Parahuleva N, Yaneva A, Bakova D. (3D) Bioprinting-Next Dimension of the Pharmaceutical Sector. Pharmaceuticals (Basel) 2024; 17:797. [PMID: 38931464 PMCID: PMC11206453 DOI: 10.3390/ph17060797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
To create a review of the published scientific literature on the benefits and potential perspectives of the use of 3D bio-nitrification in the field of pharmaceutics. This work was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for reporting meta-analyses and systematic reviews. The scientific databases PubMed, Scopus, Google Scholar, and ScienceDirect were used to search and extract data using the following keywords: 3D bioprinting, drug research and development, personalized medicine, pharmaceutical companies, clinical trials, drug testing. The data points to several aspects of the application of bioprinting in pharmaceutics were reviewed. The main applications of bioprinting are in the development of new drug molecules as well as in the preparation of personalized drugs, but the greatest benefits are in terms of drug screening and testing. Growth in the field of 3D printing has facilitated pharmaceutical applications, enabling the development of personalized drug screening and drug delivery systems for individual patients. Bioprinting presents the opportunity to print drugs on demand according to the individual needs of the patient, making the shape, structure, and dosage suitable for each of the patient's physical conditions, i.e., print specific drugs for controlled release rates; print porous tablets to reduce swallowing difficulties; make transdermal microneedle patches to reduce patient pain; and so on. On the other hand, bioprinting can precisely control the distribution of cells and biomaterials to build organoids, or an Organ-on-a-Chip, for the testing of drugs on printed organs mimicking specified disease characteristics instead of animal testing and clinical trials. The development of bioprinting has the potential to offer customized drug screening platforms and drug delivery systems meeting a range of individualized needs, as well as prospects at different stages of drug development and patient therapy. The role of bioprinting in preclinical and clinical testing of drugs is also of significant importance in terms of shortening the time to launch a medicinal product on the market.
Collapse
Affiliation(s)
- Anna Mihaylova
- Department of Healthcare Management, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Dobromira Shopova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Nikoleta Parahuleva
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Antoniya Yaneva
- Department of Medical Informatics, Biostatistics and eLearning, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Desislava Bakova
- Department of Healthcare Management, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| |
Collapse
|
9
|
Zavaleta-Monestel E, Barrantes-López M, García-Montero J, Arguedas-Chacón S, Campos-Hernández J. Unveiling the Drug Formulation Code: A Journey to Three-Dimensional Precision. Cureus 2024; 16:e62614. [PMID: 39027795 PMCID: PMC11257164 DOI: 10.7759/cureus.62614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Magistral formulations emerged years ago and were of great help in the personalization of treatments for patients. Over time, innovation began in this area with new technologies such as three-dimensional (3D) printing, which has brought greater benefits, ease of preparation, new scopes, and even cost reduction. Three-dimensional printing of medicines opened the way to create personalized multi-dose, controlled-release, multi-drug tablets, among others. In addition, this technology manages to be more specific in adjusting pharmacokinetics, doses, and even organoleptic qualities, which is precisely what is sought since the medication is being personalized for a patient due to a particular case or condition. Throughout the research, some studies can be observed that function as a base that provides safety and effectiveness for the subsequent use of other pharmaceuticals in the 3D printing of medicines.
Collapse
Affiliation(s)
- Esteban Zavaleta-Monestel
- Pharmacy, Hospital Clínica Bíblica, San José, CRI
- Pharmacy, Universidad de Iberoámerica, San José, CRI
| | | | - Jonathan García-Montero
- Pharmacy and Clinical Research, Hospital Clínica Bíblica, San José, CRI
- Pharmacy, Universidad de Iberoámerica, San José, CRI
| | | | | |
Collapse
|
10
|
Shukla AK, Yoon S, Oh SO, Lee D, Ahn M, Kim BS. Advancement in Cancer Vasculogenesis Modeling through 3D Bioprinting Technology. Biomimetics (Basel) 2024; 9:306. [PMID: 38786516 PMCID: PMC11118135 DOI: 10.3390/biomimetics9050306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Cancer vasculogenesis is a pivotal focus of cancer research and treatment given its critical role in tumor development, metastasis, and the formation of vasculogenic microenvironments. Traditional approaches to investigating cancer vasculogenesis face significant challenges in accurately modeling intricate microenvironments. Recent advancements in three-dimensional (3D) bioprinting technology present promising solutions to these challenges. This review provides an overview of cancer vasculogenesis and underscores the importance of precise modeling. It juxtaposes traditional techniques with 3D bioprinting technologies, elucidating the advantages of the latter in developing cancer vasculogenesis models. Furthermore, it explores applications in pathological investigations, preclinical medication screening for personalized treatment and cancer diagnostics, and envisages future prospects for 3D bioprinted cancer vasculogenesis models. Despite notable advancements, current 3D bioprinting techniques for cancer vasculogenesis modeling have several limitations. Nonetheless, by overcoming these challenges and with technological advances, 3D bioprinting exhibits immense potential for revolutionizing the understanding of cancer vasculogenesis and augmenting treatment modalities.
Collapse
Affiliation(s)
- Arvind Kumar Shukla
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sik Yoon
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea
| | - Sae-Ock Oh
- Research Center for Molecular Control of Cancer Cell Diversity, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea
| | - Minjun Ahn
- Medical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Medical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
11
|
Ozbek I, Saybasili H, Ulgen KO. Applications of 3D Bioprinting Technology to Brain Cells and Brain Tumor Models: Special Emphasis to Glioblastoma. ACS Biomater Sci Eng 2024; 10:2616-2635. [PMID: 38664996 PMCID: PMC11094688 DOI: 10.1021/acsbiomaterials.3c01569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/17/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024]
Abstract
Primary brain tumor is one of the most fatal diseases. The most malignant type among them, glioblastoma (GBM), has low survival rates. Standard treatments reduce the life quality of patients due to serious side effects. Tumor aggressiveness and the unique structure of the brain render the removal of tumors and the development of new therapies challenging. To elucidate the characteristics of brain tumors and examine their response to drugs, realistic systems that mimic the tumor environment and cellular crosstalk are desperately needed. In the past decade, 3D GBM models have been presented as excellent platforms as they allowed the investigation of the phenotypes of GBM and testing innovative therapeutic strategies. In that scope, 3D bioprinting technology offers utilities such as fabricating realistic 3D bioprinted structures in a layer-by-layer manner and precisely controlled deposition of materials and cells, and they can be integrated with other technologies like the microfluidics approach. This Review covers studies that investigated 3D bioprinted brain tumor models, especially GBM using 3D bioprinting techniques and essential parameters that affect the result and quality of the study like frequently used cells, the type and physical characteristics of hydrogel, bioprinting conditions, cross-linking methods, and characterization techniques.
Collapse
Affiliation(s)
- Ilkay
Irem Ozbek
- Department
of Chemical Engineering, Bogazici University, Istanbul 34342, Turkey
| | - Hale Saybasili
- Institute
of Biomedical Engineering, Bogazici University, Istanbul 34684, Turkey
| | - Kutlu O. Ulgen
- Department
of Chemical Engineering, Bogazici University, Istanbul 34342, Turkey
| |
Collapse
|
12
|
Narala S, Ali Youssef AA, Munnangi SR, Narala N, Lakkala P, Vemula SK, Repka M. 3D printing in vaginal drug delivery: a revolution in pharmaceutical manufacturing. Expert Opin Drug Deliv 2024:1-15. [PMID: 38236621 DOI: 10.1080/17425247.2024.2306139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024]
Abstract
INTRODUCTION The Food and Drug Administration's approval of the first three-dimensional (3D) printed tablet, Spritam®, led to a burgeoning interest in using 3D printing to fabricate numerous drug delivery systems for different routes of administration. The high degree of manufacturing flexibility achieved through 3D printing facilitates the preparation of dosage forms with many actives with complex and tailored release profiles that can address individual patient needs. AREAS COVERED This comprehensive review provides an in-depth look into the several 3D printing technologies currently utilized in pharmaceutical research. Additionally, the review delves into vaginal anatomy and physiology, 3D-printed drug delivery systems for vaginal applications, the latest research studies, and the challenges of 3D printing technology and future possibilities. EXPERT OPINION 3D printing technology can produce drug-delivery devices or implants optimized for vaginal applications, including vaginal rings, intra-vaginal inserts, or biodegradable microdevices loaded with drugs, all custom-tailored to deliver specific medications with controlled release profiles. However, though the potential of 3D printing in vaginal drug delivery is promising, there are still challenges and regulatory hurdles to overcome before these technologies can be widely adopted and approved for clinical use. Extensive research and testing are necessary to ensure safety, effectiveness, and biocompatibility.
Collapse
Affiliation(s)
- Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Ahmed Adel Ali Youssef
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Siva Ram Munnangi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Nagarjuna Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Preethi Lakkala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Michael Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS, USA
| |
Collapse
|
13
|
Verma S, Khanna V, Kumar S, Kumar S. The Art of Building Living Tissues: Exploring the Frontiers of Biofabrication with 3D Bioprinting. ACS OMEGA 2023; 8:47322-47339. [PMID: 38144142 PMCID: PMC10734012 DOI: 10.1021/acsomega.3c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/11/2023] [Indexed: 12/26/2023]
Abstract
The scope of three-dimensional printing is expanding rapidly, with innovative approaches resulting in the evolution of state-of-the-art 3D bioprinting (3DbioP) techniques for solving issues in bioengineering and biopharmaceutical research. The methods and tools in 3DbioP emphasize the extrusion process, bioink formulation, and stability of the bioprinted scaffold. Thus, 3DbioP technology augments 3DP in the biological world by providing technical support to regenerative therapy, drug delivery, bioengineering of prosthetics, and drug kinetics research. Besides the above, drug delivery and dosage control have been achieved using 3D bioprinted microcarriers and capsules. Developing a stable, biocompatible, and versatile bioink is a primary requisite in biofabrication. The 3DbioP research is breaking the technical barriers at a breakneck speed. Numerous techniques and biomaterial advancements have helped to overcome current 3DbioP issues related to printability, stability, and bioink formulation. Therefore, this Review aims to provide an insight into the technical challenges of bioprinting, novel biomaterials for bioink formulation, and recently developed 3D bioprinting methods driving future applications in biofabrication research.
Collapse
Affiliation(s)
- Saurabh Verma
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Vikram Khanna
- Department
of Oral Medicine and Radiology, King George’s
Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Smita Kumar
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Sumit Kumar
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| |
Collapse
|
14
|
Antezana PE, Municoy S, Ostapchuk G, Catalano PN, Hardy JG, Evelson PA, Orive G, Desimone MF. 4D Printing: The Development of Responsive Materials Using 3D-Printing Technology. Pharmaceutics 2023; 15:2743. [PMID: 38140084 PMCID: PMC10747900 DOI: 10.3390/pharmaceutics15122743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Additive manufacturing, widely known as 3D printing, has revolutionized the production of biomaterials. While conventional 3D-printed structures are perceived as static, 4D printing introduces the ability to fabricate materials capable of self-transforming their configuration or function over time in response to external stimuli such as temperature, light, or electric field. This transformative technology has garnered significant attention in the field of biomedical engineering due to its potential to address limitations associated with traditional therapies. Here, we delve into an in-depth review of 4D-printing systems, exploring their diverse biomedical applications and meticulously evaluating their advantages and disadvantages. We emphasize the novelty of this review paper by highlighting the latest advancements and emerging trends in 4D-printing technology, particularly in the context of biomedical applications.
Collapse
Affiliation(s)
- Pablo Edmundo Antezana
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3, Buenos Aires 1113, Argentina; (P.E.A.); (S.M.)
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires 1428, Argentina;
| | - Sofia Municoy
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3, Buenos Aires 1113, Argentina; (P.E.A.); (S.M.)
| | - Gabriel Ostapchuk
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Nodo Constituyentes, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina; (G.O.); (P.N.C.)
- Departamento de Micro y Nanotecnología, Gerencia de Desarrollo Tecnológico y Proyectos Especiales, Gerencia de Área de Investigación, Desarrollo e Innovación, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina
| | - Paolo Nicolás Catalano
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Nodo Constituyentes, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina; (G.O.); (P.N.C.)
- Departamento de Micro y Nanotecnología, Gerencia de Desarrollo Tecnológico y Proyectos Especiales, Gerencia de Área de Investigación, Desarrollo e Innovación, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química Analítica Instrumental, Junín 954, Buenos Aires 1113, Argentina
| | - John G. Hardy
- Materials Science Institute, Lancaster University, Lancaster LA1 4YB, UK;
- Department of Chemistry, Faraday Building, Lancaster University, Lancaster LA1 4YB, UK
| | - Pablo Andrés Evelson
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires 1428, Argentina;
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain;
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
| | - Martin Federico Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3, Buenos Aires 1113, Argentina; (P.E.A.); (S.M.)
| |
Collapse
|
15
|
Alzoubi L, Aljabali AAA, Tambuwala MM. Empowering Precision Medicine: The Impact of 3D Printing on Personalized Therapeutic. AAPS PharmSciTech 2023; 24:228. [PMID: 37964180 DOI: 10.1208/s12249-023-02682-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
This review explores recent advancements and applications of 3D printing in healthcare, with a focus on personalized medicine, tissue engineering, and medical device production. It also assesses economic, environmental, and ethical considerations. In our review of the literature, we employed a comprehensive search strategy, utilizing well-known databases like PubMed and Google Scholar. Our chosen keywords encompassed essential topics, including 3D printing, personalized medicine, nanotechnology, and related areas. We first screened article titles and abstracts and then conducted a detailed examination of selected articles without imposing any date limitations. The articles selected for inclusion, comprising research studies, clinical investigations, and expert opinions, underwent a meticulous quality assessment. This methodology ensured the incorporation of high-quality sources, contributing to a robust exploration of the role of 3D printing in the realm of healthcare. The review highlights 3D printing's potential in healthcare, including customized drug delivery systems, patient-specific implants, prosthetics, and biofabrication of organs. These innovations have significantly improved patient outcomes. Integration of nanotechnology has enhanced drug delivery precision and biocompatibility. 3D printing also demonstrates cost-effectiveness and sustainability through optimized material usage and recycling. The healthcare sector has witnessed remarkable progress through 3D printing, promoting a patient-centric approach. From personalized implants to radiation shielding and drug delivery systems, 3D printing offers tailored solutions. Its transformative applications, coupled with economic viability and sustainability, have the potential to revolutionize healthcare. Addressing material biocompatibility, standardization, and ethical concerns is essential for responsible adoption.
Collapse
Affiliation(s)
- Lorca Alzoubi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan.
| | - Murtaza M Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln, LN6 7TS, UK.
| |
Collapse
|
16
|
Choi J, Lee EJ, Jang WB, Kwon SM. Development of Biocompatible 3D-Printed Artificial Blood Vessels through Multidimensional Approaches. J Funct Biomater 2023; 14:497. [PMID: 37888162 PMCID: PMC10607080 DOI: 10.3390/jfb14100497] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Within the human body, the intricate network of blood vessels plays a pivotal role in transporting nutrients and oxygen and maintaining homeostasis. Bioprinting is an innovative technology with the potential to revolutionize this field by constructing complex multicellular structures. This technique offers the advantage of depositing individual cells, growth factors, and biochemical signals, thereby facilitating the growth of functional blood vessels. Despite the challenges in fabricating vascularized constructs, bioprinting has emerged as an advance in organ engineering. The continuous evolution of bioprinting technology and biomaterial knowledge provides an avenue to overcome the hurdles associated with vascularized tissue fabrication. This article provides an overview of the biofabrication process used to create vascular and vascularized constructs. It delves into the various techniques used in vascular engineering, including extrusion-, droplet-, and laser-based bioprinting methods. Integrating these techniques offers the prospect of crafting artificial blood vessels with remarkable precision and functionality. Therefore, the potential impact of bioprinting in vascular engineering is significant. With technological advances, it holds promise in revolutionizing organ transplantation, tissue engineering, and regenerative medicine. By mimicking the natural complexity of blood vessels, bioprinting brings us one step closer to engineering organs with functional vasculature, ushering in a new era of medical advancement.
Collapse
Affiliation(s)
- Jaewoo Choi
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Eun Ji Lee
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Woong Bi Jang
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
17
|
Amiri E, Sanjarnia P, Sadri B, Jafarkhani S, Khakbiz M. Recent advances and future directions of 3D to 6D printing in brain cancer treatment and neural tissue engineering. Biomed Mater 2023; 18:052005. [PMID: 37478841 DOI: 10.1088/1748-605x/ace9a4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/21/2023] [Indexed: 07/23/2023]
Abstract
The field of neural tissue engineering has undergone a revolution due to advancements in three-dimensional (3D) printing technology. This technology now enables the creation of intricate neural tissue constructs with precise geometries, topologies, and mechanical properties. Currently, there are various 3D printing techniques available, such as stereolithography and digital light processing, and a wide range of materials can be utilized, including hydrogels, biopolymers, and synthetic materials. Furthermore, the development of four-dimensional (4D) printing has gained traction, allowing for the fabrication of structures that can change shape over time using techniques such as shape-memory polymers. These innovations have the potential to facilitate neural regeneration, drug screening, disease modeling, and hold tremendous promise for personalized diagnostics, precise therapeutic strategies against brain cancers. This review paper provides a comprehensive overview of the current state-of-the-art techniques and materials for 3D printing in neural tissue engineering and brain cancer. It focuses on the exciting possibilities that lie ahead, including the emerging field of 4D printing. Additionally, the paper discusses the potential applications of five-dimensional and six-dimensional printing, which integrate time and biological functions into the printing process, in the fields of neuroscience.
Collapse
Affiliation(s)
- Elahe Amiri
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Pegah Sanjarnia
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Bahareh Sadri
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Saeed Jafarkhani
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mehrdad Khakbiz
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
18
|
Padmakumar S, Amiji MM. Long-Acting Therapeutic Delivery Systems for the Treatment of Gliomas. Adv Drug Deliv Rev 2023; 197:114853. [PMID: 37149040 DOI: 10.1016/j.addr.2023.114853] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Despite the emergence of cutting-edge therapeutic strategies and tremendous progress in research, a complete cure of glioma remains elusive. The heterogenous nature of tumor, immunosuppressive state and presence of blood brain barrier are few of the major obstacles in this regard. Long-acting depot formulations such as injectables and implantables are gaining attention for drug delivery to brain owing to their ease in administration and ability to elute drug locally for extended durations in a controlled manner with minimal toxicity. Hybrid matrices fabricated by incorporating nanoparticulates within such systems help to enhance pharmaceutical advantages. Utilization of long-acting depots as monotherapy or in conjunction with existing strategies rendered significant survival benefits in many preclinical studies and some clinical trials. The discovery of novel targets, immunotherapeutic strategies and alternative drug administration routes are now coupled with several long-acting systems with an ultimate aim to enhance patient survival and prevent glioma recurrences.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115; Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, 02115.
| |
Collapse
|
19
|
Mirek A, Belaid H, Bartkowiak A, Barranger F, Salmeron F, Kajdan M, Grzeczkowicz M, Cavaillès V, Lewińska D, Bechelany M. Gelatin methacrylate hydrogel with drug-loaded polymer microspheres as a new bioink for 3D bioprinting. BIOMATERIALS ADVANCES 2023; 150:213436. [PMID: 37104964 DOI: 10.1016/j.bioadv.2023.213436] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
3D bioprinted hydrogel constructs are advanced systems of a great drug delivery application potential. One of the bioinks that has recently gained a lot of attention is gelatin methacrylate (GelMA) hydrogel exhibiting specific properties, including UV cross-linking possibility. The present study aimed to develop a new bioink composed of GelMA and gelatin modified by addition of polymer (polycaprolactone or polyethersulfone) microspheres serving as bioactive substance carriers. The prepared microspheres suspension in GelMA/gelatin bioink was successfully bioprinted and subjected to various tests, which showed that the addition of microspheres and their type affects the physicochemical properties of the printouts. The hydrogel stability and structure was examined using scanning electron and optical microscopy, its thermal properties with differential scanning calorimetry and thermogravimetric analysis and its biocompatibility on HaCaT cells using viability assay and electron microscopy. Analyses also included tests of hydrogel equilibrium swelling ratio and release of marker substance. Subsequently, the matrices were loaded with ampicillin and the antibiotic release was validated by monitoring the antibacterial activity on Staphylococcus aureus and Escherichia coli. It was concluded that GelMA/gelatin bioink is a good and satisfying material for potential medical use. Depending on the polymer used, the addition of microspheres improves its structure, thermal and drug delivery properties.
Collapse
Affiliation(s)
- Adam Mirek
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 02-109 Warsaw, Poland; Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Habib Belaid
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Aleksandra Bartkowiak
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 02-109 Warsaw, Poland
| | - Fanny Barranger
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Fanny Salmeron
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, Montpellier F-34298, France
| | - Marilyn Kajdan
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, Montpellier F-34298, France
| | - Marcin Grzeczkowicz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 02-109 Warsaw, Poland
| | - Vincent Cavaillès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, Montpellier F-34298, France
| | - Dorota Lewińska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 02-109 Warsaw, Poland
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France; Gulf University for Science and Technology, GUST, Kuwait.
| |
Collapse
|
20
|
Raees S, Ullah F, Javed F, Akil HM, Jadoon Khan M, Safdar M, Din IU, Alotaibi MA, Alharthi AI, Bakht MA, Ahmad A, Nassar AA. Classification, processing, and applications of bioink and 3D bioprinting: A detailed review. Int J Biol Macromol 2023; 232:123476. [PMID: 36731696 DOI: 10.1016/j.ijbiomac.2023.123476] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023]
Abstract
With the advancement in 3D bioprinting technology, cell culture methods can design 3D environments which are both, complex and physiologically relevant. The main component in 3D bioprinting, bioink, can be split into various categories depending on the criterion of categorization. Although the choice of bioink and bioprinting process will vary greatly depending on the application, general features such as material properties, biological interaction, gelation, and viscosity are always important to consider. The foundation of 3D bioprinting is the exact layer-by-layer implantation of biological elements, biochemicals, and living cells with the spatial control of the implantation of functional elements onto the biofabricated 3D structure. Three basic strategies underlie the 3D bioprinting process: autonomous self-assembly, micro tissue building blocks, and biomimicry or biomimetics. Tissue engineering can benefit from 3D bioprinting in many ways, but there are still numerous obstacles to overcome before functional tissues can be produced and used in clinical settings. A better comprehension of the physiological characteristics of bioink materials and a higher level of ability to reproduce the intricate biologically mimicked and physiologically relevant 3D structures would be a significant improvement for 3D bioprinting to overcome the limitations.
Collapse
Affiliation(s)
- Sania Raees
- Department of Biosciences, COMSATS University Islamabad, Park Road, 45520 Islamabad, Pakistan
| | - Faheem Ullah
- Department of Biological Sciences, National University of Medical Sciences, NUMS, Rawalpindi 46000, Pakistan; School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Fatima Javed
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar 25000, KPK, Pakistan
| | - Hazizan Md Akil
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Muhammad Jadoon Khan
- Department of Biosciences, COMSATS University Islamabad, Park Road, 45520 Islamabad, Pakistan
| | - Muhammad Safdar
- Department of Pharmacy, Gomal University D. I Khan, KPK, Pakistan
| | - Israf Ud Din
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, 16278 Al-Kharj, Saudi Arabia.
| | - Mshari A Alotaibi
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, 16278 Al-Kharj, Saudi Arabia
| | - Abdulrahman I Alharthi
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, 16278 Al-Kharj, Saudi Arabia
| | - M Afroz Bakht
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, 16278 Al-Kharj, Saudi Arabia
| | - Akil Ahmad
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, 16278 Al-Kharj, Saudi Arabia
| | - Amal A Nassar
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, 16278 Al-Kharj, Saudi Arabia
| |
Collapse
|
21
|
Parhi R. Recent advances in 3D printed microneedles and their skin delivery application in the treatment of various diseases. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
22
|
Assad H, Assad A, Kumar A. Recent Developments in 3D Bio-Printing and Its Biomedical Applications. Pharmaceutics 2023; 15:255. [PMID: 36678884 PMCID: PMC9861443 DOI: 10.3390/pharmaceutics15010255] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
The fast-developing field of 3D bio-printing has been extensively used to improve the usability and performance of scaffolds filled with cells. Over the last few decades, a variety of tissues and organs including skin, blood vessels, and hearts, etc., have all been produced in large quantities via 3D bio-printing. These tissues and organs are not only able to serve as building blocks for the ultimate goal of repair and regeneration, but they can also be utilized as in vitro models for pharmacokinetics, drug screening, and other purposes. To further 3D-printing uses in tissue engineering, research on novel, suitable biomaterials with quick cross-linking capabilities is a prerequisite. A wider variety of acceptable 3D-printed materials are still needed, as well as better printing resolution (particularly at the nanoscale range), speed, and biomaterial compatibility. The aim of this study is to provide expertise in the most prevalent and new biomaterials used in 3D bio-printing as well as an introduction to the associated approaches that are frequently considered by researchers. Furthermore, an effort has been made to convey the most pertinent implementations of 3D bio-printing processes, such as tissue regeneration, etc., by providing the most significant research together with a comprehensive list of material selection guidelines, constraints, and future prospects.
Collapse
Affiliation(s)
- Humira Assad
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab 144001, India
| | - Arvina Assad
- Bibi Halima College of Nursing and Medical Technology, Srinagar 190010, India
| | - Ashish Kumar
- Nalanda College of Engineering, Department of Science and Technology, Government of Bihar, Patna 803108, India
| |
Collapse
|
23
|
Expanding Quality by Design Principles to Support 3D Printed Medical Device Development Following the Renewed Regulatory Framework in Europe. Biomedicines 2022; 10:biomedicines10112947. [PMID: 36428514 PMCID: PMC9687721 DOI: 10.3390/biomedicines10112947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
The vast scope of 3D printing has ignited the production of tailored medical device (MD) development and catalyzed a paradigm shift in the health-care industry, particularly following the COVID pandemic. This review aims to provide an update on the current progress and emerging opportunities for additive manufacturing following the introduction of the new medical device regulation (MDR) within the EU. The advent of early-phase implementation of the Quality by Design (QbD) quality management framework in MD development is a focal point. The application of a regulatory supported QbD concept will ensure successful MD development, as well as pointing out the current challenges of 3D bioprinting. Utilizing a QbD scientific and risk-management approach ensures the acceleration of MD development in a more targeted way by building in all stakeholders' expectations, namely those of the patients, the biomedical industry, and regulatory bodies.
Collapse
|
24
|
Unraveling the mystery of efficacy in Chinese medicine formula: New approaches and technologies for research on pharmacodynamic substances. ARAB J CHEM 2022; 15:104302. [PMID: 36189434 PMCID: PMC9514000 DOI: 10.1016/j.arabjc.2022.104302] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/21/2022] [Indexed: 12/25/2022] Open
Abstract
Traditional Chinese medicine (TCM) is the key to unlock treasures of Chinese civilization. TCM and its compound play a beneficial role in medical activities to cure diseases, especially in major public health events such as novel coronavirus epidemics across the globe. The chemical composition in Chinese medicine formula is complex and diverse, but their effective substances resemble "mystery boxes". Revealing their active ingredients and their mechanisms of action has become focal point and difficulty of research for herbalists. Although the existing research methods are numerous and constantly updated iteratively, there is remain a lack of prospective reviews. Hence, this paper provides a comprehensive account of existing new approaches and technologies based on previous studies with an in vitro to in vivo perspective. In addition, the bottlenecks of studies on Chinese medicine formula effective substances are also revealed. Especially, we look ahead to new perspectives, technologies and applications for its future development. This work reviews based on new perspectives to open horizons for the future research. Consequently, herbal compounding pharmaceutical substances study should carry on the essence of TCM while pursuing innovations in the field.
Collapse
Key Words
- 2D, Two Dimensional
- 3D, Three Dimensional
- ADME, Absorption, Distribution, Metabolism, and Excretion
- AFA DESI-MSI, Air flow-assisted desorption electrospray ionization mass spectrometry imaging
- AI, Artificial Intelligence
- Active ingredient
- CDE, Center for Drug Evaluation
- COX-2, Cyclooxygenase 2
- Chemical components
- Chinese medicine formula
- Compound
- Disease Targets
- GC-MS, Gas chromatography-mass spectrometry
- HPLC, High Performance Liquid Chromatography
- HR-MS, High Resolution Mass Spectrometry
- HTS, High Throughput Screening
- HUA, hyperuricemia
- ICPMS, inductively coupled plasma mass spectrometry
- MALDI MS, Matrix for surface-assisted laser desorption/ionization mass spectrometry
- MD, Microdialysis
- MI, Molecular imprinting
- MSI, Mass spectrometry imaging
- Mass Spectrometry
- NL/PR, Neutral loss/precursor ion
- NMPA, National Medical Products Administration
- OPLS-DA, Orthogonal partial least squares discriminant analysis
- PD, Pharmacodynamic
- PK, Pharmacokinetic
- Q-TOF/MS, Quadrupole time-of-flight mass spectrometry
- QSAR, Quantitative structure-activity relationship
- QqQ-MS, Triple quadruple mass spectrometry
- R-strategy, Reduce strategy
- TCM, Traditional Chinese medicine
- UF, Affinity ultrafiltration
- UPLC, Ultra Performance Liquid Chromatography
- XO, Xanthine oxidase
Collapse
|
25
|
Can 3D bioprinting solve the mystery of senescence in cancer therapy? Ageing Res Rev 2022; 81:101732. [PMID: 36100069 DOI: 10.1016/j.arr.2022.101732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 01/31/2023]
Abstract
Tumor dormancy leading to cancer relapse is still a poorly understood mechanism. Several cell states such as quiescence and diapause can explain the persistence of tumor cells in a dormant state, but the potential role of tumor cell senescence has been met with hesitance given the historical understanding of the senescent growth arrest as irreversible. However, recent evidence has suggested that senescence might contribute to dormancy and relapse, although its exact role is not fully developed. This limited understanding is largely due to the paucity of reliable study models. The current 2D cell modeling is overly simplistic and lacks the appropriate representation of the interactions between tumor cells (senescent or non-senescent) and the other cell types within the tumor microenvironment (TME), as well as with the extracellular matrix (ECM). 3D cell culture models, including 3D bioprinting techniques, offer a promising approach to better recapitulate the native cancer microenvironment and would significantly improve our understanding of cancer biology and cellular response to treatment, particularly Therapy-Induced Senescence (TIS), and its contribution to tumor dormancy and cancer recurrence. Fabricating a novel 3D bioprinted model offers excellent opportunities to investigate both the role of TIS in tumor dormancy and the utility of senolytics (drugs that selectively eliminate senescent cells) in targeting dormant cancer cells and mitigating the risk for resurgence. In this review, we discuss literature on the possible contribution of TIS in tumor dormancy, provide examples on the current 3D models of senescence, and propose a novel 3D model to investigate the ultimate role of TIS in mediating overall response to therapy.
Collapse
|
26
|
de Oliveira TV, de Oliveira RS, Dos Santos J, Funk NL, Petzhold CL, Beck RCR. Redispersible 3D printed nanomedicines: An original application of the semisolid extrusion technique. Int J Pharm 2022; 624:122029. [PMID: 35853566 DOI: 10.1016/j.ijpharm.2022.122029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022]
Abstract
Semisolid extrusion is a layer-by-layer 3D printing technique that produces objects from gels or pastes. This process can be carried out at room temperature, without using a light source, and has been explored in pharmaceutics in the last few years. In this regard, our group hypothesized its suitability for the production of three-dimensional (3D) printed nanomedicines containing drug-loaded organic nanocarriers. In this study, the original application of the semisolid extrusion was evaluated to produce redispersible 3D printed oral solid forms containing drug-loaded polymeric nanocapsules. A carboxymethyl cellulose hydrogel containing resveratrol and curcumin co-encapsulated in nanocapsules was prepared, and the nanocapsules did not change its complex viscosity and yield stress. Homogeneous and yellow cylindrical-shaped solid forms were printed, with a mean weight of 0.102 ± 0.015 g, a polyphenol content of approximately 160 μg/unit, disintegration time of <45 min, and recovery of the nanosized carriers. The polyphenols were completely released from the solid forms after 8 h, although part of them remained encapsulated in the nanocapsules. This study represents a proof of concept concerning the use of semisolid extrusion to produce 3D printed forms composed of polymeric nanocapsules in a one-step process. It proposes an original platform for the development of solid nanomedicines from liquid aqueous nanocapsule suspensions.
Collapse
Affiliation(s)
- Thayse Viana de Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Ipiranga, 2752, Porto Alegre, Rio Grande do Sul 90610-000, Brazil; Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rafaela Santos de Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Ipiranga, 2752, Porto Alegre, Rio Grande do Sul 90610-000, Brazil; Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Juliana Dos Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Ipiranga, 2752, Porto Alegre, Rio Grande do Sul 90610-000, Brazil; Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Nadine Lysyk Funk
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Ipiranga, 2752, Porto Alegre, Rio Grande do Sul 90610-000, Brazil; Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Cesar Liberato Petzhold
- Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves - Agronomia, Porto Alegre, RS 90650-001, Brazil
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Ipiranga, 2752, Porto Alegre, Rio Grande do Sul 90610-000, Brazil; Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
27
|
Papi M, Pozzi D, Palmieri V, Caracciolo G. Principles for optimization and validation of mRNA lipid nanoparticle vaccines against COVID-19 using 3D bioprinting. NANO TODAY 2022; 43:101403. [PMID: 35079274 PMCID: PMC8776405 DOI: 10.1016/j.nantod.2022.101403] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 05/03/2023]
Abstract
BioNTech/Pfizer's Comirnaty and Moderna's SpikeVax vaccines consist in mRNA encapsulated in lipid nanoparticles (LNPs). The modularity of the delivery platform and the manufacturing possibilities provided by microfluidics let them look like an instant success, but they are the product of decades of intense research. There is a multitude of considerations to be made when designing an optimal mRNA-LNPs vaccine. Herein, we provide a brief overview of what is presently known and what still requires investigation to optimize mRNA LNPs vaccines. Lastly, we give our perspective on the engineering of 3D bioprinted validation systems that will allow faster, cheaper, and more predictive vaccine testing in the future compared with animal models.
Collapse
Affiliation(s)
- Massimiliano Papi
- Department of Neuroscience, Catholic University of Sacred Heart, L.go Francesco Vito 1, 00168 Rome, Italy
| | - Daniela Pozzi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Valentina Palmieri
- Institute for Complex Systems, National Research Council of Italy, Via dei Taurini 19, 00185 Rome, Italy
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| |
Collapse
|
28
|
Kassem T, Sarkar T, Nguyen T, Saha D, Ahsan F. 3D Printing in Solid Dosage Forms and Organ-on-Chip Applications. BIOSENSORS 2022; 12:bios12040186. [PMID: 35448246 PMCID: PMC9027319 DOI: 10.3390/bios12040186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 05/18/2023]
Abstract
3D printing (3DP) can serve not only as an excellent platform for producing solid dosage forms tailored to individualized dosing regimens but can also be used as a tool for creating a suitable 3D model for drug screening, sensing, testing and organ-on-chip applications. Several new technologies have been developed to convert the conventional dosing regimen into personalized medicine for the past decade. With the approval of Spritam, the first pharmaceutical formulation produced by 3DP technology, this technology has caught the attention of pharmaceutical researchers worldwide. Consistent efforts are being made to improvise the process and mitigate other shortcomings such as restricted excipient choice, time constraints, industrial production constraints, and overall cost. The objective of this review is to provide an overview of the 3DP process, its types, types of material used, and the pros and cons of each technique in the application of not only creating solid dosage forms but also producing a 3D model for sensing, testing, and screening of the substances. The application of producing a model for the biosensing and screening of drugs besides the creation of the drug itself, offers a complete loop of application for 3DP in pharmaceutics.
Collapse
|
29
|
Pavan Kalyan BG, Kumar L. 3D Printing: Applications in Tissue Engineering, Medical Devices, and Drug Delivery. AAPS PharmSciTech 2022; 23:92. [PMID: 35301602 PMCID: PMC8929713 DOI: 10.1208/s12249-022-02242-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/25/2022] [Indexed: 01/01/2023] Open
Abstract
The gemstone of 3-dimensional (3D) printing shines up from the pyramid of additive manufacturing. Three-dimensional bioprinting technology has been predicted to be a game-changing breakthrough in the pharmaceutical industry since the last decade. It is fast evolving and finds its seats in a variety of domains, including aviation, defense, automobiles, replacement components, architecture, movies, musical instruments, forensic, dentistry, audiology, prosthetics, surgery, food, and fashion industry. In recent years, this miraculous manufacturing technology has become increasingly relevant for pharmaceutical purposes. Computer-aided drug (CAD) model will be developed by computer software and fed into bioprinters. Based on material inputs, the printers will recognize and produce the model scaffold. Techniques including stereolithography, selective laser sintering, selective laser melting, material extrusion, material jetting, inkjet-based, fused deposition modelling, binder deposition, and bioprinting expedite the printing process. Distinct advantages are rapid prototyping, flexible design, print on demand, light and strong parts, fast and cost-effective, and environment friendly. The present review gives a brief description of the conceptional 3-dimensional printing, followed by various techniques involved. A short note was explained about the fabricating materials in the pharmaceutical sector. The beam of light is thrown on the various applications in the pharma and medical arena.
Collapse
|
30
|
Huang Y, Meng X, Zhou Z, Zhu W, Chen X, He Y, He N, Han X, Zhou D, Duan X, Vadgama P, Liu H. A naringin-derived bioink enhances shape fidelity of 3D bioprinting and efficiency of cartilage defects repair. J Mater Chem B 2022; 10:7030-7044. [DOI: 10.1039/d2tb01247b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
3D bioprinting is a major area of interest in health sciences for customized manufacturing, but lacks specific bioinks to enhance shape fidelity of 3D bioprinting and efficiency of tissue repair...
Collapse
|