1
|
Wang J, Ji Y, Cao X, Shi R, Lu X, Wang Y, Zhang CY, Li J, Jiang X. Characterization and analysis of extracellular vesicle-derived miRNAs from different adipose tissues in mice. Heliyon 2024; 10:e39149. [PMID: 39640764 PMCID: PMC11620040 DOI: 10.1016/j.heliyon.2024.e39149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Adipose tissue is traditionally classified into two main types based on their functions: brown adipose tissue (BAT) and white adipose tissue (WAT). Each type plays a distinct role in the body's energy metabolism. Additionally, a third type, beige adipose tissue, can develop within subcutaneous WAT (including inguinal WAT, iWAT) in response to specific stimuli and exhibits characteristics of both BAT and WAT. Extracellular vesicles (EVs) are crucial for intercellular communication, carrying a diverse array of biomolecules such as proteins, lipids, and nucleic acids. While the functional diversity and endocrine roles of adipose tissues are well-documented, a comparative analysis of the functions of EVs released by different adipose tissues from mice housed at room temperature has not been thoroughly explored. MicroRNAs (miRNAs), which are highly enriched in small extracellular vesicles (sEVs), offer a promising avenue for investigating the complex functions and unique roles of various adipose tissues. In this study, we isolated sEVs from different adipose tissues under basal conditions and performed a comprehensive analysis of their miRNA content. By comparing miRNA profiles across different adipose tissues, we aim to elucidate the potential roles of sEV-derived miRNAs in mediating intercellular communication and the distinct physiological functions of adipose tissues. Understanding the molecular features of miRNAs in adipose tissue EVs could reveal new aspects of adipose tissue biology and lay the groundwork for further research into their physiological significance.
Collapse
Affiliation(s)
- Jiaqi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Yuan Ji
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Xiaoqin Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Ruixue Shi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Xiaohui Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Ye Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing, Jiangsu, 210023, China
| | - Jing Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing, Jiangsu, 210023, China
| | - Xiaohong Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing, Jiangsu, 210023, China
| |
Collapse
|
2
|
Castañón-Cortés LG, Bravo-Vázquez LA, Santoyo-Valencia G, Medina-Feria S, Sahare P, Duttaroy AK, Paul S. Current advances in the development of microRNA-integrated tissue engineering strategies: a cornerstone of regenerative medicine. Front Bioeng Biotechnol 2024; 12:1484151. [PMID: 39479296 PMCID: PMC11521876 DOI: 10.3389/fbioe.2024.1484151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Regenerative medicine is an innovative scientific field focused on repairing, replacing, or regenerating damaged tissues and organs to restore their normal functions. A central aspect of this research arena relies on the use of tissue-engineered scaffolds, which serve as structural supports that mimic the extracellular matrix, providing an environment that orchestrates cell growth and tissue formation. Remarkably, the therapeutic efficacy of these scaffolds can be improved by harnessing the properties of other molecules or compounds that have crucial roles in healing and regeneration pathways, such as phytochemicals, enzymes, transcription factors, and non-coding RNAs (ncRNAs). In particular, microRNAs (miRNAs) are a class of tiny (20-24 nt), highly conserved ncRNAs that play a critical role in the regulation of gene expression at the post-transcriptional level. Accordingly, miRNAs are involved in a myriad of biological processes, including cell differentiation, proliferation, and apoptosis, as well as tissue regeneration, angiogenesis, and osteogenesis. On this basis, over the past years, a number of research studies have demonstrated that miRNAs can be integrated into tissue-engineered scaffolds to create advanced therapeutic platforms that precisely modulate cellular behavior and offer a controlled and targeted release of miRNAs to optimize tissue repair and regeneration. Therefore, in this current review, we discuss the most recent advances in the development of miRNA-loaded tissue-engineered scaffolds and provide an overview of the future outlooks that should be aborded in this area of study in order to lay the groundwork for the clinical translation of these tissue engineering approaches.
Collapse
Affiliation(s)
| | | | | | - Sara Medina-Feria
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro, Mexico
| | - Padmavati Sahare
- School of Engineering and Sciences, Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Queretaro, Mexico
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro, Mexico
| |
Collapse
|
3
|
Wang Y, Xu Y, Zhao T, Ma YJ, Qin W, Hu WL. PEI/MMNs@LNA-542 nanoparticles alleviate ICU-acquired weakness through targeted autophagy inhibition and mitochondrial protection. Open Life Sci 2024; 19:20220952. [PMID: 39290495 PMCID: PMC11406224 DOI: 10.1515/biol-2022-0952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/21/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
Intensive care unit-acquired weakness (ICU-AW) is prevalent in critical care, with limited treatment options. Certain microRNAs, like miR-542, are highly expressed in ICU-AW patients. This study investigates the regulatory role and mechanisms of miR-542 in ICU-AW and explores the clinical potential of miR-542 inhibitors. ICU-AW models were established in C57BL/6 mice through cecal ligation and puncture (CLP) and in mouse C2C12 myoblasts through TNF-α treatment. In vivo experiments demonstrated decreased muscle strength, muscle fiber atrophy, widened intercellular spaces, and increased miR-542-3p/5p expression in ICU-AW mice model. In vitro experiments indicated suppressed ATG5, ATG7 and LC3II/I, elevated MDA and ROS levels, decreased SOD levels, and reduced MMP in the model group. Similar to animal experiments, the expression of miR-542-3p/5p was upregulated. Gel electrophoresis explored the binding of polyethyleneimine/mesoporous silica nanoparticles (PEI/MMNs) to locked nucleic acid (LNA) miR-542 inhibitor (LNA-542). PEI/MMNs@LNA-542 with positive charge (3.03 ± 0.363 mV) and narrow size (206.94 ± 6.19 nm) were characterized. Immunofluorescence indicated significant internalization with no apparent cytotoxicity. Biological activity, examined through intraperitoneal injection, showed that PEI/MMNs@LNA-542 alleviated muscle strength decline, restored fiber damage, and recovered mitochondrial injury in mice. In conclusion, PEI/MMNs nanoparticles effectively delivered LNA-542, targeting ATG5 to inhibit autophagy and alleviate mitochondrial damage, thereby improving ICU-AW.
Collapse
Affiliation(s)
- Yun Wang
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yi Xu
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Tun Zhao
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Ya-Jun Ma
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Wei Qin
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Wen-Li Hu
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
4
|
Ramprosand S, Govinden-Soulange J, Ranghoo-Sanmukhiya VM, Sanan-Mishra N. miRNA, phytometabolites and disease: Connecting the dots. Phytother Res 2024; 38:4570-4591. [PMID: 39072874 DOI: 10.1002/ptr.8287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024]
Abstract
miRNAs are tiny noncoding ribonucleotides that function as critical regulators of gene-expression in eukaryotes. A single miRNA may be involved in the regulation of several target mRNAs forming complex cellular networks to regulate diverse aspects of development in an organism. The deregulation of miRNAs has been associated with several human diseases. Therefore, miRNA-based therapeutics is gaining interest in the pharmaceutical industry as the next-generation drugs for the cure of many diseases. Medicinal plants have also been used for the treatment of several human diseases and their curative potential is attributed to their reserve in bioactive metabolites. A role for miRNAs as regulators of the phytometabolic pathways in plants has emerged in the recent past. Experimental studies have also indicated the potential of plant encoded secondary phytometabolites to act as cross-regulators of mammalian miRNAs and transcripts to regulate human diseases (like cancer). The evidence for this cross-kingdom gene regulation through miRNA has gathered considerable enthusiasm in the scientific field, even though there are on-going debates regarding the reproducibility and the effectiveness of these findings. In this review, we provide information to connect the medicinal and gene regulatory properties of secondary phytometabolites, their regulation by miRNAs in plants and their effects on human miRNAs for regulating downstream metabolic or pathological processes. While further extensive research initiatives and good clinical evidence are required to prove or disapprove these findings, understanding of these regulations will have important implications in the potential use of synthetic or artificial miRNAs as effective alternatives for providing health benefits.
Collapse
Affiliation(s)
- Srutee Ramprosand
- Faculty of Agriculture, University of Mauritius, Réduit, Mauritius
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | | | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
5
|
Brillante S, Volpe M, Indrieri A. Advances in MicroRNA Therapeutics: From Preclinical to Clinical Studies. Hum Gene Ther 2024; 35:628-648. [PMID: 39150011 DOI: 10.1089/hum.2024.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
MicroRNAs (miRNAs) are crucial regulators of gene expression involved in various pathophysiological processes. Their ability to modulate multiple pathways simultaneously and their involvement in numerous diseases make miRNAs attractive tools and targets in therapeutic development. Significant efforts have been made to advance miRNA research in the preclinical stage, attracting considerable investment from biopharmaceutical companies. Consequently, an increasing number of miRNA-based therapies have entered clinical trials for both diagnostic and therapeutic applications across a wide range of diseases. While individual miRNAs can regulate a broad array of mRNA targets, this also complicates the management of adverse effects seen in clinical trials. Several candidates have been discontinued due to toxicity concerns, underscoring the need for comprehensive risk assessments of miRNA therapeutics. Despite no miRNA-based strategies have yet received approval from regulatory agencies, prominent progress in the miRNA modulation approaches and in the nano-delivery systems have been made in the last decade, leading to the development of novel safe and well-tolerated miRNA drug candidates. In this review, we present recent advances in the development of miRNA therapeutics currently in preclinical or clinical stages for treating both rare genetic disorders and multifactorial common conditions. We also address the challenges related to the safety and targeted delivery of miRNA therapies, as well as the identification of the most effective therapeutic candidates in preclinical and clinical trials.
Collapse
Affiliation(s)
- Simona Brillante
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan, Italy
| | - Mariagrazia Volpe
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan, Italy
| |
Collapse
|
6
|
Yu HP, Liu FC, Chung YK, Alalaiwe A, Sung CT, Fang JY. Nucleic acid-based nanotherapeutics for treating sepsis and associated organ injuries. Theranostics 2024; 14:4411-4437. [PMID: 39113804 PMCID: PMC11303080 DOI: 10.7150/thno.98487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
In recent years, gene therapy has been made possible with the success of nucleic acid drugs against sepsis and its related organ dysfunction. Therapeutics based on nucleic acids such as small interfering RNAs (siRNAs), microRNAs (miRNAs), messenger RNAs (mRNAs), and plasmid DNAs (pDNAs) guarantee to treat previously undruggable diseases. The advantage of nucleic acid-based therapy against sepsis lies in the development of nanocarriers, achieving targeted and controlled gene delivery for improved efficacy with minimal adverse effects. Entrapment into nanocarriers also ameliorates the poor cellular uptake of naked nucleic acids. In this study, we discuss the current state of the art in nanoparticles for nucleic acid delivery to treat hyperinflammation and apoptosis associated with sepsis. The optimized design of the nanoparticles through physicochemical property modification and ligand conjugation can target specific organs-such as lung, heart, kidney, and liver-to mitigate multiple sepsis-associated organ injuries. This review highlights the nanomaterials designed for fabricating the anti-sepsis nanosystems, their physicochemical characterization, the mechanisms of nucleic acid-based therapy in working against sepsis, and the potential for promoting the therapeutic efficiency of the nucleic acids. The current investigations associated with nanoparticulate nucleic acid application in sepsis management are summarized in this paper. Noteworthily, the potential application of nanotherapeutic nucleic acids allows for a novel strategy to treat sepsis. Further clinical studies are required to confirm the findings in cell- and animal-based experiments. The capability of large-scale production and reproducibility of nanoparticle products are also critical for commercialization. It is expected that numerous anti-sepsis possibilities will be investigated for nucleic acid-based nanotherapeutics in the future.
Collapse
Affiliation(s)
- Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Yu-Kuo Chung
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Calvin T. Sung
- Department of Dermatology, University of California, Irvine, United States
| | - Jia-You Fang
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
7
|
Bender V, Fuchs L, Süss R. RP-HPLC-CAD method for the rapid analysis of lipids used in lipid nanoparticles derived from dual centrifugation. Int J Pharm X 2024; 7:100255. [PMID: 38766478 PMCID: PMC11101883 DOI: 10.1016/j.ijpx.2024.100255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
The use of lipids as suitable excipients for drug carrier systems has been established for years. Liposomes or lipid nanoparticles (LNPs) in general have been shown capable of delivering both hydrophilic and hydrophobic drugs. The Covid-19 pandemic and the resulting vaccines have significantly increased interest in the potential for these lipid-based systems, which can carry different types of therapeutic RNAs. LNPs used for the transfection of RNA are usually a multi-component mixture of phospholipids and other lipids. Essential components are positively charged or ionizable lipids such as DOTAP or SM-102, but also uncharged helper lipids such as cholesterol, DOPE, DSPC, DMG-PEG2000 or DSPE-PEG2000. Due to the differences in charge, simultaneous detection is a challenge. Here, we present a reversed-phase high-performance liquid chromatography charged-aerosol-detector method (RP-HPLC-CAD method) using a C-18 column for the simultaneous determination of charged and uncharged lipids. Our method has been validated according to the ICH-Q2 (R2) guideline for accuracy, precision, specificity and working range, including the limit of detection (LOD) and quantification (LOQ), as well as the calibration range. We were able to show satisfactory results in both precision and accuracy. The working range also shows great potential with a calibration range from 9.375 to 1000 μg/ml, LODs <1.85 μg/ml and LOQs <6.16 μg/ml. This method represents a fast and reproducible procedure for quantifying the lipids mentioned. In combination with the novel approach for the production of LNPs using dual centrifugation (DC), it offers the possibility of extremely rapid production of RNA-loaded LNPs, and the immediate analysis for their lipid components.
Collapse
Affiliation(s)
- Valentin Bender
- Department of Pharmaceutics, Institute of Pharmaceutical Sciences, University of Freiburg, Sonnenstraße 5, 79104 Freiburg, Germany
| | - Leon Fuchs
- Department of Pharmaceutics, Institute of Pharmaceutical Sciences, University of Freiburg, Sonnenstraße 5, 79104 Freiburg, Germany
| | - Regine Süss
- Department of Pharmaceutics, Institute of Pharmaceutical Sciences, University of Freiburg, Sonnenstraße 5, 79104 Freiburg, Germany
| |
Collapse
|
8
|
Akkaya-Ulum YZ, Sen B, Akbaba TH, Balci-Peynircioglu B. InflammamiRs in focus: Delivery strategies and therapeutic approaches. FASEB J 2024; 38:e23528. [PMID: 38441434 DOI: 10.1096/fj.202302028r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/22/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
microRNAs (miRNAs) are small non-protein-coding RNAs which are essential regulators of host genome expression at the post-transcriptional level. There is evidence of dysregulated miRNA expression patterns in a wide variety of diseases, such as autoimmune and inflammatory conditions. These miRNAs have been termed "inflammamiRs." When working with miRNAs, the method followed, the approach to treat or diagnosis, and the selected biological material are very crucial. Demonstration of the role of miRNAs in particular disease phenotypes facilitates their evaluation as potential and effective therapeutic tools. A growing number of reports suggest the significant utility of miRNAs and other small RNA drugs in clinical medicine. Most miRNAs seem promising therapeutic options, but some features associated with miRNA therapy like off-target effect, effective dosage, or differential delivery methods, mainly caused by the short target's sequence, make miRNA therapies challenging. In this review, we aim to discuss some of the inflammamiRs in diseases associated with inflammatory pathways and the challenge of identifying the most potent therapeutic candidates and provide a perspective on achieving safe and targeted delivery of miRNA therapeutics. We also discuss the status of inflammamiRs in clinical trials.
Collapse
Affiliation(s)
- Yeliz Z Akkaya-Ulum
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Basak Sen
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Tayfun Hilmi Akbaba
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
9
|
Kaurani L. Clinical Insights into MicroRNAs in Depression: Bridging Molecular Discoveries and Therapeutic Potential. Int J Mol Sci 2024; 25:2866. [PMID: 38474112 PMCID: PMC10931847 DOI: 10.3390/ijms25052866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Depression is a major contributor to the overall global burden of disease. The discovery of biomarkers for diagnosis or prediction of treatment responses and as therapeutic agents is a current priority. Previous studies have demonstrated the importance of short RNA molecules in the etiology of depression. The most extensively researched of these are microRNAs, a major component of cellular gene regulation and function. MicroRNAs function in a temporal and tissue-specific manner to regulate and modify the post-transcriptional expression of target mRNAs. They can also be shuttled as cargo of extracellular vesicles between the brain and the blood, thus informing about relevant mechanisms in the CNS through the periphery. In fact, studies have already shown that microRNAs identified peripherally are dysregulated in the pathological phenotypes seen in depression. Our article aims to review the existing evidence on microRNA dysregulation in depression and to summarize and evaluate the growing body of evidence for the use of microRNAs as a target for diagnostics and RNA-based therapies.
Collapse
Affiliation(s)
- Lalit Kaurani
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| |
Collapse
|
10
|
Huang W, Paul D, Calin GA, Bayraktar R. miR-142: A Master Regulator in Hematological Malignancies and Therapeutic Opportunities. Cells 2023; 13:84. [PMID: 38201290 PMCID: PMC10778542 DOI: 10.3390/cells13010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
MicroRNAs (miRNAs) are a type of non-coding RNA whose dysregulation is frequently associated with the onset and progression of human cancers. miR-142, an ultra-conserved miRNA with both active -3p and -5p mature strands and wide-ranging physiological targets, has been the subject of countless studies over the years. Due to its preferential expression in hematopoietic cells, miR-142 has been found to be associated with numerous types of lymphomas and leukemias. This review elucidates the multifaceted role of miR-142 in human physiology, its influence on hematopoiesis and hematopoietic cells, and its intriguing involvement in exosome-mediated miR-142 transport. Moreover, we offer a comprehensive exploration of the genetic and molecular landscape of the miR-142 genomic locus, highlighting its mutations and dysregulation within hematological malignancies. Finally, we discuss potential avenues for harnessing the therapeutic potential of miR-142 in the context of hematological malignancies.
Collapse
Affiliation(s)
- Wilson Huang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (G.A.C.)
| | - Doru Paul
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (G.A.C.)
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Recep Bayraktar
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
11
|
Pagoni M, Cava C, Sideris DC, Avgeris M, Zoumpourlis V, Michalopoulos I, Drakoulis N. miRNA-Based Technologies in Cancer Therapy. J Pers Med 2023; 13:1586. [PMID: 38003902 PMCID: PMC10672431 DOI: 10.3390/jpm13111586] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The discovery of therapeutic miRNAs is one of the most exciting challenges for pharmaceutical companies. Since the first miRNA was discovered in 1993, our knowledge of miRNA biology has grown considerably. Many studies have demonstrated that miRNA expression is dysregulated in many diseases, making them appealing tools for novel therapeutic approaches. This review aims to discuss miRNA biogenesis and function, as well as highlight strategies for delivering miRNA agents, presenting viral, non-viral, and exosomic delivery as therapeutic approaches for different cancer types. We also consider the therapeutic role of microRNA-mediated drug repurposing in cancer therapy.
Collapse
Affiliation(s)
- Maria Pagoni
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Claudia Cava
- Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, 27100 Pavia, Italy;
| | - Diamantis C. Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece;
| | - Margaritis Avgeris
- Laboratory of Clinical Biochemistry—Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, “P. & A. Kyriakou” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vassilios Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece;
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
12
|
Le MT, Nguyen HT, Nguyen XH, Do XH, Mai BT, Ngoc Nguyen HT, Trang Than UT, Nguyen TH. Regulation and therapeutic potentials of microRNAs to non-small cell lung cancer. Heliyon 2023; 9:e22080. [PMID: 38058618 PMCID: PMC10696070 DOI: 10.1016/j.heliyon.2023.e22080] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, accounting for 80%-85% of total cases and leading to millions of deaths worldwide. Drug resistance is the primary cause of treatment failure in NSCLC, which urges scientists to develop advanced approaches for NSCLC treatment. Among novel approaches, the miRNA-based method has emerged as a potential approach as it allows researchers to modulate target gene expression. Subsequently, cell behaviors are altered, which leads to the death and the depletion of cancer cells. It has been reported that miRNAs possess the capacity to regulate multiple genes that are involved in various signaling pathways, including the phosphoinositide 3-kinase, receptor tyrosine kinase/rat sarcoma virus/mitogen-activated protein kinase, wingless/integrated, retinoblastoma, p53, transforming growth factor β, and nuclear factor-kappa B pathways. Dysregulation of these signaling pathways in NSCLC results in abnormal cell proliferation, tissue invasion, and drug resistance while inhibiting apoptosis. Thus, understanding the roles of miRNAs in regulating these signaling pathways may enable the development of novel NSCLC treatment therapies. However, a comprehensive review of potential miRNAs in NSCLC treatment has been lacking. Therefore, this review aims to fill the gap by summarizing the up-to-date information on miRNAs regarding their targets, impact on cancer-associated pathways, and prospective outcomes in treating NSCLC. We also discuss current technologies for delivering miRNAs to the target cells, including virus-based, non-viral, and emerging extracellular vesicle-based delivery systems. This knowledge will support future studies to develop an innovative miRNA-based therapy and select a suitable carrier to treat NSCLC effectively.
Collapse
Affiliation(s)
- Mai Thi Le
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, 100000, Viet Nam
| | - Huyen-Thu Nguyen
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| | - Xuan-Hung Nguyen
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
- College of Health Sciences, Vin University, Hanoi, 100000, Viet Nam
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| | - Xuan-Hai Do
- Department of Gastroenterology, 108 Military Central Hospital, Hanoi, Viet Nam
| | - Binh Thanh Mai
- Department of Practical and Experimental Surgery, Vietnam Military Medical University, 160 Phung Hung Street, Phuc La, Ha Dong, Hanoi, Viet Nam
| | - Ha Thi Ngoc Nguyen
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| | - Uyen Thi Trang Than
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| | - Thanh-Hong Nguyen
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| |
Collapse
|
13
|
Fu J, Imani S, Wu MY, Wu RC. MicroRNA-34 Family in Cancers: Role, Mechanism, and Therapeutic Potential. Cancers (Basel) 2023; 15:4723. [PMID: 37835417 PMCID: PMC10571940 DOI: 10.3390/cancers15194723] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
MicroRNA (miRNA) are small noncoding RNAs that play vital roles in post-transcriptional gene regulation by inhibiting mRNA translation or promoting mRNA degradation. The dysregulation of miRNA has been implicated in numerous human diseases, including cancers. miR-34 family members (miR-34s), including miR-34a, miR-34b, and miR-34c, have emerged as the most extensively studied tumor-suppressive miRNAs. In this comprehensive review, we aim to provide an overview of the major signaling pathways and gene networks regulated by miR-34s in various cancers and highlight the critical tumor suppressor role of miR-34s. Furthermore, we will discuss the potential of using miR-34 mimics as a novel therapeutic approach against cancer, while also addressing the challenges associated with their development and delivery. It is anticipated that gaining a deeper understanding of the functions and mechanisms of miR-34s in cancer will greatly contribute to the development of effective miR-34-based cancer therapeutics.
Collapse
Affiliation(s)
- Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310022, China
| | - Mei-Yi Wu
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Ray-Chang Wu
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
14
|
Chandra T, Jaiswal S, Iquebal MA, Singh R, Gautam RK, Rai A, Kumar D. Revitalizing miRNAs mediated agronomical advantageous traits improvement in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107933. [PMID: 37549574 DOI: 10.1016/j.plaphy.2023.107933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/04/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
One of the key enigmas in conventional and modern crop improvement programmes is how to introduce beneficial traits without any penalty impairment. Rice (Oryza sativa L.), among the essential staple food crops grown and utilized worldwide, needs to improve genotypes in multifaceted ways. With the global view to feed ten billion under the climatic perturbation, only a potent functional master regulator can withstand with hope for the next green revolution and food security. miRNAs are such, miniature, fine tuners for crop improvement and provide a value addition in emerging technologies, namely large-scale genotyping, phenotyping, genome editing, marker-assisted selection, and genomic selection, to make rice production feasible. There has been surplus research output generated since the last decade on miRNAs in rice, however, recent functional knowledge is limited to reaping the benefits for conventional and modern improvements in rice to avoid ambiguity and redundancy in the generated data. Here, we present the latest functional understanding of miRNAs in rice. In addition, their biogenesis, intra- and inter-kingdom signaling and communication, implication of amiRNAs, and consequences upon integration with CRISPR-Cas9. Further, highlights refer to the application of miRNAs for rice agronomical trait improvements, broadly classified into three functional domains. The majority of functionally established miRNAs are responsible for growth and development, followed by biotic and abiotic stresses. Tabular cataloguing reveals and highlights two multifaceted modules that were extensively studied. These belong to miRNA families 156 and 396, orchestrate multifarious aspects of advantageous agronomical traits. Moreover, updated and exhaustive functional aspects of different supplemental miRNA modules that would strengthen rice improvement are also being discussed.
Collapse
Affiliation(s)
- Tilak Chandra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - R K Gautam
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India.
| | - Anil Rai
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India; Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| |
Collapse
|
15
|
Elesawy AE, Abulsoud AI, Moustafa HAM, Elballal MS, Sallam AAM, Elazazy O, El-Dakroury WA, Abdel Mageed SS, Abdelmaksoud NM, Midan HM, Shahin RK, Elrebehy MA, Nassar YA, Elazab IM, Elballal AS, Elballal MS, Doghish AS. miRNAs orchestration of testicular germ cell tumors - Particular emphasis on diagnosis, progression and drug resistance. Pathol Res Pract 2023; 248:154612. [PMID: 37327566 DOI: 10.1016/j.prp.2023.154612] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
Testicular cancer (TC) is one of the most frequently incident solid tumors in males. A growing prevalence has been documented in developed countries. Although recent advances have made TC an exceedingly treatable cancer, numerous zones in TC care still have divisive treatment decisions. In addition to physical examination and imaging techniques, conventional serum tumor markers have been traditionally used for the diagnosis of testicular germ cell tumors (TGCT). Unlike other genital and urinary tract tumors, recent research methods have not been broadly used in TGCTs. Even though several challenges in TC care must be addressed, a dedicated group of biomarkers could be particularly beneficial to help classify patient risk, detect relapse early, guide surgery decisions, and tailor follow-up. Existing tumor markers (Alpha-fetoprotein, human chorionic gonadotrophin, and lactate dehydrogenase) have limited accuracy and sensitivity when used as diagnostic, prognostic, or predictive markers. At present, microRNAs (miRNA or miR) play a crucial role in the process of several malignancies. The miRNAs exhibit pronounced potential as novel biomarkers since they reveal high stability in body fluids, are easily detected, and are relatively inexpensive in quantitative assays. In this review, we aimed to shed light on the recent novelties in developing microRNAs as diagnostic and prognostic markers in TC and discuss their clinical applications in TC management.
Collapse
Affiliation(s)
- Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yara A Nassar
- Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Ibrahim M Elazab
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Egypt
| | - Ahmed S Elballal
- Department of Dentistry, Medical Administration, University of Sadat City Menoufia 32897, Egypt
| | | | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
16
|
Minz R, Sharma PK, Negi A, Kesari KK. MicroRNAs-Based Theranostics against Anesthetic-Induced Neurotoxicity. Pharmaceutics 2023; 15:1833. [PMID: 37514018 PMCID: PMC10385075 DOI: 10.3390/pharmaceutics15071833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Various clinical reports indicate prolonged exposure to general anesthetic-induced neurotoxicity (in vitro and in vivo). Behavior changes (memory and cognition) are compilations commonly cited with general anesthetics. The ability of miRNAs to modulate gene expression, thereby selectively altering cellular functions, remains one of the emerging techniques in the recent decade. Importantly, engineered miRNAs (which are of the two categories, i.e., agomir and antagomir) to an extent found to mitigate neurotoxicity. Utilizing pre-designed synthetic miRNA oligos would be an ideal analeptic approach for intervention based on indicative parameters. This review demonstrates engineered miRNA's potential as prophylactics and/or therapeutics minimizing the general anesthetics-induced neurotoxicity. Furthermore, we share our thoughts regarding the current challenges and feasibility of using miRNAs as therapeutic agents to counteract the adverse neurological effects. Moreover, we discuss the scientific status and updates on the novel neuro-miRNAs related to therapy against neurotoxicity induced by amyloid beta (Aβ) and Parkinson's disease (PD).
Collapse
Affiliation(s)
- Roseleena Minz
- Department of Life Sciences, Central University of Jharkhand, Brambe, Ranchi 853205, Jharkhand, India
| | - Praveen Kumar Sharma
- Department of Life Sciences, Central University of Jharkhand, Brambe, Ranchi 853205, Jharkhand, India
| | - Arvind Negi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
17
|
Abulsoud AI, Elshaer SS, El-Husseiny AA, Fathi D, Abdelmaksoud NM, Abdel Mageed SS, Salman A, Zaki MB, El-Mahdy HA, Ismail A, Elsakka EGE, Abd-Elmawla MA, El-Husseiny HM, Ibrahim WS, Doghish AS. The potential role of miRNAs in the pathogenesis of salivary gland cancer - A Focus on signaling pathways interplay. Pathol Res Pract 2023; 247:154584. [PMID: 37267724 DOI: 10.1016/j.prp.2023.154584] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
Salivary gland cancer (SGC) is immensely heterogeneous, both in terms of its physical manifestation and its aggressiveness. Developing a novel diagnostic and prognostic detection method based on the noninvasive profiling of microribonucleic acids (miRs) could be a goal for the clinical management of these specific malignancies, sparing the patients' valuable time. miRs are promising candidates as prognostic biomarkers and therapeutic targets or factors that can advance the therapy of SGC due to their ability to posttranscriptionally regulate the expression of various genes involved in cell proliferation, differentiation, cell cycle, apoptosis, invasion, and angiogenesis. Depending on their biological function, many miRs may contribute to the development of SGC. Therefore, this article serves as an accelerated study guide for SGC and the biogenesis of miRs. Here, we shall list the miRs whose function in SGC pathogenesis has recently been determined with an emphasis on their potential applications as therapeutic targets. We will also offer a synopsis of the current state of knowledge about oncogenic and tumor suppressor miRs in relation to SGC.
Collapse
Affiliation(s)
- Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Doaa Fathi
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Aya Salman
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hussein M El-Husseiny
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Wael S Ibrahim
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
18
|
Doghish AS, Moustafa HAM, Elballal MS, Sarhan OM, Darwish SF, Elkalla WS, Mohammed OA, Atta AM, Abdelmaksoud NM, El-Mahdy HA, Ismail A, Abdel Mageed SS, Elrebehy MA, Abdelfatah AM, Abulsoud AI. miRNAs as potential game-changers in retinoblastoma: Future clinical and medicinal uses. Pathol Res Pract 2023; 247:154537. [PMID: 37216745 DOI: 10.1016/j.prp.2023.154537] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Retinoblastoma (RB) is a rare tumor in children, but it is the most common primitive intraocular malignancy in childhood age, especially those below three years old. The RB gene (RB1) undergoes mutations in individuals with RB. Although mortality rates remain high in developing countries, the survival rate for this type of cancer is greater than 95-98% in industrialized countries. However, it is lethal if left untreated, so early diagnosis is essential. As a non-coding RNA, miRNA significantly impacts RB development and treatment resistance because it can control various cellular functions. In this review, we illustrate the recent advances in the role of miRNAs in RB. That includes the clinical importance of miRNAs in RB diagnosis, prognosis, and treatment. Moreover, the regulatory mechanisms of miRNAs in RB and therapeutic interventions are discussed.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| | - Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Omnia M Sarhan
- Department of Pharmaceutics, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Samar F Darwish
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Wagiha S Elkalla
- Microbiology and Immunology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia
| | - Asmaa M Atta
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | | | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Amr M Abdelfatah
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Badr University in Cairo, Badr, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
19
|
Doghish AS, El-Husseiny AA, Abdelmaksoud NM, El-Mahdy HA, Elsakka EGE, Abdel Mageed SS, Mahmoud AMA, Raouf AA, Elballal MS, El-Dakroury WA, AbdelRazek MMM, Noshy M, El-Husseiny HM, Abulsoud AI. The interplay of signaling pathways and miRNAs in the pathogenesis and targeted therapy of esophageal cancer. Pathol Res Pract 2023; 246:154529. [PMID: 37196470 DOI: 10.1016/j.prp.2023.154529] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Globally, esophageal cancer (EC) is the 6th leading cause of cancer-related deaths and the second deadliest gastrointestinal cancer. Multiple genetic and epigenetic factors, such as microRNAs (miRNAs), influence its onset and progression. miRNAs are short nucleic acid molecules that can regulate multiple cellular processes by regulating gene expression. Therefore, EC initiation, progression, apoptosis evasions, invasion capacity, promotion, angiogenesis, and epithelial-mesenchymal transition (EMT) enhancement are associated with miRNA expression dysregulation. Wnt/-catenin signaling, Mammalian target of rapamycin (mTOR)/P-gp, phosphoinositide-3-kinase (PI3K)/AKT/c-Myc, epidermal growth factor receptor (EGFR), and transforming growth factor (TGF)-β signaling are crucial pathways in EC that are controlled by miRNAs. This review was conducted to provide an up-to-date assessment of the role of microRNAs in EC pathogenesis and their modulatory effects on responses to various EC treatment modalities.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Abdulla M A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed M M AbdelRazek
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mina Noshy
- Clinical Pharmacy Department, Faculty of Pharmacy, King Salman International University (KSIU), SouthSinai, Ras Sudr 46612, Egypt
| | - Hussein M El-Husseiny
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
20
|
Elshaer SS, Abulsoud AI, Fathi D, Abdelmaksoud NM, Zaki MB, El-Mahdy HA, Ismail A, Elsakka EGE, Abd-Elmawla MA, Abulsoud LA, Doghish AS. miRNAs role in glioblastoma pathogenesis and targeted therapy: Signaling pathways interplay. Pathol Res Pract 2023; 246:154511. [PMID: 37178618 DOI: 10.1016/j.prp.2023.154511] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
High mortality and morbidity rates and variable clinical behavior are hallmarks of glioblastoma (GBM), the most common and aggressive primary malignant brain tumor. Patients with GBM often have a dismal outlook, even after undergoing surgery, postoperative radiation, and chemotherapy, which has fueled the search for specific targets to provide new insights into the development of contemporary therapies. The ability of microRNAs (miRNAs/miRs) to posttranscriptionally regulate the expression of various genes and silence many target genes involved in cell proliferation, cell cycle, apoptosis, invasion, angiogenesis, stem cell behavior and chemo- and radiotherapy resistance makes them promising candidates as prognostic biomarkers and therapeutic targets or factors to advance GBM therapeutics. Hence, this review is like a crash course in GBM and how miRNAs related to GBM. Here, we will outline the miRNAs whose role in the development of GBM has been established by recent in vitro or in vivo research. Moreover, we will provide a summary of the state of knowledge regarding oncomiRs and tumor suppressor (TS) miRNAs in relation to GBM with an emphasis on their potential applications as prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Shereen Saeid Elshaer
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Doaa Fathi
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Logyna A Abulsoud
- Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
21
|
Hegazy M, Elkady MA, Yehia AM, Elsakka EGE, Abulsoud AI, Abdelmaksoud NM, Elshafei A, Abdelghany TM, Elkhawaga SY, Ismail A, Mokhtar MM, El-Mahdy HA, Doghish AS. The role of miRNAs in laryngeal cancer pathogenesis and therapeutic resistance - A focus on signaling pathways interplay. Pathol Res Pract 2023; 246:154510. [PMID: 37167812 DOI: 10.1016/j.prp.2023.154510] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Laryngeal cancer (LC)is the malignancy of the larynx (voice box). The majority of LC are squamous cell carcinomas. Many risk factors were reported to be associated with LC as tobacco use, obesity, alcohol intake, human papillomavirus (HPV) infection, and asbestos exposure. Besides, epigenetics as non-coding nucleic acids also have a great role in LC. miRNAs are short nucleic acid molecules that can modulate multiple cellular processes by regulating the expression of their genes. Therefore, LC progression, apoptosis evasions, initiation, EMT, and angiogenesis are associated with dysregulated miRNA expressions. miRNAs also could have some vital signaling pathways such as mTOR/P-gp, Wnt/-catenin signaling, JAK/STAT, KRAS, and EGF. Besides, miRNAs also have a role in the modulation of LC response to different therapeutic modalities. In this review, we have provided a comprehensive and updated overview highlighting the microRNAs biogenesis, general biological functions, regulatory mechanisms, and signaling dysfunction in LC carcinogenesis, in addition to their clinical potential for LC diagnosis, prognosis, and chemotherapeutics response implications.
Collapse
Affiliation(s)
- Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed Elshafei
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
22
|
Doghish AS, Elballal MS, Elazazy O, Elesawy AE, Shahin RK, Midan HM, Sallam AAM, Elbadry AM, Mohamed AK, Ishak NW, Hassan KA, Ayoub AM, Shalaby RE, Elrebehy MA. miRNAs as potential game-changers in bone diseases: Future medicinal and clinical uses. Pathol Res Pract 2023; 245:154440. [PMID: 37031531 DOI: 10.1016/j.prp.2023.154440] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
MicroRNAs (miRNAs), short, highly conserved non-coding RNA, influence gene expression by sequential mechanisms such as mRNA breakdown or translational repression. Many biological processes depend on these regulating substances, thus changes in their expression have an impact on the maintenance of cellular homeostasis and result in the emergence of a variety of diseases. Relevant studies have shown in recent years that miRNAs are involved in many stages of bone development and growth. Additionally, abnormal production of miRNA in bone tissues has been closely associated with the development of numerous bone disorders, such as osteonecrosis, bone cancer, and bone metastases. Many pathological processes, including bone loss, metastasis, the proliferation of osteosarcoma cells, and differentiation of osteoblasts and osteoclasts, are under the control of miRNAs. By bringing together the most up-to-date information on the clinical relevance of miRNAs in such diseases, this study hopes to further the study of the biological features of miRNAs in bone disorders and explore their potential as a therapeutic target.
Collapse
|
23
|
Zaki MB, Abulsoud AI, Elshaer SS, Fathi D, Abdelmaksoud NM, El-Mahdy HA, Ismail A, Elsakka EG, Sallam AAM, Doghish AS. The interplay of signaling pathways with miRNAs in cholangiocarcinoma pathogenicity and targeted therapy. Pathol Res Pract 2023; 245:154437. [PMID: 37030167 DOI: 10.1016/j.prp.2023.154437] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
Cholangiocarcinoma (CCA), the second most frequent liver cancer after hepatocellular carcinoma, has been rising worldwide in recent epidemiological research. This neoplasia's pathogenesis is poorly understood. Yet, recent advances have illuminated the molecular processes of cholangiocyte malignancy and growth. Late diagnosis, ineffective therapy, and resistance to standard treatments contribute to this malignancy's poor prognosis. So, to develop efficient preventative and therapy methods, the molecular pathways that cause this cancer must be better understood. MicroRNAs (miRNAs) are non-coding ribonucleic acids (ncRNAs) that influence gene expression. Biliary carcinogenesis involves abnormally expressed miRNAs that act as oncogenes or tumor suppressors (TSs). The miRNAs regulate multiple gene networks and are involved in cancer hallmarks like reprogramming of cellular metabolism, sustained proliferative signaling, evasion of growth suppressors, replicative immortality, induction/access to the vasculature, activation of invasion and metastasis, and avoidance of immune destruction. In addition, numerous ongoing clinical trials are demonstrating the efficacy of therapeutic strategies based on miRNAs as powerful anticancer agents. Here, we will update the research on CCA-related miRNAs and explain their regulation involved in the molecular pathophysiology of this malignancy. Eventually, we will disclose their potential as clinical biomarkers and therapeutic tools in CCA.
Collapse
|
24
|
Wang Y, Wu Y, Zhang B, Zheng C, Hu C, Guo C, Kong Q, Wang Y. Repair of degenerative nucleus pulposus by polyphenol nanosphere-encapsulated hydrogel gene delivery system. Biomaterials 2023; 298:122132. [PMID: 37156085 DOI: 10.1016/j.biomaterials.2023.122132] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/17/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Intervertebral disc degeneration (IDD) progresses due to local inflammatory response, gradually unbalanced anabolic/catabolic activity, and progressive functional impairment within the nucleus pulposus. Antagomir-21, a cholesterol-modified miRNA-21 inhibitor, has potential extracellular matrix (ECM) regenerative ability, but its application for IDD is limited by inadequate local delivery systems. An injectable hydrogel gene delivery system encapsulating a modified tannic acid nanoparticles (TA NPs) vector was engineered for on-demand and sustained delivery of antagomir-21 into the nucleus pulposus. After nucleus pulposus cell uptake, antagomir-21 was released from TA NPs and regulated the ECM metabolic balance by inhibiting the MAPK/ERK signaling pathway. TA NPs scavenged intracellular ROS and reduced inflammation by downregulating TNF-α expression. In vivo, synergistic anti-inflammatory effects and ECM regeneration effectively promoted therapeutic efficacy against IDD. This hydrogel gene delivery system represents a creative, promising strategy for IDD repair.
Collapse
Affiliation(s)
- Yu Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ye Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Zheng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Chuan Guo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingquan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
25
|
Doghish AS, Hegazy M, Ismail A, El-Mahdy HA, Elsakka EGE, Elkhawaga SY, Elkady MA, Yehia AM, Abdelmaksoud NM, Mokhtar MM. A spotlight on the interplay of signaling pathways and the role of miRNAs in osteosarcoma pathogenesis and therapeutic resistance. Pathol Res Pract 2023; 245:154442. [PMID: 37031532 DOI: 10.1016/j.prp.2023.154442] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Osteosarcoma (OS) is one of the most common bone cancers that constantly affects children, teenagers, and young adults. Numerous epigenetic elements, such as miRNAs, have been shown to influence OS features like progression, initiation, angiogenesis, and treatment resistance. The expression of numerous genes implicated in OS pathogenesis might be regulated by miRNAs. This effect is ascribed to miRNAs' roles in the invasion, angiogenesis, metastasis, proliferation, cell cycle, and apoptosis. Important OS-related mechanistic networks like the WNT/b-catenin signaling, PTEN/AKT/mTOR axis, and KRAS mutations are also affected by miRNAs. In addition to pathophysiology, miRNAs may influence how the OS reacts to therapies like radiotherapy and chemotherapy. With a focus on how miRNAs affect OS signaling pathways, this review seeks to show how miRNAs and OS are related.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| |
Collapse
|
26
|
Elballal MS, Sallam AAM, Elesawy AE, Shahin RK, Midan HM, Elrebehy MA, Elazazy O, El-Boghdady RM, Blasy SH, Amer NM, Farid HI, Mohammed DA, Ahmed SA, Mohamed SS, Doghish AS. miRNAs as potential game-changers in renal cell carcinoma: Future clinical and medicinal uses. Pathol Res Pract 2023; 245:154439. [PMID: 37028108 DOI: 10.1016/j.prp.2023.154439] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Renal cell carcinoma (RCC) has the highest mortality rate of all genitourinary cancers, and its prevalence has grown over time. While RCC can be surgically treated and recurrence is only probable in a tiny proportion of patients, early diagnosis is crucial. Mutations in a large number of oncogenes and tumor suppressor genes contribute to pathway dysregulation in RCC. MicroRNAs (miRNAs) have considerable promise as biomarkers for detecting cancer due to their special combination of properties. Several miRNAs have been proposed as a diagnostic or monitoring tool for RCC based on their presence in the blood or urine. Moreover, the expression profile of particular miRNAs has been associated with the response to chemotherapy, immunotherapy, or targeted therapeutic options like sunitinib. The goal of this review is to go over the development, spread, and evolution of RCC. Also, we emphasize the outcomes of studies that examined the use of miRNAs in RCC patients as biomarkers, therapeutic targets, or modulators of responsiveness to treatment modalities.
Collapse
Affiliation(s)
- Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt.
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | | | - Shaimaa Hassan Blasy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Nada Mahmoud Amer
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Hadeer Ibrahim Farid
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Dina Ashraf Mohammed
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Shaymaa Adly Ahmed
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Sally Samir Mohamed
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| |
Collapse
|
27
|
Abd-Allah GM, Ismail A, El-Mahdy HA, Elsakka EG, El-Husseiny AA, Abdelmaksoud NM, Salman A, Elkhawaga SY, Doghish AS. miRNAs as potential game-changers in melanoma: A comprehensive review. Pathol Res Pract 2023; 244:154424. [PMID: 36989843 DOI: 10.1016/j.prp.2023.154424] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/28/2023]
Abstract
Melanoma is the sixth most frequent malignancy. It represents 1.7% of all cancer cases worldwide. Many risk factors are associated with melanoma including ultraviolet radiation skin phenotype, Pigmented Nevi, Pesticides, and genetic and epigenetic factors. Of the main epigenetic factors affecting melanoma are microribonucleic acids (miRNAs). They are short nucleic acid chains that have the potential to prevent the expression of a number of target genes. They could target a number of genes related to melanoma initiation, stemness, angiogenesis, apoptosis, proliferation, and potential resistance to treatment. Additionally, they can control several melanoma signaling pathways, including P53, WNT/-catenin, JAK/STAT, PI3K/AKT/mTOR axis, TGF- β, and EGFR. MiRNAs also play a role in the resistance of melanoma to essential treatment regimens. The stability and abundance of miRNAs might be important factors enhancing the use of miRNAs as markers of prognosis, diagnosis, stemness, survival, and metastasis in melanoma patients.
Collapse
|
28
|
Zhang Y, Wang R, Liu R, Xie S, Jiao F, Li Y, Xin J, Zhang H, Wang Z, Yan Y. Delivery of miR-3529-3p using MnO 2 -SiO 2 -APTES nanoparticles combined with phototherapy suppresses lung adenocarcinoma progression by targeting HIGD1A. Thorac Cancer 2023; 14:913-928. [PMID: 36808485 PMCID: PMC10067359 DOI: 10.1111/1759-7714.14823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND The present study aimed to investigate the function of miR-3529-3p in lung adenocarcinoma and MnO2 -SiO2 -APTES (MSA) as a promising multifunctional delivery agent for lung adenocarcinoma therapy. METHODS Expression levels of miR-3529-3p were evaluated in lung carcinoma cells and tissues by qRT-PCR. The effects of miR-3529-3p on apoptosis, proliferation, metastasis and neovascularization were assessed by CCK-8, FACS, transwell and wound healing assays, tube formation and xenografts experiments. Luciferase reporter assays, western blot, qRT-PCR and mitochondrial complex assay were used to determine the targeting relationship between miR-3529-3p and hypoxia-inducible gene domain family member 1A (HIGD1A). MSA was fabricated using MnO2 nanoflowers, and its heating curves, temperature curves, IC50, and delivery efficiency were examined. The hypoxia and reactive oxygen species (ROS) production was investigated by nitro reductase probing, DCFH-DA staining and FACS. RESULTS MiR-3529-3p expression was reduced in lung carcinoma tissues and cells. Transfection of miR-3529-3p could promote apoptosis and suppress cell proliferation, migration and angiogenesis. As a target of miR-3529-3p, HIGD1A expression was downregulated, through which miR-3529-3p could disrupt the activities of complexes III and IV of the respiratory chain. The multifunctional nanoparticle MSA could not only efficiently deliver miR-3529-3p into cells, but also enhance the antitumor function of miR-3529-3p. The underlying mechanism may be that MSA alleviates hypoxia and has synergistic effects in cellular ROS promotion with miR-3529-3p. CONCLUSIONS Our results establish the antioncogenic role of miR-3529-3p, and demonstrate that miR-3529-3p delivered by MSA has enhanced tumor suppressive effects, probably through elevating ROS production and thermogenesis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiP. R. China
- Oncology DepartmentBinzhou Medical University HospitalBinzhouP. R. China
| | - Ran‐Ran Wang
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiP. R. China
| | - Rui Liu
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiP. R. China
| | - Shu‐Yang Xie
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiP. R. China
| | - Fei Jiao
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiP. R. China
| | - You‐Jie Li
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiP. R. China
| | - Jiaxuan Xin
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiP. R. China
| | - Han Zhang
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiP. R. China
| | - Zhenbo Wang
- Oncology DepartmentBinzhou Medical University HospitalBinzhouP. R. China
| | - Yun‐Fei Yan
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiP. R. China
| |
Collapse
|
29
|
Knauer N, Meschaninova M, Muhammad S, Hänggi D, Majoral JP, Kahlert UD, Kozlov V, Apartsin EK. Effects of Dendrimer-microRNA Nanoformulations against Glioblastoma Stem Cells. Pharmaceutics 2023; 15:pharmaceutics15030968. [PMID: 36986829 PMCID: PMC10056969 DOI: 10.3390/pharmaceutics15030968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Glioblastoma is a rapidly progressing tumor quite resistant to conventional treatment. These features are currently assigned to a self-sustaining population of glioblastoma stem cells. Anti-tumor stem cell therapy calls for a new means of treatment. In particular, microRNA-based treatment is a solution, which in turn requires specific carriers for intracellular delivery of functional oligonucleotides. Herein, we report a preclinical in vitro validation of antitumor activity of nanoformulations containing antitumor microRNA miR-34a and microRNA-21 synthetic inhibitor and polycationic phosphorus and carbosilane dendrimers. The testing was carried out in a panel of glioblastoma and glioma cell lines, glioblastoma stem-like cells and induced pluripotent stem cells. We have shown dendrimer-microRNA nanoformulations to induce cell death in a controllable manner, with cytotoxic effects being more pronounced in tumor cells than in non-tumor stem cells. Furthermore, nanoformulations affected the expression of proteins responsible for interactions between the tumor and its immune microenvironment: surface markers (PD-L1, TIM3, CD47) and IL-10. Our findings evidence the potential of dendrimer-based therapeutic constructions for the anti-tumor stem cell therapy worth further investigation.
Collapse
Affiliation(s)
- Nadezhda Knauer
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Medical Center Düsseldorf, 40225 Düsseldorf, Germany
| | - Mariya Meschaninova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| | - Sajjad Muhammad
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Medical Center Düsseldorf, 40225 Düsseldorf, Germany
| | - Daniel Hänggi
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Medical Center Düsseldorf, 40225 Düsseldorf, Germany
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination, CNRS, 205 Route de Narbonne, CEDEX 04, 31077 Toulouse, France
| | - Ulf Dietrich Kahlert
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular-, and Transplant-Surgery, Medical Faculty, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Vladimir Kozlov
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Evgeny K. Apartsin
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, 33600 Pessac, France
- Correspondence:
| |
Collapse
|
30
|
MiRNAs in Hematopoiesis and Acute Lymphoblastic Leukemia. Int J Mol Sci 2023; 24:ijms24065436. [PMID: 36982511 PMCID: PMC10049736 DOI: 10.3390/ijms24065436] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 03/14/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common kind of pediatric cancer. Although the cure rates in ALL have significantly increased in developed countries, still 15–20% of patients relapse, with even higher rates in developing countries. The role of non-coding RNA genes as microRNAs (miRNAs) has gained interest from researchers in regard to improving our knowledge of the molecular mechanisms underlying ALL development, as well as identifying biomarkers with clinical relevance. Despite the wide heterogeneity reveled in miRNA studies in ALL, consistent findings give us confidence that miRNAs could be useful to discriminate between leukemia linages, immunophenotypes, molecular groups, high-risk-for-relapse groups, and poor/good responders to chemotherapy. For instance, miR-125b has been associated with prognosis and chemoresistance in ALL, miR-21 has an oncogenic role in lymphoid malignancies, and the miR-181 family can act either as a oncomiR or tumor suppressor in several hematological malignancies. However, few of these studies have explored the molecular interplay between miRNAs and their targeted genes. This review aims to state the different ways in which miRNAs could be involved in ALL and their clinical implications.
Collapse
|
31
|
El-Mahdy HA, Elsakka EGE, El-Husseiny AA, Ismail A, Yehia AM, Abdelmaksoud NM, Elshimy RAA, Noshy M, Doghish AS. miRNAs role in bladder cancer pathogenesis and targeted therapy: Signaling pathways interplay - A review. Pathol Res Pract 2023; 242:154316. [PMID: 36682282 DOI: 10.1016/j.prp.2023.154316] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Bladder cancer (BC) is the 11th most popular cancer in females and 4th in males. A lot of efforts have been exerted to improve BC patients' care. Besides, new approaches have been developed to enhance the efficiency of BC diagnosis, prognosis, therapeutics, and monitoring. MicroRNAs (miRNAs, miRs) are small chain nucleic acids that can regulate wide networks of cellular events. They can inhibit or degrade their target protein-encoding genes. The miRNAs are either downregulated or upregulated in BC due to epigenetic alterations or biogenesis machinery abnormalities. In BC, dysregulation of miRNAs is associated with cell cycle arrest, apoptosis, proliferation, metastasis, treatment resistance, and other activities. A variety of miRNAs have been related to tumor kind, stage, or patient survival. Besides, although new approaches for using miRNAs in the diagnosis, prognosis, and treatment of BC have been developed, it still needs further investigations. In the next words, we illustrate the recent advances in the role of miRNAs in BC aspects. They include the role of miRNAs in BC pathogenesis and therapy. Besides, the clinical applications of miRNAs in BC diagnosis, prognosis, and treatment are also discussed.
Collapse
Affiliation(s)
- Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Reham A A Elshimy
- Clinical & Chemical Pathology Department, National Cancer Institute, Cairo University, 11796 Cairo, Egypt
| | - Mina Noshy
- Clinical Pharmacy Department, Faculty of Pharmacy, King Salman International University (KSIU), SouthSinai, Ras Sudr 46612, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
32
|
Janrao C, Khopade S, Bavaskar A, Gomte SS, Agnihotri TG, Jain A. Recent advances of polymer based nanosystems in cancer management. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-62. [PMID: 36542375 DOI: 10.1080/09205063.2022.2161780] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer is still one of the leading causes of death worldwide. Nanotechnology, particularly nanoparticle-based platforms, is at the leading edge of current cancer management research. Polymer-based nanosystems have piqued the interest of researchers owing to their many benefits over other conventional drug delivery systems. Polymers derived from both natural and synthetic sources have various biomedical applications due to unique qualities like porosity, mechanical strength, biocompatibility, and biodegradability. Polymers such as poly(lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), and polyethylene glycol (PEG) have been approved by the USFDA and are being researched for drug delivery applications. They have been reported to be potential carriers for drug loading and are used in theranostic applications. In this review, we have primarily focused on the aforementioned polymers and their conjugates. In addition, the therapeutic and diagnostic implications of polymer-based nanosystems have been briefly reviewed. Furthermore, the safety of the developed polymeric formulations is crucial, and we have discussed their biocompatibility in detail. This article also discusses recent developments in block co-polymer-based nanosystems for cancer treatment. The review ends with the challenges of clinical translation of polymer-based nanosystems in drug delivery for cancer therapy.
Collapse
Affiliation(s)
- Chetan Janrao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Shivani Khopade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Akshay Bavaskar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
33
|
Trideva Sastri K, Vishal Gupta N, Kannan A, Balamuralidhara V, Ramkishan A. Potential nanocarrier-mediated miRNA-based therapy approaches for multiple sclerosis. Drug Discov Today 2022; 27:103357. [PMID: 36115632 DOI: 10.1016/j.drudis.2022.103357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune neuroinflammatory disorder attributed to neurodegeneration and demyelination, resulting in neurological impairment. miRNA has a significant role in biological processes in MS. In this review, we focus on the feasibility of delivering miRNAs through nanoformulations for managing MS. We provide a brief discussion of miRNA synthesis and evidence for miRNA dysregulation in MS. We also highlight formulation strategies and resulting technologies for the effective delivery of miRNAs through nanocarrier systems for achieving high therapeutic benefits.
Collapse
Affiliation(s)
- K Trideva Sastri
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - Anbarasu Kannan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - V Balamuralidhara
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - A Ramkishan
- Deputy Drugs Controller (India), Central Drugs Standard Control Organization, Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| |
Collapse
|
34
|
Rodrigues KF, Yong WTL, Bhuiyan MSA, Siddiquee S, Shah MD, Venmathi Maran BA. Current Understanding on the Genetic Basis of Key Metabolic Disorders: A Review. BIOLOGY 2022; 11:biology11091308. [PMID: 36138787 PMCID: PMC9495729 DOI: 10.3390/biology11091308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Metabolic disorders (MD) are a challenge to healthcare systems; the emergence of the modern socio-economic system has led to a profound change in lifestyles in terms of dietary habits, exercise regimens, and behavior, all of which complement the genetic factors associated with MD. Diabetes Mellitus and Familial hypercholesterolemia are two of the 14 most widely researched MD, as they pose the greatest challenge to the public healthcare system and have an impact on productivity and the economy. Research findings have led to the development of new therapeutic molecules for the mitigation of MD as well as the invention of experimental strategies, which target the genes themselves via gene editing and RNA interference. Although these approaches may herald the emergence of a new toolbox to treat MD, the current therapeutic approaches still heavily depend on substrate reduction, dietary restrictions based on genetic factors, exercise, and the maintenance of good mental health. The development of orphan drugs for the less common MD such as Krabbe, Farber, Fabry, and Gaucher diseases, remains in its infancy, owing to the lack of investment in research and development, and this has driven the development of personalized therapeutics based on gene silencing and related technologies. Abstract Advances in data acquisition via high resolution genomic, transcriptomic, proteomic and metabolomic platforms have driven the discovery of the underlying factors associated with metabolic disorders (MD) and led to interventions that target the underlying genetic causes as well as lifestyle changes and dietary regulation. The review focuses on fourteen of the most widely studied inherited MD, which are familial hypercholesterolemia, Gaucher disease, Hunter syndrome, Krabbe disease, Maple syrup urine disease, Metachromatic leukodystrophy, Mitochondrial encephalopathy lactic acidosis stroke-like episodes (MELAS), Niemann-Pick disease, Phenylketonuria (PKU), Porphyria, Tay-Sachs disease, Wilson’s disease, Familial hypertriglyceridemia (F-HTG) and Galactosemia based on genome wide association studies, epigenetic factors, transcript regulation, post-translational genetic modifications and biomarker discovery through metabolomic studies. We will delve into the current approaches being undertaken to analyze metadata using bioinformatic approaches and the emerging interventions using genome editing platforms as applied to animal models.
Collapse
Affiliation(s)
- Kenneth Francis Rodrigues
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
- Correspondence: (K.F.R.); (B.A.V.M.); Tel.: +60-16-2096905 (B.A.V.M.)
| | - Wilson Thau Lym Yong
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | | | | | - Muhammad Dawood Shah
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Balu Alagar Venmathi Maran
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
- Correspondence: (K.F.R.); (B.A.V.M.); Tel.: +60-16-2096905 (B.A.V.M.)
| |
Collapse
|
35
|
Virus-Like Particles as Nanocarriers for Intracellular Delivery of Biomolecules and Compounds. Viruses 2022; 14:v14091905. [PMID: 36146711 PMCID: PMC9503347 DOI: 10.3390/v14091905] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Virus-like particles (VLPs) are nanostructures assemble from viral proteins. Besides widely used for vaccine development, VLPs have also been explored as nanocarriers for cargo delivery as they combine the key advantages of viral and non-viral vectors. While it protects cargo molecules from degradation, the VLP has good cell penetrating property to mediate cargo passing the cell membrane and released into cells, making the VLP an ideal tool for intracellular delivery of biomolecules and drugs. Great progresses have been achieved and multiple challenges are still on the way for broad applications of VLP as delivery vectors. Here we summarize current advances and applications in VLP as a delivery vector. Progresses on delivery of different types of biomolecules as well as drugs by VLPs are introduced, and the strategies for cargo packaging are highlighted which is one of the key steps for VLP mediated intracellular delivery. Production and applications of VLPs are also briefly reviewed, with a discussion on future challenges in this rapidly developing field.
Collapse
|
36
|
Kara G, Arun B, Calin GA, Ozpolat B. miRacle of microRNA-Driven Cancer Nanotherapeutics. Cancers (Basel) 2022; 14:3818. [PMID: 35954481 PMCID: PMC9367393 DOI: 10.3390/cancers14153818] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are non-protein-coding RNA molecules 20-25 nucleotides in length that can suppress the expression of genes involved in numerous physiological processes in cells. Accumulating evidence has shown that dysregulation of miRNA expression is related to the pathogenesis of various human diseases and cancers. Thus, stragegies involving either restoring the expression of tumor suppressor miRNAs or inhibiting overexpressed oncogenic miRNAs hold potential for targeted cancer therapies. However, delivery of miRNAs to tumor tissues is a challenging task. Recent advances in nanotechnology have enabled successful tumor-targeted delivery of miRNA therapeutics through newly designed nanoparticle-based carrier systems. As a result, miRNA therapeutics have entered human clinical trials with promising results, and they are expected to accelerate the transition of miRNAs from the bench to the bedside in the next decade. Here, we present recent perspectives and the newest developments, describing several engineered natural and synthetic novel miRNA nanocarrier formulations and their key in vivo applications and clinical trials.
Collapse
Affiliation(s)
- Goknur Kara
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Chemistry, Biochemistry Division, Ordu University, Ordu 52200, Turkey
| | - Banu Arun
- Department of Breast Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - George A. Calin
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Houston Methodist Neal Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
37
|
Sargazi S, Siddiqui B, Qindeel M, Rahdar A, Bilal M, Behzadmehr R, Mirinejad S, Pandey S. Chitosan nanocarriers for microRNA delivery and detection: A preliminary review with emphasis on cancer. Carbohydr Polym 2022; 290:119489. [DOI: 10.1016/j.carbpol.2022.119489] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 02/08/2023]
|
38
|
Niccolini B, Palmieri V, De Spirito M, Papi M. Opportunities Offered by Graphene Nanoparticles for MicroRNAs Delivery for Amyotrophic Lateral Sclerosis Treatment. MATERIALS (BASEL, SWITZERLAND) 2021; 15:126. [PMID: 35009270 PMCID: PMC8745865 DOI: 10.3390/ma15010126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the degeneration and death of motor neurons. This neurodegenerative disease leads to muscle atrophy, paralysis, and death due to respiratory failure. MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) with a length of 19 to 25 nucleotides, participating in the regulation of gene expression. Different studies have demonstrated that miRNAs deregulation is critical for the onset of a considerable number of neurodegenerative diseases, including ALS. Some studies have underlined how miRNAs are deregulated in ALS patients and for this reason, design therapies are used to correct the aberrant expression of miRNAs. With this rationale, delivery systems can be designed to target specific miRNAs. Specifically, these systems can be derived from viral vectors (viral systems) or synthetic or natural materials, including exosomes, lipids, and polymers. Between many materials used for non-viral vectors production, the two-dimensional graphene and its derivatives represent a good alternative for efficiently delivering nucleic acids. The large surface-to-volume ratio and ability to penetrate cell membranes are among the advantages of graphene. This review focuses on the specific pathogenesis of miRNAs in ALS and on graphene delivery systems designed for gene delivery to create a primer for future studies in the field.
Collapse
Affiliation(s)
- Benedetta Niccolini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Valentina Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, 00168 Rome, Italy
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, 00168 Rome, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, 00168 Rome, Italy
| |
Collapse
|