1
|
Karim FE, Islam MR, Alam MR, Jahan T, Raoha S, Haque S. Developing and Screening of a Bacteria-Fighting and Moisture-Controlling Coccinia grandis and Poly(vinyl alcohol) Electrospun Nanofibrous Mat. ACS OMEGA 2024; 9:30926-30934. [PMID: 39035951 PMCID: PMC11256095 DOI: 10.1021/acsomega.4c03884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Nanofibers are extensively employed in the antimicrobial industry owing to their remarkable properties and diverse applications. Managing wounds poses a significant and enduring challenge for healthcare systems globally. This study aims to produce and evaluate electrospun nanofiber mats made from poly(vinyl alcohol) (PVA) and Coccinia grandis (C. grandis) leaf extract, highlighting the medicinal properties of this herbal product for potential biomedical applications (wound dressing). During the evaluations, a 60:40 ratio of PVA to leaf extract was found to be suitable, and the electrospinning process was utilized for production. Scanning electron microscopy was employed for morphological assessment, and an antibacterial assay was conducted against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) to evaluate cell cytotoxicity. Additionally, Fourier-transform infrared spectroscopy (FTIR) and moisture management behavior (moisture management test) analyses were performed on the fabricated electrospun nanofibrous mat. The formation of small beads was confirmed, with the nanofibers having an average diameter of 295.07 ± 0.0032 nm and a porosity of approximately 76%, which is adequate for oxygen circulation and air ventilation, ensuring skin breathability. Gram-positive bacteria (S. aureus) exhibited a zone of inhibition (ZOI) of 14 mm, while Gram-negative bacteria (E. coli) showed a ZOI of 10 mm, attributed to the presence of a thick peptidoglycan cell wall in Gram-positive bacteria with no cell toxicity (100% cell viability). FTIR confirms the formation of weak van der Waals bonds and represents H-bonds between PVA polymer and C. grandis leaf extract. Furthermore, according to the MMT analysis, the electrospun nanofibrous mat demonstrates rapid absorption and slow drying properties. Therefore, the produced electrospun nanofibrous mat could prove beneficial for wound dressing purposes.
Collapse
Affiliation(s)
- Fahmida-E− Karim
- Department
of Textile Engineering, Ahsanullah University
of Science and Technology (AUST), Dhaka 1208, Bangladesh
| | - Md. Redwanul Islam
- Department
of Textile Engineering, Ahsanullah University
of Science and Technology (AUST), Dhaka 1208, Bangladesh
| | - Md. Rubel Alam
- Department
of Knitwear Engineering, BGMEA University of Fashion and Technology (BUFT), Dhaka 1230 Bangladesh
| | - Taharima Jahan
- Department
of Textile Engineering, BGMEA University
of Fashion and Technology (BUFT), Dhaka 1230Bangladesh
| | - Subail Raoha
- Department
of Textile Engineering, BGMEA University
of Fashion and Technology (BUFT), Dhaka 1230Bangladesh
| | - Siddika Haque
- Department
of Knitwear Engineering, BGMEA University of Fashion and Technology (BUFT), Dhaka 1230 Bangladesh
| |
Collapse
|
2
|
Victoria Schulte-Werning L, Singh B, Johannessen M, Einar Engstad R, Mari Holsæter A. Antimicrobial liposomes-in-nanofiber wound dressings prepared by a green and sustainable wire-electrospinning set-up. Int J Pharm 2024; 657:124136. [PMID: 38642621 DOI: 10.1016/j.ijpharm.2024.124136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Increasing prevalence of infected and chronic wounds demands improved therapy options. In this work an electrospun nanofiber dressing with liposomes is suggested, focusing on the dressing's ability to support tissue regeneration and infection control. Chloramphenicol (CAM) was the chosen antibiotic, added to the nanofibers after first embedded in liposomes to maintain a sustained drug release. Nanofibers spun from five different polymer blends were tested, where pectin and polyethylene oxide (PEO) was identified as the most promising polymer blend, showing superior fiber formation and tensile strength. The wire-electrospinning setup (WES) was selected for its pilot-scale features, and water was applied as the only solvent for green electrospinning and to allow direct liposome incorporation. CAM-liposomes were added to Pectin-PEO nanofibers in the next step. Confocal imaging of rhodamine-labelled liposomes indicated intact liposomes in the fibers after electrospinning. This was supported by the observed in vitroCAM-release, showing that Pectin-PEO-nanofibers with CAM-liposomes had a delayed drug release compared to controls. Biological testing confirmed the antimicrobial efficacy of CAM and good biocompatibility of all CAM-nanofibers. The successful fiber formation and green production process with WES gives a promising outlook for industrial upscaling.
Collapse
Affiliation(s)
- Laura Victoria Schulte-Werning
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Bhupender Singh
- Research Group for Host-Microbe Interaction, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Mona Johannessen
- Research Group for Host-Microbe Interaction, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | | | - Ann Mari Holsæter
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway.
| |
Collapse
|
3
|
Hemmingsen LM, Panzacchi V, Kangu LM, Giordani B, Luppi B, Škalko-Basnet N. Lecithin and Chitosan as Building Blocks in Anti- Candida Clotrimazole Nanoparticles. Pharmaceuticals (Basel) 2023; 16:790. [PMID: 37375738 DOI: 10.3390/ph16060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
The main focus when considering treatment of non-healing and infected wounds is tied to the microbial, particularly bacterial, burden within the wound bed. However, as fungal contributions in these microbial communities become more recognized, the focus needs to be broadened, and the remaining participants in the complex wound microbiome need to be addressed in the development of new treatment strategies. In this study, lecithin/chitosan nanoparticles loaded with clotrimazole were tailored to eradicate one of the most abundant fungi in the wound environment, namely C. albicans. Moreover, this investigation was extended to the building blocks and their organization within the delivery system. In the evaluation of the novel nanoparticles, their compatibility with keratinocytes was confirmed. Furthermore, these biocompatible, biodegradable, and non-toxic carriers comprising clotrimazole (~189 nm, 24 mV) were evaluated for their antifungal activity through both disk diffusion and microdilution methods. It was found that the activity of clotrimazole was fully preserved upon its incorporation into this smart delivery system. These results indicate both that the novel carriers for clotrimazole could serve as a therapeutic alternative in the treatment of fungi-infected wounds and that the building blocks and their organization affect the performance of nanoparticles.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Department of Pharmacy, University of Tromsø-The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway
| | - Virginia Panzacchi
- Department of Pharmacy, University of Tromsø-The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Lloyd Mbugua Kangu
- Department of Pharmacy, University of Tromsø-The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway
| | - Barbara Giordani
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Barbara Luppi
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Nataša Škalko-Basnet
- Department of Pharmacy, University of Tromsø-The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway
| |
Collapse
|
4
|
Hemmingsen LM, Panchai P, Julin K, Basnet P, Nystad M, Johannessen M, Škalko-Basnet N. Chitosan-based delivery system enhances antimicrobial activity of chlorhexidine. Front Microbiol 2022; 13:1023083. [PMID: 36246245 PMCID: PMC9557914 DOI: 10.3389/fmicb.2022.1023083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Infected chronic skin wounds and other skin infections are increasingly putting pressure on the health care providers and patients. The pressure is especially concerning due to the rise of antimicrobial resistance and biofilm-producing bacteria that further impair treatment success. Therefore, innovative strategies for wound healing and bacterial eradication are urgently needed; utilization of materials with inherent biological properties could offer a potential solution. Chitosan is one of the most frequently used polymers in delivery systems. This bioactive polymer is often regarded as an attractive constituent in delivery systems due to its inherent antimicrobial, anti-inflammatory, anti-oxidative, and wound healing properties. However, lipid-based vesicles and liposomes are generally considered more suitable as delivery systems for skin due to their ability to interact with the skin structure and provide prolonged release, protect the antimicrobial compound, and allow high local concentrations at the infected site. To take advantage of the beneficial attributes of the lipid-based vesicles and chitosan, these components can be combined into chitosan-containing liposomes or chitosomes and chitosan-coated liposomes. These systems have previously been investigated for use in wound therapy; however, their potential in infected wounds is not fully investigated. In this study, we aimed to investigate whether both the chitosan-containing and chitosan-coated liposomes tailored for infected wounds could improve the antimicrobial activity of the membrane-active antimicrobial chlorhexidine, while assuring both the anti-inflammatory activity and cell compatibility. Chlorhexidine was incorporated into three different vesicles, namely plain (chitosan-free), chitosan-containing and chitosan-coated liposomes that were optimized for skin wounds. Their release profile, antimicrobial activities, anti-inflammatory properties, and cell compatibility were assessed in vitro. The vesicles comprising chitosan demonstrated slower release rate of chlorhexidine and high cell compatibility. Additionally, the inflammatory responses in murine macrophages treated with these vesicles were reduced by about 60% compared to non-treated cells. Finally, liposomes containing both chitosan and chlorhexidine demonstrated the strongest antibacterial effect against Staphylococcus aureus. Both chitosan-containing and chitosan-coated liposomes comprising chlorhexidine could serve as excellent platforms for the delivery of membrane-active antimicrobials to infected wounds as confirmed by improved antimicrobial performance of chlorhexidine.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Tromsø, Norway
| | - Pimmat Panchai
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Tromsø, Norway
| | - Kjersti Julin
- Research Group for Host-Microbe Interaction, Department of Medical Biology, University of Tromsø The Arctic University of Norway, Tromsø, Norway
| | - Purusotam Basnet
- Women’s Health and Perinatology Research Group, Department of Clinical Medicine, University of Tromsø The Arctic University of Norway, Tromsø, Norway
| | - Mona Nystad
- Women’s Health and Perinatology Research Group, Department of Clinical Medicine, University of Tromsø The Arctic University of Norway, Tromsø, Norway
- IVF Clinic, Women’s Clinic, University Hospital of North Norway, Tromsø, Norway
| | - Mona Johannessen
- Research Group for Host-Microbe Interaction, Department of Medical Biology, University of Tromsø The Arctic University of Norway, Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Tromsø, Norway
- *Correspondence: Nataša Škalko-Basnet,
| |
Collapse
|
5
|
Tan G, Wang L, Pan W, Chen K. Polysaccharide Electrospun Nanofibers for Wound Healing Applications. Int J Nanomedicine 2022; 17:3913-3931. [PMID: 36097445 PMCID: PMC9464040 DOI: 10.2147/ijn.s371900] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/23/2022] [Indexed: 12/26/2022] Open
Abstract
As a type of biological macromolecule, natural polysaccharides have been widely used in wound healing due to their low toxicity, good biocompatibility, degradability and reproducibility. Electrospinning is a versatile and simple technique for producing continuous nanoscale fibers from a variety of natural and synthetic polymers. The application of electrospun nanofibers as wound dressings has made great progress and they are considered one of the most effective wound dressings. This paper reviews the preparation of polysaccharide nanofibers by electrospinning and their application prospects in the field of wound healing. A variety of polysaccharide nanofibers, including chitosan, starch, alginate, and hyaluronic acid are introduced. The preparation strategy of polysaccharide electrospun nanofibers and their functions in promoting wound healing are summarized. In addition, the future prospects and challenges for the preparation of polysaccharide nanofibers by electrospinning are also discussed.
Collapse
Affiliation(s)
- Guoxin Tan
- School of Pharmacy, Hainan University, Haikou, 570228, People's Republic of China
| | - Lijie Wang
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Kai Chen
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China
| |
Collapse
|
6
|
Han W, Wang L, Li Q, Ma B, He C, Guo X, Nie J, Ma G. A Review: Current Status and Emerging Developments on Natural Polymer‐Based Electrospun Fibers. Macromol Rapid Commun 2022; 43:e2200456. [DOI: 10.1002/marc.202200456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/03/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Weisen Han
- Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Liangyu Wang
- Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Qin Li
- Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Bomou Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Donghua University Shanghai 201620 P. R. China
| | - Chunju He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Donghua University Shanghai 201620 P. R. China
| | - Xuefeng Guo
- Changzhou Vocational Institute of Textile and Garment School of Textile 53 Gehu Middle Road Changzhou Jiangsu 213164 P.R. China
| | - Jun Nie
- Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Guiping Ma
- Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
7
|
Antimicrobial Biomaterial on Sutures, Bandages and Face Masks with Potential for Infection Control. Polymers (Basel) 2022; 14:polym14101932. [PMID: 35631817 PMCID: PMC9143446 DOI: 10.3390/polym14101932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/10/2022] Open
Abstract
Antimicrobial resistance (AMR) is a challenge for the survival of the human race. The steady rise of resistant microorganisms against the common antimicrobials results in increased morbidity and mortality rates. Iodine and a plethora of plant secondary metabolites inhibit microbial proliferation. Antiseptic iodophors and many phytochemicals are unaffected by AMR. Surgical site and wound infections can be prevented or treated by utilizing such compounds on sutures and bandages. Coating surgical face masks with these antimicrobials can reduce microbial infections and attenuate their burden on the environment by re-use. The facile combination of Aloe Vera Barbadensis Miller (AV), Trans-cinnamic acid (TCA) and Iodine (I2) encapsulated in a polyvinylpyrrolidone (PVP) matrix seems a promising alternative to common antimicrobials. The AV-PVP-TCA-I2 formulation was impregnated into sterile discs, medical gauze bandages, surgical sutures and face masks. Morphology, purity and composition were confirmed by several analytical methods. Antimicrobial activity of AV-PVP-TCA-I2 was investigated by disc diffusion methods against ten microbial strains in comparison to gentamycin and nystatin. AV-PVP-TCA-I2 showed excellent antifungal and strong to intermediate antibacterial activities against most of the selected pathogens, especially in bandages and face masks. The title compound has potential use for prevention or treatment of surgical site and wound infections. Coating disposable face masks with AV-PVP-TCA-I2 may be a sustainable solution for their re-use and waste management.
Collapse
|
8
|
Dumitru CD, Neacsu IA, Grumezescu AM, Andronescu E. Bee-Derived Products: Chemical Composition and Applications in Skin Tissue Engineering. Pharmaceutics 2022; 14:750. [PMID: 35456584 PMCID: PMC9030501 DOI: 10.3390/pharmaceutics14040750] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 02/05/2023] Open
Abstract
Skin tissue regeneration is one of the population's most common problems, and the complications that may appear in the healing process can have detrimental consequences. An alternative to conventional treatments could be represented by sustainable materials based on natural products, such as honey and its derivates (propolis, royal jelly, bee pollen, beeswax, and bee venom). They exhibit significant inhibitory activities against bacteria and have great potential in dermal tissue regeneration. Research in the pharmaceutical field demonstrates that conventional medication combined with bee products can deliver better results. The advantages include minimizing side effects and maintaining the same effectiveness by using low concentrations of antibiotic, anti-inflammatory, or chemotherapy drugs. Several studies suggested that bee products can replace the antimicrobial activity and efficiency of antibiotics, but further investigation is needed to establish a topical mixture's potential, including honey, royal jelly, and propolis. Bee products seem to complete each other's deficiencies, and their mixture may have a better impact on the wound healing process. The topic addressed in this paper highlights the usefulness of honey, propolis, royal jelly, bee pollen, beeswax, and bee venom in the re-epithelization process and against most common bacterial infections.
Collapse
Affiliation(s)
- Corina Dana Dumitru
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Ionela Andreea Neacsu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| |
Collapse
|
9
|
Physicomechanical characterization and tablet compression of theophylline nanofibrous mats prepared by conventional and ultrasound enhanced electrospinning. Int J Pharm 2022; 616:121558. [PMID: 35143904 DOI: 10.1016/j.ijpharm.2022.121558] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 11/21/2022]
Abstract
Theophylline (TEO) nanofibers with polyethylene oxide (PEO) were prepared by conventional electrospinning (ES) and novel needleless ultrasound-enhanced electrospinning (USES). They were compared for Young's modulus, elongation at rupture and rupture stress, tabletability and drug release. Placebo (PEO) or drug-loaded (PEO/TEO 90:10) nanofibers were examined by scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and infrared spectroscopy (ATR-FTIR). Nanofibers prepared by USES were thinner than ES nanofibers and drug-loaded nanofibers thinner than placebo. Drug was mostly amorphous and interacted weakly with PEO. Mats generated by USES and also drug-loaded mats demonstrated higher Young's modulus (stiffness) and higher rupture stress. Under compression, USES and drug-loaded nanofibers demonstrated greater compaction work, higher yield pressure (Heckel and K-L models), and produced stronger tablets than ES and placebo respectively. Principal Component Analysis revealed two significant components explaining 91.05% of the variance. The first comprised the compaction work, yield pressure (ductility) and Young's modulus that were positively intercorrelated and elongation at rupture that was correlated negatively. The second comprised the mat rupture stress and tablet breaking load. Drug release from nanofibrous tablets was faster than tablets of physical mixture but there was no difference between the tablets of the two electrospinning methods.
Collapse
|
10
|
El-Hefnawy ME, Alhayyani S, El-Sherbiny MM, Sakran MI, El-Newehy MH. Fabrication of Nanofibers Based on Hydroxypropyl Starch/Polyurethane Loaded with the Biosynthesized Silver Nanoparticles for the Treatment of Pathogenic Microbes in Wounds. Polymers (Basel) 2022; 14:318. [PMID: 35054723 PMCID: PMC8779972 DOI: 10.3390/polym14020318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/31/2022] Open
Abstract
Fabrication of electrospun nanofibers based on the blending of modified natural polymer, hydroxyl propyl starch (HPS) as one of the most renewable resources, with synthetic polymers, such as polyurethane (PU) is of great potential for biomedical applications. The as-prepared nanofibers were used as antimicrobial sheets via blending with biosynthesized silver nanoparticles (AgNPs), which were prepared in a safe way with low cost using the extract of Nerium oleander leaves, which acted as a reducing and stabilizing agent as well. The biosynthesized AgNPs were fully characterized by various techniques (UV-vis, TEM, DLS, zeta potential and XRD). The obtained results from UV-vis depicted that the AgNPs appeared at a wavelength equal to 404 nm affirming the preparation of AgNPs when compared with the wavelength of extract (there are no observable peaks). The average particle size of the fabricated AgNPs that mediated with HPS exhibited a very small size (less than 5 nm) with excellent stability (more than -30 mv). In addition, the fabricated nanofibers were also fully characterized and the obtained data proved that the diameter of nanofibers was enlarged with increasing the concentration of AgNPs. Additionally, the findings illustrated that the pore sizes of electrospun sheets were in the range of 75 to 350 nm. The obtained results proved that the presence of HPS displayed a vital role in decreasing the contact angle of PU nanofibers and thus, increased the hydrophilicity of the net nanofibers. It is worthy to mention that the prepared nanofibers incorporated with AgNPs exhibited incredible antimicrobial activity against pathogenic microbes that actually presented in human wounds. Moreover, P. aeruginosa was the most sensitive species to the fabricated nanofibers compared to other tested ones. The minimal inhibitory concentrations (MICs) values of AgNPs-3@NFs against P. aeruginosa, and E. faecalis, were 250 and 500 mg/L within 15 min, respectively.
Collapse
Affiliation(s)
- Mohamed E. El-Hefnawy
- Department of Chemistry, Rabigh College of Sciences and Arts, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sultan Alhayyani
- Department of Chemistry, Rabigh College of Sciences and Arts, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohsen M. El-Sherbiny
- Marine Biology Department, Faculty of Marine Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohamed I. Sakran
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47731, Saudi Arabia;
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed H. El-Newehy
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Anisiei A, Rosca I, Sandu AI, Bele A, Cheng X, Marin L. Imination of Microporous Chitosan Fibers-A Route to Biomaterials with "On Demand" Antimicrobial Activity and Biodegradation for Wound Dressings. Pharmaceutics 2022; 14:pharmaceutics14010117. [PMID: 35057012 PMCID: PMC8777909 DOI: 10.3390/pharmaceutics14010117] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/02/2022] Open
Abstract
Microporous chitosan nanofibers functionalized with different amounts of an antimicrobial agent via imine linkage were prepared by a three-step procedure including the electrospinning of a chitosan/PEO blend, PEO removal and acid condensation reaction in a heterogeneous system with 2-formylphenylboronic acid. The fibers’ characterization was undertaken keeping in mind their application to wound healing. Thus, by FTIR and 1H-NMR spectroscopy, it was confirmed the successful imination of the fibers and the conversion degree of the amine groups of chitosan into imine units. The fiber morphology in terms of fiber diameter, crystallinity, inter- and intra-fiber porosity and strength of intermolecular forces was investigated using scanning electron microscopy, polarized light microscopy, water vapor sorption and thermogravimetric analysis. The swelling ability was estimated in water and phosphate buffer by calculating the mass equilibrium swelling. The fiber biodegradation was explored in five media of different pH, corresponding to different stages of wound healing and the antimicrobial activity against the opportunistic pathogens inflicting wound infection was investigated according to standard tests. The biocompatibility and bioadhesivity were studied on normal human dermal fibroblast cells by direct contact procedure. The dynamic character of the imine linkage of the functionalized fibers was monitored by UV-vis spectroscopy. The results showed that the functionalization of the chitosan microporous nanofibers with antimicrobial agents via imine linkage is a great route towards bio-absorbable wound dressings with “on demand” antimicrobial properties and biodegradation rate matching the healing stages.
Collapse
Affiliation(s)
- Alexandru Anisiei
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania; (A.A.); (I.R.); (A.-I.S.); (A.B.)
| | - Irina Rosca
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania; (A.A.); (I.R.); (A.-I.S.); (A.B.)
| | - Andreea-Isabela Sandu
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania; (A.A.); (I.R.); (A.-I.S.); (A.B.)
| | - Adrian Bele
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania; (A.A.); (I.R.); (A.-I.S.); (A.B.)
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China;
| | - Luminita Marin
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania; (A.A.); (I.R.); (A.-I.S.); (A.B.)
- Correspondence:
| |
Collapse
|