1
|
Díaz E, Quezada V, Cifuentes J, Arias Morales NY, Reyes LH, Muñoz-Camargo C, Cruz JC. Enhanced Delivery and Potency of Chemotherapeutics in Melanoma Treatment via Magnetite Nanobioconjugates. ACS OMEGA 2024; 9:45402-45420. [PMID: 39554413 PMCID: PMC11561594 DOI: 10.1021/acsomega.4c07415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 11/19/2024]
Abstract
Melanoma, known for its aggressive metastatic potential, poses significant treatment challenges. Despite the potent antiproliferative effects of anticancer drugs, systemic toxicity and low water solubility limit their efficacy. This study addresses these challenges by employing magnetite (Fe3O4) nanobioconjugates as a drug delivery system, aimed at enhancing drug solubility and reducing off-target effects in melanoma therapy. Magnetite nanoparticles (MNPs) were engineered with functional molecules and loaded with the anticancer agents Temozolomide (TMZ) or paclitaxel (PTX). The nanobioconjugates were characterized via Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and transmission electron microscopy (TEM). The results validated the efficacious synthesis and drug loading, attaining efficiencies ranging from 32 to 72% for TMZ and 32 to 60% for PTX. Biocompatibility assessments demonstrated excellent tolerance, with minimal hemolysis rates and platelet aggregation. In vitro studies revealed enhanced cytotoxicity against A-375 human melanoma cells compared to free drugs, with cellular uptake facilitated primarily through macropinocytosis, caveolin-, and clathrin-mediated endocytosis. Furthermore, the nanobioconjugates exhibited significant efficacy in targeting A-375 melanoma spheroids, underlining their potential in melanoma therapy. This research underscores magnetite nanobioconjugates as a promising avenue for targeted melanoma treatment, offering enhanced drug delivery specificity and reduced systemic toxicity in oncological drug delivery systems.
Collapse
Affiliation(s)
- Erika Díaz
- Department
of Biomedical Engineering, Universidad de
Los Andes, Bogotá 111711, Colombia
| | - Valentina Quezada
- Department
of Biomedical Engineering, Universidad de
Los Andes, Bogotá 111711, Colombia
| | - Javier Cifuentes
- Department
of Biomedical Engineering, Universidad de
Los Andes, Bogotá 111711, Colombia
| | - Nydia Yadira Arias Morales
- Center
for Microscopy (MicroCore), Vice Presidency for Research and Creation, Universidad de Los Andes, Bogotá 111711, Colombia
| | - Luis H. Reyes
- Product
and Process Design Group (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 111711, Colombia
| | | | - Juan C. Cruz
- Department
of Biomedical Engineering, Universidad de
Los Andes, Bogotá 111711, Colombia
| |
Collapse
|
2
|
Du J, Chen X, Xu X, Que Z, Zhai M, Xiang Q, Zhang Z, Zhang Z, Shao Y, Yang X, Miao F, Zhang J, Xie J, Ju S. Enhancing the tissue penetration to improve sonodynamic immunotherapy for pancreatic ductal adenocarcinoma using membrane-camouflaged nanoplatform. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06952-y. [PMID: 39422735 DOI: 10.1007/s00259-024-06952-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE Sonodynamic therapy (SDT) is a promising strategy as an "in situ vaccine" to enhance activation of antitumor immune responses in solid tumors. However, the dense extracellular matrix (ECM) in pancreatic ductal adenocarcinoma (PDAC) lead to hypoxia and limited penetration of most drugs, aggravating the immunosuppressive tumor microenvironment and limiting the efficacy of synergistic sonodynamic immunotherapy. Therefore, it is essential to regulate ECM in order to alleviate tumor hypoxia and enhance the efficacy of sonodynamic immunotherapy for PDAC. METHODS The CPIM nanoplatform, consisting of a macrophage membrane-coated oxygen and drug delivery system (CM@PFOB-ICG-α-Mangostin), was synthesized using ultrasound and extrusion methods. The in vivo homologous targeting and hypoxia alleviation capabilities of CPIM were evaluated through near-infrared (NIR) imaging and photoacoustic (PA) imaging. The tumor growth inhibition potential and ability to reprogram the tumor microenvironment by the CPIM nanoplatform were also investigated. RESULTS Co-delivery of α-Mangostin inhibits CAFs and enhances stromal depletion, thereby facilitating better infiltration of macromolecules. Additionally, the nanoemulsion containing perfluorocarbon (PFC) can target tumor cells and accumulate within them through homologous targeting. The US irradiation results in the rapid release of oxygen, serving as a potential source of sonodynamic therapy for hypoxic tumors. Moreover, CPIM reshapes the immunosuppressive microenvironment increasing the population of cytotoxic T lymphocytes (CTLs), and enhancing their anti-tumor immune response through the use of anti-PDL1 antibodies to block immune checkpoints. CONCLUSION The present study offers a potential strategy for the co-delivery of oxygen and α-Mangostin, aiming to enhance the penetration of tumors to improve SDT. This approach effectively addresses the existing limitations of immune checkpoint blockade (ICB) treatment in solid tumors, while simultaneously boosting the immune response through synergistic sonodynamic immunotherapy.
Collapse
Affiliation(s)
- Jiawei Du
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China
| | - Xin Chen
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Medical School, Zhongda Hospital, Southeast University, Nanjing, 210009, P.R. China
| | - Xiaoxuan Xu
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China
| | - Ziting Que
- Department of Microbiology and Immunology, Medical School, Southeast University, 87th DingJiaQiao Road, Nanjing, 210009, P.R. China
| | - Mengyan Zhai
- Department of Microbiology and Immunology, Medical School, Southeast University, 87th DingJiaQiao Road, Nanjing, 210009, P.R. China
| | - Qinyanqiu Xiang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China
| | - Zhiwei Zhang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China
| | - Zhiqi Zhang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China
| | - Yong Shao
- Department of Microbiology and Immunology, Medical School, Southeast University, 87th DingJiaQiao Road, Nanjing, 210009, P.R. China
| | - Xue Yang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China
| | - Fengqin Miao
- Department of Microbiology and Immunology, Medical School, Southeast University, 87th DingJiaQiao Road, Nanjing, 210009, P.R. China
| | - Jianqiong Zhang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China
- Department of Microbiology and Immunology, Medical School, Southeast University, 87th DingJiaQiao Road, Nanjing, 210009, P.R. China
| | - Jinbing Xie
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China.
| | - Shenghong Ju
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Southeast University, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P.R. China.
| |
Collapse
|
3
|
Suttithumsatid W, Toriumi T, Sukketsiri W, Nagasaki Y, Panichayupakaranant P. Enhanced Stability of α-Mangostin-Rich Extract and Selective Cytotoxicity against Cancer Cells via Encapsulation in Antioxidant Nanoparticles (AME@Nano AOX). ACS Biomater Sci Eng 2024; 10:5027-5038. [PMID: 39023101 DOI: 10.1021/acsbiomaterials.4c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
α-Mangostin-rich extract (AME) shows promise as a functional ingredient for cancer chemotherapy. Here, we encapsulated AME in our originally designed antioxidant nanoparticles (NanoAOX) to increase its solubility and prevent oxidative degradation (AME@NanoAOX). In this study, two types of self-assembled polymers containing nitroxide radicals were engineered. These polymers were self-assembled into nanoscale particles in aqueous media, entrapping AME (abbreviated as AME@NanoAOX(B) and AME@NanoAOX(G)). These formulations considerably improved the stability of AME against oxidative degradation and exhibited different release profiles of α-mangostin under different pH conditions. Furthermore, AME-encapsulated nanoparticles exhibited potent cytotoxicity against various cancer cell lines, including human breast cancer (MCF-7), human lung cancer (A549), human colon cancer (Caco-2), human cervical cancer (HeLa), and human liver cancer (HepG2) cell lines, with minimal cytotoxicity in normal human mammary epithelial cells (hTERT-HME1), thus providing a high selectivity index (SI). These results indicated the promising feature of AME-encapsulated antioxidant nanoparticles (AME@NanoAOX) for cancer chemotherapy.
Collapse
Affiliation(s)
- Wiwit Suttithumsatid
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand
| | - Takuto Toriumi
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Wanida Sukketsiri
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, Hat-Yai 90112, Thailand
| | - Yukio Nagasaki
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
- Department of Chemistry Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- High-value Biomaterials Research and Commercialization Center (HBRCC), National Taipei University of Technology, Taipei 10608, Taiwan
| | - Pharkphoom Panichayupakaranant
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand
| |
Collapse
|
4
|
Alneghery LM, Al-Zharani M, Nasr FA, Eldin ZE, Al Hujran TA, Tawfeek HM, Fayed MH, Elbeltagi S. Fabrication and optimization of naringin-loaded MOF-5 encapsulated by liponiosomes as smart drug delivery, cytotoxicity, and apoptotic on breast cancer cells. Drug Dev Ind Pharm 2024:1-14. [PMID: 39101770 DOI: 10.1080/03639045.2024.2388786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION Cancers are regarded as hazardous due to their high worldwide death rate, with breast cancer (BC), which affects practically all cancer patients globally, playing a significant role in this statistic. The therapeutic approach for BC has not advanced using standard techniques, such as specialized naringin (NG) chemotherapy. Instead, a novel strategy has been utilized to enhance smart drug delivery (SDD) to tumors. SIGNIFICANCE Herein, we established NG-loaded zinc metal-organic framework-5 (NG-MOF-5) coated with liponiosomes (LNs) to manufacture NG-MOF-5@LNs nanoparticles (NPs) for antibacterial and cancer treatment. METHODS MOF-5, NG, and NG-MOF-5@LNs were evaluated with XRD, thermogravimetric analysis (TGA), FTIR, SEM, TEM, PDI, ZP, encapsulation efficiency (EE), loading efficiency (LE), and drug release (DR) kinetics. We examined the antibacterial activity involving minimum inhibitory concentration (MIC) and zone of inhibition by NG, MOF-5, and NG-MOF-5@LNs. The cell viability, necrosis, and total apoptosis (late and early) were evaluated for anti-cancer activity against MCF-7 BC cells. RESULTS TEM results demonstrated that NG-MOF-5@LNs formed monodispersed spherical-like particles with a size of 122.5 nm, PDI of 0.139, and ZP of +21 mV. The anti-microbial activity results indicated that NG-MOF-5@LNs exhibited potent antibacterial effects, as evidenced by inhibition zones and MIC values. The Higuchi model indicates an excellent fit (R2 = 0.9988). The MTT assay revealed anti-tumor activity against MCF-7 BC cells, with IC50 of 21 µg/mL for NG-MOF-5@LNs and demonstrating a total apoptosis effect of 68.2% on MCF-7 cells. CONCLUSION NG-MOF-5@LNs is anticipated to show as an effective antimicrobial and novel long-term-release antitumor agent and might be more suitable for MCF-7 cell therapy.
Collapse
Affiliation(s)
- Lina M Alneghery
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Fahd A Nasr
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Zienab E Eldin
- Center for Material Science, Zewail City of Science and Technology, 6th of October, Egypt
- Department of Material Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Tayel A Al Hujran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mohamed H Fayed
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Albatin, Hafr Albatin, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Shehab Elbeltagi
- Department of Physics, Faculty of Science, New Valley University, Kharga, Egypt
| |
Collapse
|
5
|
Kim SY, Park SY, Lee JH, Kim N, Oh HN, Yoo SY, Lee DS, Lee JC. Therapeutic Potential of Mangosteen Pericarp Extract-Loaded Liposomes against Superficial Skin Infection Caused by Staphylococcus pseudintermedius in a Murine Model. Antibiotics (Basel) 2024; 13:612. [PMID: 39061294 PMCID: PMC11274295 DOI: 10.3390/antibiotics13070612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
α-mangostin (α-MG) demonstrates antibacterial activity against Staphylococcus species. Therefore, this study aimed to explore the antibacterial activity of α-MG-rich mangosteen pericarp extract (MPE)-loaded liposomes against Staphylococcus isolates from companion animal skin diseases in vitro and evaluated their therapeutic potential in a murine model of superficial skin infection caused by S. pseudintermedius. α-MG-rich extract was purified from mangosteen pericarp and then complexed with γ-cyclodextrin (γ-CD), forming the inclusion complexes. Nanoliposomes containing MPE and γ-CD complexes were prepared by adding lecithin and casein. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of MPE-loaded liposomes were determined using agar dilution and broth microdilution methods. The therapeutic potential of MPE-loaded liposomes was evaluated in vivo on tape-stripped skin lesions infected with S. pseudintermedius. Purified MPE and MPE-loaded liposomes contained 402.43 mg/g and 18.18 mg/g α-MG, respectively. MPE-loaded liposomes showed antibacterial activity against clinical Staphylococcus isolates in vitro but did not show antibacterial activity against Gram-negative bacterial isolates. MPE-loaded liposomes demonstrated consistent MICs and MBCs against Staphylococcus isolates. These liposomes significantly reduced bacterial numbers and lesional sizes in a superficial skin infection model. Moreover, they reconstructed the epidermal barrier in skin lesions. The therapeutic concentrations of MPE-loaded liposomes did not induce cytotoxicity in canine progenitor epidermal keratinocyte cells. In conclusion, MPE-loaded liposomes hold promise for the development of a prospective topical formulation to treat superficial pyoderma in companion animals.
Collapse
Affiliation(s)
- Seong-Yeop Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (S.-Y.K.); (S.-Y.P.); (J.-H.L.); (N.K.)
| | - Seong-Yong Park
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (S.-Y.K.); (S.-Y.P.); (J.-H.L.); (N.K.)
| | - Jung-Hwa Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (S.-Y.K.); (S.-Y.P.); (J.-H.L.); (N.K.)
| | - Nayeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (S.-Y.K.); (S.-Y.P.); (J.-H.L.); (N.K.)
| | - Ha-Na Oh
- Medi Bio Lab Co., Ltd., Seoul 08389, Republic of Korea; (H.-N.O.); (S.-Y.Y.); (D.-S.L.)
| | - So-Young Yoo
- Medi Bio Lab Co., Ltd., Seoul 08389, Republic of Korea; (H.-N.O.); (S.-Y.Y.); (D.-S.L.)
| | - Dae-Sung Lee
- Medi Bio Lab Co., Ltd., Seoul 08389, Republic of Korea; (H.-N.O.); (S.-Y.Y.); (D.-S.L.)
| | - Je-Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (S.-Y.K.); (S.-Y.P.); (J.-H.L.); (N.K.)
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
6
|
Jana BK, Singh M, Dutta RS, Mazumder B. Current Drug Delivery Strategies for Buccal Cavity Ailments using Mouth Dissolving Wafer Technology: A Comprehensive Review on the Present State of the Art. Curr Drug Deliv 2024; 21:339-359. [PMID: 36443976 DOI: 10.2174/1567201820666221128152010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/02/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mouth-dissolving wafer is polymer-based matrice that incorporates various pharmaceutical agents for oral drug delivery. This polymeric wafer is ingenious in the way that it needs not be administered with water, like in conventional tablet dosage form. It has better compliance among the pediatric and geriatric groups owing to its ease of administration. OBJECTIVE The polymeric wafer dissolves quickly in the oral cavity and is highly effective for a targeted local effect in buccal-specific ailments. It is a safe, effective, and versatile drug delivery carrier for a range of drugs used to treat a plethora of oral cavity-specific ailments that inflict common people, like thrush, canker sores, periodontal disease, benign oral cavity tumors, buccal neoplasm, and malignancies. This review paper focuses thoroughly on the present state of the art in mouth-dissolving wafer technology for buccal drug delivery and targeting. Moreover, we have also addressed present-time limitations associated with wafer technology to aid researchers in future developments in the arena of buccal drug delivery. CONCLUSION This dynamic novel formulation has tremendous future implications for designing drug delivery systems to target pernicious ailments and diseases specific to the buccal mucosa. In a nutshell, this review paper aims to summarize the present state of the art in buccal targeted drug delivery.
Collapse
Affiliation(s)
- Bani Kumar Jana
- Department of Pharmaceutical sciences, Dibrugarh University, Dibrugarh-786004, Assam, India
| | - Mohini Singh
- Department of Pharmaceutical sciences, Dibrugarh University, Dibrugarh-786004, Assam, India
| | - Rajat Subhra Dutta
- Department of Pharmaceutical sciences, Dibrugarh University, Dibrugarh-786004, Assam, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical sciences, Dibrugarh University, Dibrugarh-786004, Assam, India
| |
Collapse
|
7
|
Li J, Nie X, Panthakarn Rangsinth, Wu X, Zheng C, Cheng Y, Shiu PHT, Li R, Lee SMY, Fu C, Zhang J, Leung GPH. Structure and activity relationship analysis of xanthones from mangosteen: Identifying garcinone E as a potent dual EGFR and VEGFR2 inhibitor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155140. [PMID: 37939410 DOI: 10.1016/j.phymed.2023.155140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Xanthones are among the most fundamental phytochemicals in nature. The anti-cancer activities of xanthones and their derivatives have been extensively studied. Recently, we found that garcinone E (GE), an effective anti-cancer phytochemical isolated from mangosteen (Garcinia mangostanal.), showed promising anti-cancer effects in vitro and in vivo. However, little is known about its effects on epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor 2 (VEGFR2) activity. PURPOSE This study aimed to identify potent dual EGFR and VEGFR2 inhibitors from mangosteen-derived xanthones using structure-activity relationship analyses. STUDY DESIGN The interaction of xanthones with EGFR and VEGFR2 was analyzed using molecular docking experiments. The kinase activities of EGFR and VEGFR2 were determined using bioluminescence assays. The rat aortic ring and Matrigel plug angiogenesis assays were used to evaluate blood vessel formation ex vivo and in vivo. A breast tumor-bearing nude mouse model was established to examine the anti-tumor effects of different xanthones. RESULTS Molecular docking analysis showed that GE bound tightly to EGFR and VEGFR2, with binding energies of -9.73 and -9.56 kcal/mol, respectively. Kinase activity assessment showed that GE strongly inhibited both EGFR and VEGFR2 kinase activity, with IC50 values of 315.4 and 158.2 nM, respectively. Moreover, GE significantly abolished the EGF- and VEGF-induced phosphorylation of EGFR and VEGFR2, respectively. GE also showed strong inhibitory effects on cancer cell growth, endothelial cell migration, invasion, and tube formation. Ex vivo and in vivo angiogenesis assays showed that GE dose-dependently suppressed blood vessel formation in the rat aorta, Matrigel plugs, and transgenic zebrafish embryos, with the lowest effective concentration of 0.25 μM. Furthermore, GE (2 mg/kg) strongly inhibited tumor growth and reduced tumor weight in MDA-MB-231 breast tumor-xenografted mice. GE significantly reduced microvessel density and downregulated the expression of VEGFR2, EGFR, and Ki67 in tumor tissues. CONCLUSION The present study demonstrated that GE was the most potent dual inhibitor of EGFR and VEGFR2 among all xanthones tested. These findings may provide valuable information for the future development of novel and effective dual inhibitors of EGFR and VEGFR2.
Collapse
Affiliation(s)
- Jingjing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Xin Nie
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Xiaoping Wu
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Chengwen Zheng
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Yanfen Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Polly Ho-Ting Shiu
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Renkai Li
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Simon Ming-Yuen Lee
- Department of Food Science and Nutrient, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Dayani L, Biganeh H, Rahimi R. Nanotechnology in the Formulation and Delivery of Natural Products for Cancer. HANDBOOK OF ONCOBIOLOGY: FROM BASIC TO CLINICAL SCIENCES 2024:1347-1369. [DOI: 10.1007/978-981-99-6263-1_68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Hong L, Li W, Li Y, Yin S. Nanoparticle-based drug delivery systems targeting cancer cell surfaces. RSC Adv 2023; 13:21365-21382. [PMID: 37465582 PMCID: PMC10350659 DOI: 10.1039/d3ra02969g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Traditional cancer chemotherapy easily produces serious toxic and side effects due to the lack of specific selection of tumor cells, which restricts its curative effect. Targeted delivery can increase the concentration of drugs in the target site and reduce their toxic and side effects on normal tissues and cells. Biocompatible and surface-modifiable nanocarriers are novel drug delivery systems, which are used to specifically target tumor sites in a controllable way. One of the effective ways to design effective targeting nanocarriers is to decorate with functional ligands, which can bind to specific receptors overexpressed on the surfaces of cancer cells. Various functional ligands, including transferrin, folic acid, polypeptide and hyaluronic acid, have been widely explored to develop tumor-selective drug delivery systems. This review focuses on the research progress of various receptors overexpressed on the surfaces of cancer cells and different nano-delivery systems of anticancer drugs targeted on the surfaces of cancer cells. We believe that through continuous research and development, actively targeted cancer nano-drugs will make a breakthrough and become an indispensable platform for accurate cancer treatment.
Collapse
Affiliation(s)
- Liquan Hong
- Deqing Hospital of Hangzhou Normal University, The Third People's Hospital of Deqing Deqing 313200 China
| | - Wen Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology Zhejiang Province Hangzhou 311121 China
| | - Yang Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology Zhejiang Province Hangzhou 311121 China
| | - Shouchun Yin
- Deqing Hospital of Hangzhou Normal University, The Third People's Hospital of Deqing Deqing 313200 China
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology Zhejiang Province Hangzhou 311121 China
| |
Collapse
|
10
|
Alam M, Rashid S, Fatima K, Adnan M, Shafie A, Akhtar MS, Ganie AH, Eldin SM, Islam A, Khan I, Hassan MI. Biochemical features and therapeutic potential of α-Mangostin: Mechanism of action, medicinal values, and health benefits. Biomed Pharmacother 2023; 163:114710. [PMID: 37141737 DOI: 10.1016/j.biopha.2023.114710] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
α-Mangostin (α-MG) is a natural xanthone obtained from the pericarps of mangosteen. It exhibits excellent potential, including anti-cancer, neuroprotective, antimicrobial, antioxidant, and anti-inflammatory properties, and induces apoptosis. α-MG controls cell proliferation by modulating signaling molecules, thus implicated in cancer therapy. It possesses incredible pharmacological features and modulates crucial cellular and molecular factors. Due to its lesser water solubility and pitiable target selectivity, α-MG has limited clinical application. As a known antioxidant, α-MG has gained significant attention from the scientific community, increasing interest in extensive technical and biomedical applications. Nanoparticle-based drug delivery systems were designed to improve the pharmacological features and efficiency of α-MG. This review is focused on recent developments on the therapeutic potential of α-MG in managing cancer and neurological diseases, with a special focus on its mechanism of action. In addition, we highlighted biochemical and pharmacological features, metabolism, functions, anti-inflammatory, antioxidant effects and pre-clinical applications of α-MG.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, PO Box 173, Al-kharj 11942, Saudi Arabia
| | - Kisa Fatima
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, PO Box 2440, Hail 2440, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mohammad Salman Akhtar
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - A H Ganie
- Basic Sciences Department, College of Science and Theoretical Studies, Saudi Electronic University, Abha Male 61421, Saudi Arabia
| | - Sayed M Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
11
|
Setyawati LU, Nurhidayah W, Khairul Ikram NK, Mohd Fuad WE, Muchtaridi M. General toxicity studies of alpha mangostin from Garcinia mangostana: A systematic review. Heliyon 2023; 9:e16045. [PMID: 37215800 PMCID: PMC10196863 DOI: 10.1016/j.heliyon.2023.e16045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Alpha mangostin (AM), the main xanthone derivative contained in mangosteen pericarp (Garcinia mangostana/GM), has many pharmacological activities such as antioxidant, antiproliferation, antiinflammatory, and anticancer. Several general toxicity studies of AM have been previously reported to assess the safety profile of AM. Toxicity studies were carried out by various methods such as on test animals, interventions, and various routes of administration, but the test results have not been well documented. Our study aimed to systematically summarizes research on the safety profile of GM containing AM through general toxicity tests to get the LD50 and NOAEL values, and so, can be used as a database related to AM toxicity profiles. This could facilitate other researchers in determining further development of GM-or-AM-based products. Pubmed, Google scholar, ScienceDirect, and EBSCO were chosen to collect the articles while ARRIVE 2.0 was used to evaluate the quality and risk-of-bias of the in vivo toxicity studies included in this systematic review. A total of 20 articles met the eligibility criteria and were reviewed to predict the LD50 and NOAEL of AM. The results showed that the LD50 of AM is between >15.480 mg/kgBW to ≤6000 mg/kgBW while the NOAEL value is between <100 and ≤2000 mg/kgBW.
Collapse
Affiliation(s)
- Luthfi Utami Setyawati
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, 45363 Sumedang, Indonesia
- Research Collaboration Centre for Theranostic Radiopharmaceuticals, National Research and Innovation Agency (BRIN), Indonesia
| | - Wiwit Nurhidayah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Sumedang, Indonesia
- Research Collaboration Centre for Theranostic Radiopharmaceuticals, National Research and Innovation Agency (BRIN), Indonesia
| | - Nur Kusaira Khairul Ikram
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Wan Ezumi Mohd Fuad
- Programme of Biomedicine, School of Health Sciences, USM Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, 45363 Sumedang, Indonesia
- Research Collaboration Centre for Theranostic Radiopharmaceuticals, National Research and Innovation Agency (BRIN), Indonesia
| |
Collapse
|
12
|
Nanoparticles loaded with pharmacologically active plant-derived natural products: Biomedical applications and toxicity. Colloids Surf B Biointerfaces 2023; 225:113214. [PMID: 36893664 DOI: 10.1016/j.colsurfb.2023.113214] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
Pharmacologically active natural products have played a significant role in the history of drug development. They have acted as sources of therapeutic drugs for various diseases such as cancer and infectious diseases. However, most natural products suffer from poor water solubility and low bioavailability, limiting their clinical applications. The rapid development of nanotechnology has opened up new directions for applying natural products and numerous studies have explored the biomedical applications of nanomaterials loaded with natural products. This review covers the recent research on applying plant-derived natural products (PDNPs) nanomaterials, including nanomedicines loaded with flavonoids, non-flavonoid polyphenols, alkaloids, and quinones, especially their use in treating various diseases. Furthermore, some drugs derived from natural products can be toxic to the body, so the toxicity of them is discussed. This comprehensive review includes fundamental discoveries and exploratory advances in natural product-loaded nanomaterials that may be helpful for future clinical development.
Collapse
|
13
|
Hyaluronic Acid-Coated Chitosan Nanoparticles as an Active Targeted Carrier of Alpha Mangostin for Breast Cancer Cells. Polymers (Basel) 2023; 15:polym15041025. [PMID: 36850308 PMCID: PMC9965946 DOI: 10.3390/polym15041025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Alpha mangostin (AM) has potential anticancer properties for breast cancer. This study aims to assess the potential of chitosan nanoparticles coated with hyaluronic acid for the targeted delivery of AM (AM-CS/HA) against MCF-7 breast cancer cells. AM-CS/HA showed a spherical shape with an average diameter of 304 nm, a polydispersity index of 0.3, and a negative charge of 24.43 mV. High encapsulation efficiency (90%) and drug loading (8.5%) were achieved. AM released from AM-CS/HA at an acidic pH of 5.5 was higher than the physiological pH of 7.4 and showed sustained release. The cytotoxic effect of AM-CS/HA (IC50 4.37 µg/mL) on MCF-7 was significantly higher than AM nanoparticles without HA coating (AM-CS) (IC50 4.48 µg/mL) and AM (IC50 5.27 µg/mL). These findings suggest that AM-CS/HA enhances AM cytotoxicity and has potential applications for breast cancer therapy.
Collapse
|
14
|
Kalick LS, Khan HA, Maung E, Baez Y, Atkinson AN, Wallace CE, Day F, Delgadillo BE, Mondal A, Watanapokasin R, Barbalho SM, Bishayee A. Mangosteen for malignancy prevention and intervention: Current evidence, molecular mechanisms, and future perspectives. Pharmacol Res 2023; 188:106630. [PMID: 36581166 DOI: 10.1016/j.phrs.2022.106630] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Mangosteen (Garcinia mangostana L.), also known as the "queen of fruits", is a tropical fruit of the Clusiacea family. While native to Southeast Asian countries, such as Thailand, Indonesia, Malaysia, Myanmar, Sri Lanka, India, and the Philippines, the fruit has gained popularity in the United States due to its health-promoting attributes. In traditional medicine, mangosteen has been used to treat a variety of illnesses, ranging from dysentery to wound healing. Mangosteen has been shown to exhibit numerous biological and pharmacological activities, such as antioxidant, anti-inflammatory, antibacterial, antifungal, antimalarial, antidiabetic, and anticancer properties. Disease-preventative and therapeutic properties of mangosteen have been ascribed to secondary metabolites called xanthones, present in several parts of the tree, including the pericarp, fruit rind, peel, stem bark, root bark, and leaf. Of the 68 mangosteen xanthones identified so far, the most widely-studied are α-mangostin and γ-mangostin. Emerging studies have found that mangosteen constituents and phytochemicals exert encouraging antineoplastic effects against a myriad of human malignancies. While there are a growing number of individual research papers on the anticancer properties of mangosteen, a complete and critical evaluation of published experimental findings has not been accomplished. Accordingly, the objective of this work is to present an in-depth analysis of the cancer preventive and anticancer potential of mangosteen constituents, with a special emphasis on the associated cellular and molecular mechanisms. Moreover, the bioavailability, pharmacokinetics, and safety of mangosteen-derived agents together with current challenges and future research avenues are also discussed.
Collapse
Affiliation(s)
- Lindsay S Kalick
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Hamaad A Khan
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Erica Maung
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Yasmany Baez
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Alexa N Atkinson
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Carly E Wallace
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Faith Day
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Blake E Delgadillo
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Ramida Watanapokasin
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Sandra M Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, São Paulo, Brazil
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
15
|
Natural and Synthetic Xanthone Derivatives Counteract Oxidative Stress via Nrf2 Modulation in Inflamed Human Macrophages. Int J Mol Sci 2022; 23:ijms232113319. [PMID: 36362104 PMCID: PMC9659273 DOI: 10.3390/ijms232113319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Natural products have attracted attention due to their safety and potential effectiveness as anti-inflammatory drugs. Particularly, xanthones owning a unique 9H-xanthen-9-one scaffold, are endowed with a large diversity of medical applications, including antioxidant and anti-inflammatory activities, because their core accommodates a vast variety of substituents at different positions. Among others, α- and γ-mangostin are the major known xanthones purified from Garcinia mangostana with demonstrated anti-inflammatory and antioxidant effects by in vitro and in vivo modulation of the Nrf2 (nuclear factor erythroid-derived 2-like 2) pathway. However, the main mechanism of action of xanthones and their derivatives is still only partially disclosed, and further investigations are needed to improve their potential clinical outcomes. In this light, a library of xanthone derivatives was synthesized and biologically evaluated in vitro on human macrophages under pro-inflammatory conditions. Furthermore, structure-activity relationship (SAR) studies were performed by means of matched molecular pairs (MMPs). The data obtained revealed that the most promising compounds in terms of biocompatibility and counteraction of cytotoxicity are the ones that enhance the Nrf2 translocation, confirming a tight relationship between the xanthone scaffold and the Nrf2 activation as a sign of intracellular cell response towards oxidative stress and inflammation.
Collapse
|
16
|
Venkidasamy B, Govindasamy R, Krishnan M, Thiruvengadam M. Nanoformulated bioactive compounds: A potential approach for cancer therapy. Chem Biol Interact 2022; 366:110118. [PMID: 36027946 DOI: 10.1016/j.cbi.2022.110118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/03/2022]
Affiliation(s)
- Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Chennai, 77, Tamil Nadu, India
| | - Rajakumar Govindasamy
- Department of Orthodontics, Saveetha Dental College and Hospitals, Chennai, 77, Tamil Nadu, India
| | - Murugesan Krishnan
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Chennai, 77, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
17
|
Fan H, Guo Y, Zhang Y, Ding N, Liu M, Ma X, Yang J. α-Mangostin suppresses proliferation and invasion in osteosarcoma cells via inhibiting fatty acid synthase. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
18
|
Mazzucchelli S. Natural Nanoparticles: A Safe Bullet for Treatment and Detection of Solid Tumors. Pharmaceutics 2022; 14:pharmaceutics14061126. [PMID: 35745699 PMCID: PMC9230549 DOI: 10.3390/pharmaceutics14061126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Serena Mazzucchelli
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milan, Italy
| |
Collapse
|
19
|
Astragalin identification in graviola pericarp indicates a possible participation in the anticancer activity of pericarp crude extracts: In vitro and in silico approaches. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|