1
|
Gonzalo-Navarro C, Troyano AJ, Bermejo BGB, Organero JÁ, Massaguer A, Santos L, Rodríguez AM, Manzano BR, Durá G. Ru-terpyridine complexes containing clotrimazole as potent photoactivatable selective antifungal agents. J Inorg Biochem 2024; 260:112692. [PMID: 39151234 DOI: 10.1016/j.jinorgbio.2024.112692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
The overuse of antimicrobial agents in medical and veterinary applications has led to the development of antimicrobial resistance in some microorganisms and this is now one of the major concerns in modern society. In this context, the use of transition metal complexes with photoactivatable properties, which can act as drug delivery systems triggered by light, could become a potent strategy to overcome the problem of resistance. In this work several Ru complexes with terpyridine ligands and the clotrimazole fragment, which is a potent antimycotic drug, were synthesized. The main goal was to explore the potential photoactivated activity of the complexes as antifungal agents and evaluate the effect of introducing different substituents on the terpyridine ligand. The complexes were capable of delivering the clotrimazole unit upon irradiation with visible light in a short period of time. The influence of the substituents on the photodissociation rate was explained by means of TD-DFT calculations. The complexes were tested against three different yeasts, which were selected based on their prevalence in fungal infections. The complex in which a carboxybenzene unit was attached to the terpyridine ligand showed the best activity against the three species under light, with minimal inhibitory concentration values of 0.88 μM and a phototoxicity index of 50 achieved. The activity of this complex was markedly higher than that of free clotrimazole, especially upon irradiation with visible light (141 times higher). The complexes were more active on yeast species than on cancer cell lines.
Collapse
Affiliation(s)
- Carlos Gonzalo-Navarro
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela, 10, UCLM, Ciudad Real, Spain
| | - Antonio J Troyano
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela, 10, UCLM, Ciudad Real, Spain
| | - Beatriz García-Béjar Bermejo
- Departamento de Química Analítica y Tecnología de los Alimentos, Ed. Marie Curie, Avenida C. J. Cela, s/n, UCLM, Ciudad Real, Spain
| | - Juan Ángel Organero
- Universidad de Castilla-La Mancha, Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímicas and INAMOL, 45071 Toledo, Spain
| | - Anna Massaguer
- Universitat de Girona, Departament de Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, 17003 Girona, Spain
| | - Lucía Santos
- Departamento de Q. Física, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela, s/n, UCLM, Ciudad Real, Spain
| | - Ana M Rodríguez
- Departamento de Química Inorgánica, Orgánica y Bioquímica- IRICA, Escuela Técnica Superior de Ingenieros Industriales, Avda. C. J. Cela, 3, UCLM, Ciudad Real, Spain
| | - Blanca R Manzano
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela, 10, UCLM, Ciudad Real, Spain
| | - Gema Durá
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela, 10, UCLM, Ciudad Real, Spain.
| |
Collapse
|
2
|
Ranjan K, Morais JAV, Dixit M, Nunes LC, Rodrigues FP, Muehlmann LA, Shukla P, Poças-Fonseca MJ. Antifungal efficacy of photodynamic therapy on Cryptococcus and Candida species is enhanced by Streptomyces spp. extracts in vitro. Lasers Med Sci 2024; 39:255. [PMID: 39388001 DOI: 10.1007/s10103-024-04204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
The research on actinobacteria isolated from traditional medicinal plants is limited. Here, four new Streptomyces isolates (Ha1, Pp1, UzK and UzM) were obtained from the rhizospheres of Helianthus annuus, Pongamia pinnata and Ziziphus mauritiana, frequently utilized in Indian traditional medicine. The Streptomyces isolates aqueous extracts were studied alone against the growth of the Cryptococcus neoformans H99 reference strain, the fluconazole-tolerant T1-5796 and 89-610 strains, three histone deacetylase (HDAC) genes mutant strains, C. gattii NIH198, Candida albicans, C. glabrata, C. parapsilosis and C. tropicalis to determine minimum inhibitory concentration (MIC). Next, the extracts were employed in combination with aluminium-phthalocyanine chloride nanoemulsion-mediated photodynamic therapy to evaluate a possible interaction. We demonstrated that the C. neoformans T1-5796 fluconazole-tolerant strain was more severely inhibited by the Pp1 isolate extract (MIC: 6 mg mL-1) than H99, which was not inhibited. Growth inhibition of the HDAC null mutants was more prominent for the extract of the UzM isolate, showing inhibition at 2 mg mL-1. The UzM extract was also the most effective in hindering the Candida species proliferation, with MIC values ranging from 10 to 40 mg mL-1. The four Streptomyces extracts, especially UzK and UzM, significantly enhanced the antifungal effect of the photodynamic therapy. Our results indicate these Streptomyces isolates as sources of novel metabolites which could potentiate the effect of photodynamic therapy in controlling yeasts superficial infections.
Collapse
Affiliation(s)
- Kunal Ranjan
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
- Graduation Program in Molecular Pathology, University of Brasilia, Brasilia, Brazil
| | - José Athayde Vasconcelos Morais
- Graduation Program in Animal Biology, University of Brasilia, Brasilia, Brazil
- Laboratory of Nanoscience and Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia, Brazil
| | - Mandeep Dixit
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| | - Lourival Carvalho Nunes
- Graduation Program in Molecular Pathology, University of Brasilia, Brasilia, Brazil
- Department of Genetics and Morphology, University of Brasilia, Brasilia, Brazil, 70910-900
| | | | - Luís Alexandre Muehlmann
- Graduation Program in Animal Biology, University of Brasilia, Brasilia, Brazil
- Laboratory of Nanoscience and Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia, Brazil
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Marcio José Poças-Fonseca
- Graduation Program in Molecular Pathology, University of Brasilia, Brasilia, Brazil.
- Department of Genetics and Morphology, University of Brasilia, Brasilia, Brazil, 70910-900.
| |
Collapse
|
3
|
Shetty A, Baeza D, Amescua G, Galor A. Idiopathic Fusarium Sclerouveitis: A Case Report. Cornea 2024:00003226-990000000-00672. [PMID: 39208343 DOI: 10.1097/ico.0000000000003689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE To report a successfully managed case of idiopathic Fusarium sclerouveitis in a healthy patient with no identifiable risk factors. METHODS We describe a case of a 79-year-old man who presented with right-sided eye, facial, and head pain. Initial examination revealed temporal scleral thinning, inflammation, and anterior chamber cell/flare. Cultures were positive for Fusarium species. RESULTS The patient was treated with sub-Tenon amphotericin, intrascleral voriconazole, surgical debridement, Rose Bengal photodynamic therapy, systemic voriconazole and posaconazole, and topical natamycin. The infection resolved and the patient's visual acuity improved to 20/40. CONCLUSIONS Fusarium sclerouveitis can occur without clear risk factors. This case highlights the importance of an aggressive, multimodal treatment approach for successful management.
Collapse
Affiliation(s)
- Akaanksh Shetty
- Miami Veterans Affairs Hospital, Miami, FL; and
- Bascom Palmer Eye Institute, Miami, FL
| | - Drew Baeza
- Miami Veterans Affairs Hospital, Miami, FL; and
- Bascom Palmer Eye Institute, Miami, FL
| | | | - Anat Galor
- Miami Veterans Affairs Hospital, Miami, FL; and
- Bascom Palmer Eye Institute, Miami, FL
| |
Collapse
|
4
|
Lochenie C, Duncan S, Zhou Y, Fingerhut L, Kiang A, Benson S, Jiang G, Liu X, Mills B, Vendrell M. Photosensitizer-Amplified Antimicrobial Materials for Broad-Spectrum Ablation of Resistant Pathogens in Ocular Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404107. [PMID: 38762778 DOI: 10.1002/adma.202404107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/17/2024] [Indexed: 05/20/2024]
Abstract
The emergence of multidrug resistant (MDR) pathogens and the scarcity of new potent antibiotics and antifungals are one of the biggest threats to human health. Antimicrobial photodynamic therapy (aPDT) combines light and photosensitizers to kill drug-resistant pathogens; however, there are limited materials that can effectively ablate different classes of infective pathogens. In the present work, a new class of benzodiazole-paired materials is designed as highly potent PDT agents with broad-spectrum antimicrobial activity upon illumination with nontoxic light. The results mechanistically demonstrate that the energy transfer and electron transfer between nonphotosensitive and photosensitive benzodiazole moieties embedded within pathogen-binding peptide sequences result in increased singlet oxygen generation and enhanced phototoxicity. Chemical optimization renders PEP3 as a novel PDT agent with remarkable activity against MDR bacteria and fungi as well as pathogens at different stages of development (e.g., biofilms, spores, and fungal hyphae), which also prove effective in an ex vivo porcine model of microbial keratitis. The chemical modularity of this strategy and its general compatibility with peptide-based targeting agents will accelerate the design of highly photosensitive materials for antimicrobial PDT.
Collapse
Affiliation(s)
- Charles Lochenie
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sheelagh Duncan
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Yanzi Zhou
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Leonie Fingerhut
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Alex Kiang
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sam Benson
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Guanyu Jiang
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Bethany Mills
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Marc Vendrell
- Centre for Inflammation Research, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| |
Collapse
|
5
|
Anwar A, Khan NA, Alharbi AM, Alhazmi A, Siddiqui R. Applications of photodynamic therapy in keratitis. Int Ophthalmol 2024; 44:140. [PMID: 38491335 DOI: 10.1007/s10792-024-03062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/16/2024] [Indexed: 03/18/2024]
Abstract
Keratitis is corneal inflammatory disease which may be caused by several reason such as an injury, allergy, as well as a microbial infection. Besides these, overexposure to ultraviolet light and unhygienic practice of contact lenses are also associated with keratitis. Based on the cause of keratitis, different lines of treatments are recommended. Photodynamic therapy is a promising approach that utilizes light activated compounds to instigate either killing or healing mechanism to treat various diseases including both communicable and non-communicable diseases. This review focuses on clinically-important patent applications and the recent literature for the use of photodynamic therapy against keratitis.
Collapse
Affiliation(s)
- Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Petaling Jaya, Selangor, Malaysia
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey.
| | - Ahmad M Alharbi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Ayman Alhazmi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Ruqaiyyah Siddiqui
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| |
Collapse
|
6
|
Yasir ZH, Sharma R, Zakir SM. Scleral collagen cross linkage in progressive myopia. Indian J Ophthalmol 2024; 72:174-180. [PMID: 38153964 PMCID: PMC10941927 DOI: 10.4103/ijo.ijo_1392_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/10/2023] [Accepted: 10/26/2023] [Indexed: 12/30/2023] Open
Abstract
High myopia is often associated with local ectasia and scleral thinning. The progression of myopia depends upon scleral biochemical and biomechanical properties. Scleral thinning is associated with decreased collagen fiber diameter, defective collagen fibrillogenesis, and collagen cross-linking. Reversing these abnormalities may make the sclera tougher and might serve as a treatment option for myopic progression. Collagen cross-linking is a natural process in the cornea and sclera, which makes the structure stiff. Exogenous collagen cross-linkage is artificially induced with the help of external mediators by using light and dark methods. In this systematic review, we discussed existing literature available on the internet on current evidence-based applications of scleral collagen cross-linking (SXL) by using different interventions. In addition, we compared them in tabular form in terms of their technique, mechanisms, cytotoxicity, and the stage of transition from preclinical to clinical development. Furthermore, we discussed the in-vivo technique to evaluate the post-SXL scleral biomechanical property and outcome in the human eye.
Collapse
Affiliation(s)
- Ziaul H Yasir
- Department of Ophthalmology, T. S. Misra Medical College and Hospital, Lucknow, Uttar Pradesh, India
| | - Rakesh Sharma
- Department of Ophthalmology, T. S. Misra Medical College and Hospital, Lucknow, Uttar Pradesh, India
| | - Shaik M Zakir
- Department of Ophthalmology, J. N. Medical College, AMU, Aligarh, Uttar Pradesh, India
| |
Collapse
|
7
|
Damyanova T, Dimitrova PD, Borisova D, Topouzova-Hristova T, Haladjova E, Paunova-Krasteva T. An Overview of Biofilm-Associated Infections and the Role of Phytochemicals and Nanomaterials in Their Control and Prevention. Pharmaceutics 2024; 16:162. [PMID: 38399223 PMCID: PMC10892570 DOI: 10.3390/pharmaceutics16020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Biofilm formation is considered one of the primary virulence mechanisms in Gram-positive and Gram-negative pathogenic species, particularly those responsible for chronic infections and promoting bacterial survival within the host. In recent years, there has been a growing interest in discovering new compounds capable of inhibiting biofilm formation. This is considered a promising antivirulence strategy that could potentially overcome antibiotic resistance issues. Effective antibiofilm agents should possess distinctive properties. They should be structurally unique, enable easy entry into cells, influence quorum sensing signaling, and synergize with other antibacterial agents. Many of these properties are found in both natural systems that are isolated from plants and in synthetic systems like nanoparticles and nanocomposites. In this review, we discuss the clinical nature of biofilm-associated infections and some of the mechanisms associated with their antibiotic tolerance. We focus on the advantages and efficacy of various natural and synthetic compounds as a new therapeutic approach to control bacterial biofilms and address multidrug resistance in bacteria.
Collapse
Affiliation(s)
- Tsvetozara Damyanova
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria; (T.D.); (P.D.D.); (D.B.)
| | - Petya D. Dimitrova
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria; (T.D.); (P.D.D.); (D.B.)
| | - Dayana Borisova
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria; (T.D.); (P.D.D.); (D.B.)
| | - Tanya Topouzova-Hristova
- Faculty of Biology, Sofia University “St. K. Ohridski”, 8 D. Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Emi Haladjova
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 103-A, 1113 Sofia, Bulgaria;
| | - Tsvetelina Paunova-Krasteva
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria; (T.D.); (P.D.D.); (D.B.)
| |
Collapse
|
8
|
Ghenciu LA, Faur AC, Bolintineanu SL, Salavat MC, Maghiari AL. Recent Advances in Diagnosis and Treatment Approaches in Fungal Keratitis: A Narrative Review. Microorganisms 2024; 12:161. [PMID: 38257986 PMCID: PMC10820712 DOI: 10.3390/microorganisms12010161] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Fungal keratitis represents a potentially sight-threatening infection associated with poor prognosis, as well as financial burden. Novel diagnostic methods include polymerase-chain-reaction (PCR)-based approaches, metagenomic deep sequences, in vivo confocal microscopy, and antifungal susceptibility testing. The ideal therapeutic approaches and outcomes have been widely discussed in recent times, with early therapy being of the utmost importance for the preservation of visual acuity, minimizing corneal damage and reducing the scar size. However, combination therapy can be more efficacious compared to monotherapy. Understanding the pathogenesis, early diagnosis, and prevention strategies can be of great importance. In this narrative, we discuss the recent progress that may aid our understanding of the diagnosis, treatment, and prevention of mycotic keratitis.
Collapse
Affiliation(s)
- Laura Andreea Ghenciu
- Department III Functional Sciences, Victor Babes University of Medicine and Pharmacy, E. Murgu Sq., no. 2, 300041 Timisoara, Romania;
- Department IX Surgery, Discipline of Ophtalmology, Victor Babes University of Medicine and Pharmacy, E. Murgu Sq., no. 2, 300041 Timisoara, Romania;
| | - Alexandra Corina Faur
- Department of Anatomy and Embryology, Victor Babes University of Medicine and Pharmacy, E. Murgu Sq., no. 2, 300041 Timisoara, Romania; (S.L.B.); (A.L.M.)
| | - Sorin Lucian Bolintineanu
- Department of Anatomy and Embryology, Victor Babes University of Medicine and Pharmacy, E. Murgu Sq., no. 2, 300041 Timisoara, Romania; (S.L.B.); (A.L.M.)
| | - Madalina Casiana Salavat
- Department IX Surgery, Discipline of Ophtalmology, Victor Babes University of Medicine and Pharmacy, E. Murgu Sq., no. 2, 300041 Timisoara, Romania;
| | - Anca Laura Maghiari
- Department of Anatomy and Embryology, Victor Babes University of Medicine and Pharmacy, E. Murgu Sq., no. 2, 300041 Timisoara, Romania; (S.L.B.); (A.L.M.)
| |
Collapse
|
9
|
Liu X, Sui J, Li C, Wang Q, Peng X, Meng F, Xu Q, Jiang N, Zhao G, Lin J. The preparation and therapeutic effects of β-glucan-specific nanobodies and nanobody-natamycin conjugates in fungal keratitis. Acta Biomater 2023; 169:398-409. [PMID: 37579912 DOI: 10.1016/j.actbio.2023.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/05/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Fungal keratitis (FK) is a severe infectious corneal disease. Since traditional eye drops exhibit poor dissolution and high corneal toxicity, the efficacy of current treatments for FK remains limited. It is needed to develop new approaches to control the cornea damage from FK. In this study, a nanobody (Nb) specific to β-glucan in the fungal cell wall was prepared. The conjugate of the Nb with natamycin (NAT), a traditional antifungal drug, was synthesized. Firstly, we found the Nb specific to β-glucan inhibited fungal growth by disrupting cell wall and biofilm formation.. In addition, the content of β-glucan in the fungal cell wall decreased after Nb treatment. The Nb also reduced the adhesion ability of fungal conidia to human corneal epithelial cells (HCECs). Further, we examined the difference between NAT and Nb-NAT in antifungal growth. Nb-NAT showed better antifungal effects than NAT which was caused by the interaction between Nb and β-glucan. Moreover, Nb concentration below 0.5 mg/mL did not affect the viability of HCECs. Nb-NAT had less cytotoxicity and ocular surface irritation than NAT. Nb specific to β-glucan attenuated Aspergillus fumigatus (A. fumigatus) virulence and relieved inflammatory responses in FK. Nb-NAT treatment of the cornea improved therapeutic effects compared with NAT. It decreased clinical scores and expression level of inflammatory factors. To our knowledge, this study is the first to report a Nb specific to β-glucan and Nb-NAT for the treatment of FK. These unique functions of the Nb specific to β-glucan and Nb-NAT would render it as an alternative molecule to control fungal infections including FK. STATEMENT OF SIGNIFICANCE: Fungal keratitis is a corneal disease with a high rate of blindness. Due to the poor dissolution and high corneal toxicity exhibited by traditional eye drops, the efficacy of current therapeutic treatments for fungal keratitis (FK) remains limited. To enhance the therapeutic effect of natamycin in treating fungal keratitis, this study developed an innovative approach by preparing a β-glucan-specific nanobody and loading it with the antifungal drug natamycin. The β-glucan-specific nanobody has the ability to control both fungal pathogen invasion and inflammation, which can cause damage to the cornea in FK. The conjugation with the β-glucan-specific nanobody significantly increased the antifungal capacity of natamycin and reduced its toxicity. The further application of natamycin conjugated with the β-glucan-specific nanobody could be expanded to other diseases caused by fungal pathogen infections.
Collapse
Affiliation(s)
- Xing Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fanyue Meng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Xu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nan Jiang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
10
|
Leanse LG, Marasini S, dos Anjos C, Dai T. Antimicrobial Resistance: Is There a 'Light' at the End of the Tunnel? Antibiotics (Basel) 2023; 12:1437. [PMID: 37760734 PMCID: PMC10525303 DOI: 10.3390/antibiotics12091437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, with the increases in microorganisms that express a multitude of antimicrobial resistance (AMR) mechanisms, the threat of antimicrobial resistance in the global population has reached critical levels. The introduction of the COVID-19 pandemic has further contributed to the influx of infections caused by multidrug-resistant organisms (MDROs), which has placed significant pressure on healthcare systems. For over a century, the potential for light-based approaches targeted at combatting both cancer and infectious diseases has been proposed. They offer effective killing of microbial pathogens, regardless of AMR status, and have not typically been associated with high propensities of resistance development. To that end, the goal of this review is to describe the different mechanisms that drive AMR, including intrinsic, phenotypic, and acquired resistance mechanisms. Additionally, the different light-based approaches, including antimicrobial photodynamic therapy (aPDT), antimicrobial blue light (aBL), and ultraviolet (UV) light, will be discussed as potential alternatives or adjunct therapies with conventional antimicrobials. Lastly, we will evaluate the feasibility and requirements associated with integration of light-based approaches into the clinical pipeline.
Collapse
Affiliation(s)
- Leon G. Leanse
- Health and Sports Sciences Hub, University of Gibraltar, Europa Point Campus, Gibraltar GX11 1AA, Gibraltar
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (C.d.A.); (T.D.)
| | - Sanjay Marasini
- New Zealand National Eye Centre, Department of Ophthalmology, The University of Auckland, Auckland 1142, New Zealand;
| | - Carolina dos Anjos
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (C.d.A.); (T.D.)
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (C.d.A.); (T.D.)
| |
Collapse
|
11
|
Abdelraof M, Fikry M, Hashem AH, El-Naggar ME, Rashdan HRM. Insight into novel anti-mucormycosis therapies: investigation of new anti-mucormycosis laser-induced photodynamic therapy based on a sulphone bis-compound loaded silica nanoemulsion. RSC Adv 2023; 13:20684-20697. [PMID: 37435382 PMCID: PMC10331924 DOI: 10.1039/d3ra02775a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023] Open
Abstract
For drug delivery applications, silica nanoemulsion encapsulated with organic compounds are becoming increasingly more desirable. Therefore, the emphasis of this research was on the synthesis of a new potent antifungal drug-like candidate (1,1'-((sulfonylbis(4,1-phenylene)bis(5-methyl-1H-1,2,3-triazole-1,4-diyl))bis(3-(dimethylamino)prop-2-en-1-one), SBDMP), the chemical structure of which was confirmed on the basis of its spectral and microanalytical data. Then, silica nanoemulsion loaded with SBDMP was prepared using Pluronic F-68 as a potent surfactant. The particle shape, hydrodynamic size, and zeta potential of the produced silica nanoemulsion (with and without drug loading) were assessed. The antitumoral activity of the synthesized molecules showed the superiority of SBDMP and silica nanoemulsion with and without SBDMP loading against Rhizopus microsporous and Syncephalastrum racemosum. Subsequently, the laser-induced photodynamic inactivation (LIPDI) of Mucorales strains was determined using the tested samples. The optical properties of the samples were investigated using UV-vis optical absorption and the photoluminescence. The photosensitivity of the selected samples appeared to enhance the eradication of the tested pathogenic strains when exposed to a red (640 nm) laser light. The optical property results verified that the SBDMP-loaded silica nanoemulsion has a high depth of penetration into biological tissues due to a two-absorption photon (TAP) mechanism. Interestingly, the photosensitizing of the nanoemulsion loaded with a newly synthesized drug-like candidate, SBDMP, opens up a new route to apply new organic compounds as photosensitizers under laser-induced photodynamic therapy (LIPDT).
Collapse
Affiliation(s)
- Mohamed Abdelraof
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| | - Mohamed Fikry
- Ultrafast Picosecond Laser Lab, Physics Department, Faculty of Science, Cairo University Giza 12613 Egypt
- Egypt Nanotechnology Center (EGNC), Faculty of Nanotechnology for Postgraduate Studies, Cairo University El-Sheikh Zayed 12588 Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University Cairo 11884 Egypt
| | - Mehrez E El-Naggar
- Institute of Textile Research and Technology, National Research Centre 33 El Bohouth St, Dokki Giza 12622 Egypt
| | - Huda R M Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre 33 El Buhouth St, Dokki 12622 Giza Egypt
| |
Collapse
|
12
|
Moret F, Varchi G. Drug Delivery in Photodynamic Therapy. Pharmaceutics 2023; 15:1784. [PMID: 37513971 PMCID: PMC10385038 DOI: 10.3390/pharmaceutics15071784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Photodynamic therapy (PDT) has gained prominence as a non-invasive and selective treatment option for solid tumors and non-oncological diseases [...].
Collapse
Affiliation(s)
- Francesca Moret
- Department of Biology, University of Padova, 35100 Padova, Italy
| | - Greta Varchi
- Institute for the Organic Synthesis and Photoreactivity, Italian National Research Council, 40121 Bologna, Italy
| |
Collapse
|
13
|
Jurak I, Cokarić Brdovčak M, Djaković L, Bertović I, Knežević K, Lončarić M, Jurak Begonja A, Malatesti N. Photodynamic Inhibition of Herpes Simplex Virus 1 Infection by Tricationic Amphiphilic Porphyrin with a Long Alkyl Chain. Pharmaceutics 2023; 15:pharmaceutics15030956. [PMID: 36986817 PMCID: PMC10058617 DOI: 10.3390/pharmaceutics15030956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Photodynamic therapy (PDT) is broadly used to treat different tumors, and it is a rapidly developing approach to inactivating or inhibiting the replication of fungi, bacteria, and viruses. Herpes simplex virus 1 (HSV-1) is an important human pathogen and a frequently used model to study the effects of PDT on enveloped viruses. Although many photosensitizers (PSs) have been tested for their antiviral properties, analyses are usually limited to assessing the reduction in viral yield, and thus the molecular mechanisms of photodynamic inactivation (PDI) remain poorly understood. In this study, we investigated the antiviral properties of TMPyP3-C17H35, a tricationic amphiphilic porphyrin-based PS with a long alkyl chain. We show that light-activated TMPyP3-C17H35 can efficiently block virus replication at certain nM concentrations without exerting obvious cytotoxicity. Moreover, we show that the levels of viral proteins (immediate-early, early, and late genes) were greatly reduced in cells treated with subtoxic concentrations of TMPyP3-C17H35, resulting in markedly decreased viral replication. Interestingly, we observed a strong inhibitory effect of TMPyP3-C17H35 on the virus yield only when cells were treated before or shortly after infection. In addition to the antiviral activity of the internalized compound, we show that the compound dramatically reduces the infectivity of free virus in the supernatant. Overall, our results demonstrate that activated TMPyP3-C17H35 effectively inhibits HSV-1 replication and that it can be further developed as a potential novel treatment and used as a model to study photodynamic antimicrobial chemotherapy.
Collapse
Affiliation(s)
- Igor Jurak
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
- Correspondence:
| | - Maja Cokarić Brdovčak
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Lara Djaković
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Ivana Bertović
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Klaudia Knežević
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Martin Lončarić
- Photonics and Quantum Optics Unit, Center of Excellence for Advanced Materials and Sensing Devices, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Antonija Jurak Begonja
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Nela Malatesti
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| |
Collapse
|
14
|
Anjani QK, Demartis S, Volpe-Zanutto F, Li H, Sabri AHB, Gavini E, Donnelly RF. Fluorescence-Coupled Techniques for Determining Rose Bengal in Dermatological Formulations and Their Application to Ex Vivo Skin Deposition Studies. Pharmaceutics 2023; 15:pharmaceutics15020408. [PMID: 36839730 PMCID: PMC9960589 DOI: 10.3390/pharmaceutics15020408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Rose Bengal (RB) is a fluorescent dye with several potential biomedical applications, particularly in dermatology. Due to RB's poor physicochemical properties, several advanced delivery systems have been developed as a potential tool to promote its permeation across the skin. Nevertheless, no validated quantitative method to analyse RB within the skin is described in the literature. Considering RB exhibits a conjugated ring system, the current investigation proposes fluorescence-based techniques beneficial for qualitatively and quantitatively determining RB delivered to the skin. Notably, the development and validation of a fluorescence-coupled HPLC method to quantify RB within the skin matrix are herein described for the first time. The method was validated based on the ICH, FDA and EMA guidelines, and the validated parameters included specificity, linearity, LOD, LLOQ, accuracy and precision, and carry-over and dilution integrity. Finally, the method was applied to evaluate RB's ex vivo permeation and deposition profiles when loaded into dermatological formulations. Concerning qualitative determination, multiphoton microscopy was used to track the RB distribution within the skin strata, and fluorescence emission spectra were investigated to evaluate RB's behaviour when interacting with different environments. The analytical method proved specific, precise, accurate and sensitive to analyse RB in the skin. In addition, qualitative side-analytical techniques were revealed to play an essential role in evaluating the performance of RB's dermatological formulation.
Collapse
Affiliation(s)
- Qonita Kurnia Anjani
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
- Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Sara Demartis
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Piazza Università 21, 07100 Sassari, Italy
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Huanhuan Li
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Akmal Hidayat Bin Sabri
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Piazza Università 21, 07100 Sassari, Italy
- Correspondence: (E.G.); (R.F.D.); Tel.: +39-079-228752 (E.G.); +44-(0)-2890-972-251 (R.F.D.)
| | - Ryan F. Donnelly
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
- Correspondence: (E.G.); (R.F.D.); Tel.: +39-079-228752 (E.G.); +44-(0)-2890-972-251 (R.F.D.)
| |
Collapse
|
15
|
Effect of Solubilizing Group on the Antibacterial Activity of Heptamethine Cyanine Photosensitizers. Pharmaceutics 2023; 15:pharmaceutics15010247. [PMID: 36678875 PMCID: PMC9864305 DOI: 10.3390/pharmaceutics15010247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Antibiotic resistance of pathogenic bacteria dictates the development of novel treatment modalities such as antimicrobial photodynamic therapy (APDT) utilizing organic dyes termed photosensitizers that exhibit a high cytotoxicity upon light irradiation. Most of the clinically approved photosensitizers are porphyrins that are poorly excitable in the therapeutic near-IR spectral range. In contrast, cyanine dyes function well in the near-IR region, but their phototoxicity, in general, is very low. The introduction of iodine atoms in the cyanine molecules was recently demonstrated to greatly increase their phototoxicity. Herein, we synthesized a series of the new iodinated heptamethine cyanine dyes (ICy7) containing various solubilizing moieties, i.e., negatively charged carboxylic (ICy7COOH) and sulfonic (ICy7SO3H) groups, positively charged triphenylphosphonium (ICy7PPh3), triethylammonium (ICy7NEt3) and amino (ICy7NH2) groups, and neutral amide (ICy7CONHPr) group. The effect of these substituents on the photodynamic eradication of Gram-positive (S. aureus) and Gram-negative (E. coli and P. aeruginosa) pathogens was studied. Cyanine dyes containing the amide and triphenylphosphonium groups were found to be the most efficient for eradication of the investigated bacteria. These dyes are effective at low concentrations of 0.05 µM (33 J/cm2) for S. aureus, 50 µM (200 J/cm2) for E. coli, and 5 µM (100 J/cm2) for P. aeruginosa and considered, therefore, promising photosensitizers for APDT applications. The innovation of the new photosensitizers consisted of a combination of the heavy-atom effect that increases singlet oxygen generation with the solubilizing group's effect improving cell uptake, and with effective near-IR excitation. Such a combination helped to noticeably increase the APDT efficacy and should pave the way for the development of more advanced photosensitizers for clinical use.
Collapse
|
16
|
Photodynamic treatment affects the secreted antioxidant and glycoside hydrolases activities produced by Humicola grisea var. thermoidea and Penicillium echinulatum in agro-industrial substrates. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
17
|
Gilger BC. How study of naturally occurring ocular disease in animals improves ocular health globally. J Am Vet Med Assoc 2022; 260:1887-1893. [PMID: 36198052 DOI: 10.2460/javma.22.08.0383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this article, which is part of the Currents in One Health series, the role of naturally occurring ocular disease in animals is reviewed with emphasis on how the understanding of these ocular diseases contributes to one health initiatives, particularly the pathogenesis and treatment of ocular diseases common to animals and humans. Animals spontaneously develop ocular diseases that closely mimic those in humans, especially dry eye disease, herpes virus infection (cats), fungal keratitis (horses), bacterial keratoconjunctivitis, uveitis, and glaucoma. Both uveitis and glaucoma are common in domestic animals and humans, and many similarities exist in pathogenesis, genetics, and response to therapy. Furthermore, the study of inherited retinal disease in animals has particularly epitomized the one health concept, specifically the collaborative efforts of multiple disciplines working to attain optimal health for people and animals. Through this study of retinal disease in dogs, innovative therapies such as gene therapy have been developed. A unique opportunity exists to study ocular disease in shared environments to better understand the interplay between the environment, genetics, and ocular disease in both animals and humans. The companion Currents in One Health by Gilger, AJVR, December 2022, addresses in more detail recent studies of noninfectious immune-mediated animal ocular disease and their role in advancing ocular health globally.
Collapse
|
18
|
Shahmoradi S, Shariati A, Amini SM, Zargar N, Yadegari Z, Darban-Sarokhalil D. The application of selenium nanoparticles for enhancing the efficacy of photodynamic inactivation of planktonic communities and the biofilm of Streptococcus mutans. BMC Res Notes 2022; 15:84. [PMID: 35209935 PMCID: PMC8876442 DOI: 10.1186/s13104-022-05973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/14/2022] [Indexed: 12/02/2022] Open
Abstract
Objective Streptococcus mutans is one of the principal causative agents of dental caries (tooth decay) found in the oral cavity. Therefore, this study investigates whether selenium nanoparticles (SeNPs) enhance the efficacy of photodynamic therapy (PDT) against both planktonic communities and the one-day-old biofilm of S. mutans. In this study, the planktonic and 24-h biofilm of S. mutans have been prepared in 96-cell microplates. These forms were treated by methylene blue (MB) and SeNPs and then were exposed to light-emitting diode (LED) lighting. Finally, the results have been reported as CFU/ml. Results The outcomes demonstrated that MB-induced PDT and SeNPs significantly reduced the number of planktonic bacteria (P-value < 0.001). The comparison between the treated and untreated groups showed that combining therapy with SeNPs and PDT remarkably decreased colony-forming units of one-day-old S. mutans biofilm (P-value < 0.05). The findings revealed that PDT modified by SeNPs had a high potential to destroy S. mutans biofilm. This combination therapy showed promising results to overcome oral infection in dental science.
Collapse
Affiliation(s)
- Samane Shahmoradi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Next to Milad Tower, Tehran, Iran
| | - Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Zargar
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Yadegari
- Department of Dental Biomaterials, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Next to Milad Tower, Tehran, Iran. .,Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|