1
|
Jin C, Xue L, Zhang L, Yu L, Wu P, Qian H. Engineered Nanoparticles for Theranostic Applications in Kidney Repair. Adv Healthc Mater 2025; 14:e2402480. [PMID: 39617999 DOI: 10.1002/adhm.202402480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/05/2024] [Indexed: 01/03/2025]
Abstract
Kidney diseases are characterized by their intricate nature and complexity, posing significant challenges in their treatment and diagnosis. Nanoparticles (NPs), which can be further classified as synthetic and biomimetic NPs, have emerged as promising candidates for treating various diseases. In recent years, the development of engineered nanotherapeutics has focused on targeting damaged tissues and serving as drug delivery vehicles. Additionally, these NPs have shown superior sensitivity and specificity in diagnosis and imaging, thus providing valuable insights for the early detection of diseases. This review aims to focus on the application of engineered synthetic and biomimetic NPs in kidney diseases in the aspects of treatment, diagnosis, and imaging. Notably, the current perspectives and challenges are evaluated, which provide inspiration for future research directions, and encourage the clinical application of NPs in this field.
Collapse
Affiliation(s)
- Can Jin
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lingling Xue
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Leilei Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lixia Yu
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
| | - Peipei Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
2
|
Ito C, Taguchi K, Yamada T, Hanaya K, Enoki Y, Sugai T, Komatsu T, Matsumoto K. Dual delivery of carbon monoxide and doxorubicin using haemoglobin-albumin cluster: proof of concept for well-tolerated cancer therapy. J Mater Chem B 2024; 12:5600-5608. [PMID: 38738920 DOI: 10.1039/d4tb00123k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
A serious concern of doxorubicin (DOX) therapy is that it causes severe adverse effects, particularly cardiotoxicity. Carbon monoxide (CO) possesses powerful cytoprotective effects against drug-induced organ injury and is expected to ameliorate DOX-induced cardiotoxicity. In this study, a dual carrier of DOX and CO (CO-HemoAct-DOX) was fabricated based on a haemoglobin-albumin cluster (HemoAct), which is a protein cluster with a haemoglobin core structure wrapped by serum albumin. CO-HemoAct-DOX was synthesised by binding CO to a haemoglobin core and covalently conjugating (6-maleimidocaproyl)hydrazone derivative of DOX to an albumin shell. The average DOX/cluster ratio was about 2.6. In the in vitro cytotoxicity assay against cancer cells, the anti-tumour activity of CO-HemoAct-DOX was 10-fold lower than that of DOX in a 2D-cultured model, whereas CO-HemoAct-DOX suppressed the growth of tumour spheroids to the same extent as DOX in the 3D-cultured model. In colon-26 tumour-bearing mice, CO-HemoAct-DOX achieved DOX delivery to the tumour site and alleviated tumour growth more effectively than DOX. Furthermore, CO-HemoAct attenuated DOX-induced cardiomyocyte atrophy in H9c2 cells and elevated the levels of cardiac biomarkers in mice exposed to DOX. These results suggest that the dual delivery of CO and DOX using HemoAct is a promising strategy as an anti-tumour agent to realise well-tolerated cancer therapy with minimal cardiotoxicity.
Collapse
Affiliation(s)
- Chihiro Ito
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Taiga Yamada
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kengo Hanaya
- Division of Organic and Biocatalytic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Yuki Enoki
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Takeshi Sugai
- Division of Organic and Biocatalytic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| |
Collapse
|
3
|
Nagasaki T, Maeda H, Yanagisawa H, Nishida K, Kobayashi K, Wada N, Noguchi I, Iwakiri R, Taguchi K, Sakai H, Saruwatari J, Watanabe H, Otagiri M, Maruyama T. Carbon Monoxide-Loaded Red Blood Cell Prevents the Onset of Cisplatin-Induced Acute Kidney Injury. Antioxidants (Basel) 2023; 12:1705. [PMID: 37760008 PMCID: PMC10526101 DOI: 10.3390/antiox12091705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Cisplatin-induced acute kidney injury (AKI) is an important factor that limits the clinical use of this drug for the treatment of malignancies. Oxidative stress and inflammation are considered to be the main causes of not only cisplatin-induced death of cancer cells but also cisplatin-induced AKI. Therefore, developing agents that exert antioxidant and anti-inflammatory effects without weakening the anti-tumor effects of cisplatin is highly desirable. Carbon monoxide (CO) has recently attracted interest due to its antioxidant, anti-inflammatory, and anti-tumor properties. Herein, we report that CO-loaded red blood cell (CO-RBC) exerts renoprotective effects on cisplatin-induced AKI. Cisplatin treatment was found to reduce cell viability in proximal tubular cells via oxidative stress and inflammation. Cisplatin-induced cytotoxicity, however, was suppressed by the CO-RBC treatment. The intraperitoneal administration of cisplatin caused an elevation in the blood urea nitrogen and serum creatinine levels. The administration of CO-RBC significantly suppressed these elevations. Furthermore, the administration of CO-RBC also reduced the deterioration of renal histology and tubular cell injury through its antioxidant and anti-inflammatory effects in cisplatin-induced AKI mice. Thus, our data suggest that CO-RBC has the potential to substantially prevent the onset of cisplatin-induced AKI, which, in turn, may improve the usefulness of cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Taisei Nagasaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Hiroki Yanagisawa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Kento Nishida
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Kazuki Kobayashi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Naoki Wada
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Isamu Noguchi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Ryotaro Iwakiri
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan;
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan;
| | - Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan;
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| |
Collapse
|
4
|
Chai J, Zhu J, Tian Y, Yang K, Luan J, Wang Y. Carbon monoxide therapy: a promising strategy for cancer. J Mater Chem B 2023; 11:1849-1865. [PMID: 36786000 DOI: 10.1039/d2tb02599j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cancer is one of the acute life-threatening diseases endangering the whole of humanity. The treatment modalities for cancer are various. However, in most cases, a single treatment choice provides multiple side effects, poor targeting, and ineffective treatment. In recent years, the physiological regulatory function of carbon monoxide (CO) in the cancer process has been reported gradually, and CO-related nano-drugs have been explored. It shows better application prospects in cancer treatment and provides new ideas for treatment. The present review introduces the pathophysiological role of CO. The recent advances in cancer therapy, such as CO-mediated gas therapy, combined application of CO chemotherapy, photodynamic therapy (PDT), photothermal therapy (PTT), and immunotherapy, are described. Current challenges and future developments in CO-based treatment are also discussed. This review provides comprehensive information on recent advances in CO therapy and also some valuable guidance for promoting the progress of gas therapy nanomedicine.
Collapse
Affiliation(s)
- Jingjing Chai
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Junfei Zhu
- China-Japan Friendship Hospital, No. 2 Sakura East Street, Chaoyang District, Beijing, China
| | - Yu Tian
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Kui Yang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Yan Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| |
Collapse
|
5
|
Sakai H, Kure T, Taguchi K, Azuma H. Research of storable and ready-to-use artificial red blood cells (hemoglobin vesicles) for emergency medicine and other clinical applications. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:1048951. [PMID: 36619343 PMCID: PMC9816666 DOI: 10.3389/fmedt.2022.1048951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/11/2022] [Indexed: 12/25/2022] Open
Abstract
Hemoglobin (Hb) is the most abundant protein in blood, with concentration of about 12-15 g/dl. The highly concentrated Hb solution (35 g/dl) is compartmentalized in red blood cells (RBCs). Once Hb is released from RBCs by hemolysis during blood circulation, it induces renal and cardiovascular toxicities. To date, hemoglobin-based oxygen carriers of various types have been developed as blood substitutes to mitigate the Hb toxicities. One method is Hb encapsulation in phospholipid vesicles (liposomes). Although the Hb toxicity can be shielded, it is equally important to ensure the biocompatibility of the liposomal membrane. We have developed Hb-vesicles (HbV). A new encapsulation method using a rotation-revolution mixer which enabled efficient production of HbV with a high yield has considerably facilitated R&D of HbV. Along with our academic consortium, we have studied the preclinical safety and efficacy of HbV extensively as a transfusion alternative, and finally conducted a phase I clinical trial. Moreover, carbonyl-HbV and met-HbV are developed respectively for an anti-inflammatory and anti-oxidative agent and an antidote for poisons. This review paper specifically presents past trials of liposome encapsulated Hb, biocompatible lipid bilayer membranes, and efficient HbV preparation methods, in addition to potential clinical applications of HbV based on results of our in vivo studies.
Collapse
Affiliation(s)
- Hiromi Sakai
- Department of Chemistry, Nara Medical University, Kashihara, Japan
| | - Tomoko Kure
- Department of Chemistry, Nara Medical University, Kashihara, Japan
| | | | - Hiroshi Azuma
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
6
|
Davoudi M, Jadidi Y, Moayedi K, Farrokhi V, Afrisham R. Ameliorative impacts of polymeric and metallic nanoparticles on cisplatin-induced nephrotoxicity: a 2011-2022 review. J Nanobiotechnology 2022; 20:504. [PMID: 36457031 PMCID: PMC9714065 DOI: 10.1186/s12951-022-01718-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Cisplatin (CDDP) is a well-known platinum-based drug used in the treatment of various malignancies. However, the widespread side effects that this drug leaves on normal tissues make its use limited. Since cisplatin is mainly eliminated from the kidneys, CDDP-induced nephrotoxicity is the most significant dose-limiting complication attributed to cisplatin, which often leads to dose withdrawal. Considering the high efficiency of cisplatin in chemotherapy, finding renoprotective drug delivery systems for this drug is a necessity. In this regard, we can take advantages of different nanoparticle-based approaches to deliver cisplatin into tumors either using passive targeting or using specific receptors. In an effort to find more effective cisplatin-based nano-drugs with less nephrotoxic effect, the current 2011-2022 review study was conducted to investigate some of the nanotechnology-based methods that have successfully been able to mitigate CDDP-induced nephrotoxicity. Accordingly, although cisplatin can cause renal failures through inducing mitochondria dysfunction, oxidative stress, lipid peroxidation and endoplasmic reticulum stress, some CDDP-based nano-carriers have been able to reverse a wide range of these advert effects. Based on the obtained results, it was found that the use of different metallic and polymeric nanoparticles can help renal cells to strengthen their antioxidant systems and stay alive through reducing CDDP-induced ROS generation, inhibiting apoptosis-related pathways and maintaining the integrity of the mitochondrial membrane. For example, nanocurcumin could inhibit oxidative stress and acting as a ROS scavenger. CONPs could reduce lipid peroxidation and pro-inflammatory cytokines. CDDP-loaded silver nanoparticles (AgNPs) could inhibit mitochondria-mediated apoptosis. In addition, tea polyphenol-functionalized SeNPs (Se@TE) NPs could mitigate the increased level of dephosphorylated AKT, phosphorylated p38 MAPK and phosphorylated c-Jun N-terminal kinase (JNK) induced by cisplatin. Moreover, exosomes mitigated cisplatin-induced renal damage through inhibiting Bcl2 and increasing Bim, Bid, Bax, cleaved caspase-9, and cleaved caspase-3. Hence, nanoparticle-based techniques are promising drug delivery systems for cisplatin so that some of them, such as lipoplatins and nanocurcumins, have even reached phases 1-3 trials.
Collapse
Affiliation(s)
- Maryam Davoudi
- grid.411705.60000 0001 0166 0922Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Jadidi
- grid.411705.60000 0001 0166 0922Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiana Moayedi
- grid.411705.60000 0001 0166 0922Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vida Farrokhi
- grid.411705.60000 0001 0166 0922Department of Hematology, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Afrisham
- grid.411705.60000 0001 0166 0922Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Sakai H, Yasuda S, Okuda C, Yamada T, Owaki K, Miwa Y. Examination of central nervous system by functional observation battery after massive intravenous infusion of carbon monoxide-bound and oxygen-bound hemoglobin vesicles in rats. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100135. [PMID: 36568263 PMCID: PMC9780079 DOI: 10.1016/j.crphar.2022.100135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
Carbon monoxide (CO) is known as a toxic gas inducing "CO poisoning", which acutely affects the central nervous system (CNS) and which persistently affects brain functions depending on the exposure time and CO concentration. By contrast, in pathological rodent models, intravenous infusion of CO-bound hemoglobin vesicles (CO-HbV) has shown various beneficial effects such as anti-oxidative and anti-inflammatory reactions. This study assessed effects of CO-HbV infusion on CNS using a functional observation battery, sensory reflexes, grip strength, and landing foot splay measurements. The test fluids were CO-HbV and O2-bound HbV (O2-HbV) suspended in saline ([Hb] = 10 g/dL), and saline alone for comparison. The rats received either 16 or 32 mL/kg of fluid intravenously at 1.5 mL/min/kg. Observations were made before infusion, and at 5 min, 4, 8, 24, 48 and 72 h after infusion. Massive doses of 16 and 32 mL/kg respectively corresponded to about 29 and 57% of the whole circulating blood volume (56 mL/kg). No toxicological effect was observed in any measurement item for any group in comparison to the control saline infusion group. Histopathological examination of hippocampal tissue at 14 days after infusion showed the number of necrotic cells to be minimal. Results obtained from rats in this experiment suggest that the massive intravenous infusion of CO-HbV yields beneficial anti-oxidative and anti-inflammatory effects without showing CO-poisoning-related symptoms of CNS damage.
Collapse
Affiliation(s)
- Hiromi Sakai
- Department of Chemistry, Nara Medical University, Kashihara, Nara, Japan,Corresponding author. Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan.
| | - Shunichi Yasuda
- Hashima Laboratory, Nihon Bioresearch Inc, Hashima, Gifu, Japan
| | - Chie Okuda
- Department of Chemistry, Nara Medical University, Kashihara, Nara, Japan,Department of Anesthesiology, Nara Medical University, Kashihara, Nara, Japan
| | - Tetsuya Yamada
- Hashima Laboratory, Nihon Bioresearch Inc, Hashima, Gifu, Japan
| | - Keita Owaki
- Hashima Laboratory, Nihon Bioresearch Inc, Hashima, Gifu, Japan
| | - Yoji Miwa
- Hashima Laboratory, Nihon Bioresearch Inc, Hashima, Gifu, Japan
| |
Collapse
|