1
|
Fernández PA, Cid MP, Comín R, Velasco MI. Structural Characterization and Hydration Dynamics of Cross-Linked Collagen and Hyaluronic Acid Scaffolds by Nuclear Magnetic Resonance. J Phys Chem B 2024; 128:12143-12153. [PMID: 39620718 DOI: 10.1021/acs.jpcb.4c06316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Understanding a biomaterial's structural and hydration dynamics is essential for its development and applications in tissue regeneration. In this study, collagen-hyaluronic acid (HA) scaffolds were analyzed utilizing Nuclear Magnetic Resonance (NMR) techniques to elucidate how different cross-linking conditions influence the internal architecture and interaction with solvents in these scaffolds. The scaffolds were fabricated using 3D printing and cross-linked with 1,4-butanediol diglycidyl ether (BDDGE), a process known to impact their mechanical properties. We gained insights into the microstructural organization and hydration behavior within the scaffolds when exposed to water and ethanol by employing proton relaxation and diffusion measurements. To better understand the system's performance, static and dynamic experiments were performed. Our results indicate that the degree of cross-linking affects the scaffold's ability to retain water, with higher cross-linking leading to more rigid structures. This also altered the hydration dynamics mainly due to a difference in the diffusion of water within the scaffold. In addition, the anisotropy of the collagen fibers also decreases with the cross-linking. Ethanol, a less polar solvent, provided a contrasting environment that further revealed the structural dependencies on the cross-linking density. The study's findings contribute to a deeper understanding of how the structure and morphology affect the functionality of collagen-HA scaffolds, offering critical information for optimizing their design for specific biomedical applications, such as soft tissue regeneration. Our experiments show how NMR is a valuable tool to provide information on dynamic processes not only in collagen-HA scaffolds but also in many biocompatible polymeric samples. The outcomes of this research provide a foundation for future work aimed at tailoring scaffold properties to enhance their performance in clinical settings, ultimately advancing the field of tissue engineering.
Collapse
Affiliation(s)
- Pablo A Fernández
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, X5000OPB Córdoba, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET, Av. Vélez Sarsfield 1611, X5000OPB Córdoba, Argentina
| | - Mariana P Cid
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, X5000OPB Córdoba, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET, Av. Vélez Sarsfield 1611, X5000OPB Córdoba, Argentina
| | - Romina Comín
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, X5000OPB Córdoba, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET, Av. Vélez Sarsfield 1611, X5000OPB Córdoba, Argentina
| | - Manuel I Velasco
- Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Av. Medina Allende, X5000HUA, Córdoba, Argentina
- Instituto de Física Enrique Gaviola (IFEG), CONICET, Av. Medina Allende, X5000HUA, Córdoba, Argentina
| |
Collapse
|
2
|
Sarkar Z, Singh H, Iqubal MK, Baboota S, Khan S, Parveen R, Ali J. Involvement of macromolecules in 3D printing for wound healing management: A narrative review. Int J Biol Macromol 2024; 282:136991. [PMID: 39476921 DOI: 10.1016/j.ijbiomac.2024.136991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/01/2024] [Accepted: 10/26/2024] [Indexed: 11/07/2024]
Abstract
Wound healing comprises four overlapping stages involving complex biochemical and cellular processes. Any lapse in this procedure causes irregular healing, which generates clinical and financial burdens for the health system. Personalized treatment is preferred to overcome the limitations of classical as well as modern methods of wound healing. This review discusses recently developed 3D printing models for personalized treatment with varying degrees of success. It is an effective approach for treating wounds by developing custom dressings tailored to the patient's needs and reducing incidents of infections. Additionally, incorporating natural or synthetic polymers can further enhance their effectiveness. Macromolecular polymers, laminin, cellulose, collagen, gelatin, etc. that make up the bulk of 3D printable bio-inks, have been essential in diverse 3D bioprinting technologies throughout the layered 3D manufacturing processes. The polymers need to be tailored for the specific requirements of printing and effector functions in cancer treatment, dental & oral care, biosensors, and muscle repair. We have explored how 3D printing can be utilized to fasten the process of wound healing at each of the four stages. The benefits as well as the future prospects are also discussed in this article.
Collapse
Affiliation(s)
- Zinataman Sarkar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Harshita Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Kashif Iqubal
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Saba Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Rabea Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
3
|
Ghasempour A, Dehghan H, Mahmoudi M, Lavi Arab F. Biomimetic scaffolds loaded with mesenchymal stem cells (MSCs) or MSC-derived exosomes for enhanced wound healing. Stem Cell Res Ther 2024; 15:406. [PMID: 39522032 PMCID: PMC11549779 DOI: 10.1186/s13287-024-04012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Since wound healing is one of the most important medical challenges and common dressings have not been able to manage this challenge well today, efforts have been increased to achieve an advanced dressing. Mesenchymal stem cells and exosomes derived from them have shown high potential in healing and regenerating wounds due to their immunomodulatory, anti-inflammatory, immunosuppressive, and high regenerative capacities. However, challenges such as the short life of these cells, the low durability of these cells in the wound area, and the low stability of exosomes derived from them have resulted in limitations in their use for wound healing. Nowadays, different scaffolds are considered suitable biomaterials for wound healing. These scaffolds are made of natural or synthetic polymers and have shown promising potential for an ideal dressing that does not have the disadvantages of common dressings. One of the strategies that has attracted much attention today is using these scaffolds for seeding and delivering MSCs and their exosomes. This combined strategy has shown a high potential in enhancing the shelf life of cells and increasing the stability of exosomes. In this review, the combination of different scaffolds with different MSCs or their exosomes for wound healing has been comprehensively discussed.
Collapse
Affiliation(s)
- Alireza Ghasempour
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Dehghan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Guptha PM, Kanoujia J, Kishore A, Raina N, Wahi A, Gupta PK, Gupta M. A comprehensive review of the application of 3D-bioprinting in chronic wound management. Expert Opin Drug Deliv 2024; 21:1573-1594. [PMID: 38809187 DOI: 10.1080/17425247.2024.2355184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
INTRODUCTION Chronic wounds require more sophisticated care than standard wound care because they are becoming more severe as a result of diseases like diabetes. By resolving shortcomings in existing methods, 3D-bioprinting offers a viable path toward personalized, mechanically strong, and cell-stimulating wound dressings. AREAS COVERED This review highlights the drawbacks of traditional approaches while navigating the difficulties of managing chronic wounds. The conversation revolves around employing natural biomaterials for customized dressings, with a particular emphasis on 3D-bioprinting. A thorough understanding of the uses of 3D-printed dressings in a range of chronic wound scenarios is provided by insights into recent research and patents. EXPERT OPINION The expert view recognizes wounds as a historical human ailment and emphasizes the growing difficulties and expenses related to wound treatment. The expert acknowledges that 3D printing is revolutionary, but also points out that it is still in its infancy and has the potential to enhance mass production rather than replace it. The review highlights the benefits of 3D printing for wound dressings by providing instances of smart materials that improve treatment results by stimulating angiogenesis, reducing pain, and targeting particular enzymes. The expert advises taking action to convert the technology's prospective advantages into real benefits for patients, even in the face of resistance to change in the healthcare industry. It is believed that the increasing evidence from in-vivo studies is promising and represents a positive change in the treatment of chronic wounds toward sophisticated 3D-printed dressings.
Collapse
Affiliation(s)
| | - Jovita Kanoujia
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, India
| | - Ankita Kishore
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, India
| | - Neha Raina
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Abhishek Wahi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, Sharda School of Basic Sciences & Research, Sharda University, Greater Noida, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| |
Collapse
|
5
|
D A G, Adhikari J, Debnath P, Ghosh S, Ghosh P, Thomas S, Ghandilyan E, Gorbatov P, Kuchukyan E, Gasparyan S, Saha P. 3D printing of bacterial cellulose for potential wound healing applications: Current trends and prospects. Int J Biol Macromol 2024; 279:135213. [PMID: 39216564 DOI: 10.1016/j.ijbiomac.2024.135213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Several advances in skin tissue engineering have been made to restore skin damage, facilitating wound healing. Bacterial cellulose (BC), a naturally occurring polymer, has gained attention as a potential material in wound healing due to its unique physical and biological properties. In recent years, with the advent of 3D bio-printing technology, new avenues have opened for fabricating customized wound dressings and scaffolds for tissue engineering purposes. The existing literature in this field mainly focuses on the ways of modifications of bacterial cellulose to make it printable. Still, the applicability of 3D printed scaffolds for wound healing needs to be explored more. This review article focuses on the current research on using 3D-printed BC for skin regeneration, including its production methods and physical and biological properties, making it a better choice than traditional dressings. Furthermore, it also highlights the limitations and future directions for using BC in wound healing and tissue engineering applications. This review provides a comprehensive and up-to-date exploration of the applications of 3D-printed BC in wound healing, drawing insights from pre-existing studies and emphasizing patient compliance, clinical outcomes, and economic viability.
Collapse
Affiliation(s)
- Gouripriya D A
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, WB-700091, India
| | - Jaideep Adhikari
- School of Advanced Materials, Green Energy and Sensor Systems, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Poonam Debnath
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, WB-700091, India
| | - Shrayana Ghosh
- Department of Biotechnology, Amity University, Kolkata, India
| | - Pooja Ghosh
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, WB-700091, India
| | - Sabu Thomas
- School of Energy Materials, School of Nanoscience and Nanotechnology, School of Polymer Science and Technology, School of Chemical Science and IIUCNN, Mahatma Gandhi University, Kottayam 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028 Johannesburg, South Africa; TrEST Research Park, TC-4/2322, GEM Building, Opposite College of Engineering Trivandrum, Kulathoor Rd, Sreekariyam, Trivandrum, Kerala 695016, India
| | - Emmanuel Ghandilyan
- Foldink, 22 Orbeli Brothers Street 0028, Yerevan, Armenia; Institute of Physiology after L. Orbeli National Academy of Sciences of Republic of Armenia, 22 Orbeli Brothers Street, 0028 Yerevan, Armenia
| | - Pavel Gorbatov
- Foldink, 22 Orbeli Brothers Street 0028, Yerevan, Armenia
| | - Elza Kuchukyan
- Foldink, 22 Orbeli Brothers Street 0028, Yerevan, Armenia
| | - Seda Gasparyan
- Foldink, 22 Orbeli Brothers Street 0028, Yerevan, Armenia; Institute of Physiology after L. Orbeli National Academy of Sciences of Republic of Armenia, 22 Orbeli Brothers Street, 0028 Yerevan, Armenia
| | - Prosenjit Saha
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, WB-700091, India.
| |
Collapse
|
6
|
Mierke CT. Bioprinting of Cells, Organoids and Organs-on-a-Chip Together with Hydrogels Improves Structural and Mechanical Cues. Cells 2024; 13:1638. [PMID: 39404401 PMCID: PMC11476109 DOI: 10.3390/cells13191638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
The 3D bioprinting technique has made enormous progress in tissue engineering, regenerative medicine and research into diseases such as cancer. Apart from individual cells, a collection of cells, such as organoids, can be printed in combination with various hydrogels. It can be hypothesized that 3D bioprinting will even become a promising tool for mechanobiological analyses of cells, organoids and their matrix environments in highly defined and precisely structured 3D environments, in which the mechanical properties of the cell environment can be individually adjusted. Mechanical obstacles or bead markers can be integrated into bioprinted samples to analyze mechanical deformations and forces within these bioprinted constructs, such as 3D organoids, and to perform biophysical analysis in complex 3D systems, which are still not standard techniques. The review highlights the advances of 3D and 4D printing technologies in integrating mechanobiological cues so that the next step will be a detailed analysis of key future biophysical research directions in organoid generation for the development of disease model systems, tissue regeneration and drug testing from a biophysical perspective. Finally, the review highlights the combination of bioprinted hydrogels, such as pure natural or synthetic hydrogels and mixtures, with organoids, organoid-cell co-cultures, organ-on-a-chip systems and organoid-organ-on-a chip combinations and introduces the use of assembloids to determine the mutual interactions of different cell types and cell-matrix interferences in specific biological and mechanical environments.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
7
|
Mania S, Banach-Kopeć A, Maciejewska N, Czerwiec K, Słonimska P, Deptuła M, Baczyński-Keller J, Pikuła M, Sachadyn P, Tylingo R. From Bioink to Tissue: Exploring Chitosan-Agarose Composite in the Context of Printability and Cellular Behaviour. Molecules 2024; 29:4648. [PMID: 39407579 PMCID: PMC11477700 DOI: 10.3390/molecules29194648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
This study presents an innovative method for producing thermosensitive bioink from chitosan hydrogels saturated with carbon dioxide and agarose. It focuses on a detailed characterisation of their physicochemical properties and potential applications in biomedicine and tissue engineering. The ORO test approved the rapid regeneration of the three-dimensional structure of chitosan-agarose composites in a unidirectional bench press simulation test. The diffusion of dyes through the chitosan-agarose hydrogel membranes strongly depended on the share of both polymers in the composite and the molecular weight of the dyes. Glucose, as a nutrient marker, also diffused through all membranes regardless of composition. Biocompatibility assessment using MTT tests on 46BR.1N fibroblasts and HaCaT keratinocytes confirmed the safety of the bioink. The regenerative potential of the bioink was confirmed by efficient cell migration, especially HaCaT. Long-term viability studies showed that chitosan-agarose scaffolds, unlike the agarose ones, support cell proliferation and survival, especially 14 days after bioink extrusion. Experiments in a skin wound model in mice confirmed the biocompatibility of the tested dressing and the beneficial action of chitosan on healing. Studies on vessel formation in chicken embryos highlight the potential of the chitosan-agarose composition to enhance proangiogenic effects. This composition meets all entry criteria and possesses excellent biological properties.
Collapse
Affiliation(s)
- Szymon Mania
- Department of Chemistry, Technology and Biotechnology of Food, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (S.M.); (R.T.)
| | - Adrianna Banach-Kopeć
- Department of Chemistry, Technology and Biotechnology of Food, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (S.M.); (R.T.)
| | - Natalia Maciejewska
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
| | - Katarzyna Czerwiec
- Division of Clinical Anatomy, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Paulina Słonimska
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (J.B.-K.); (P.S.)
| | - Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.D.); (M.P.)
| | - Jakub Baczyński-Keller
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (J.B.-K.); (P.S.)
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.D.); (M.P.)
| | - Paweł Sachadyn
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (J.B.-K.); (P.S.)
| | - Robert Tylingo
- Department of Chemistry, Technology and Biotechnology of Food, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (S.M.); (R.T.)
| |
Collapse
|
8
|
Witkowska K, Paczkowska-Walendowska M, Garbiec E, Cielecka-Piontek J. Topical Application of Centella asiatica in Wound Healing: Recent Insights into Mechanisms and Clinical Efficacy. Pharmaceutics 2024; 16:1252. [PMID: 39458583 PMCID: PMC11510310 DOI: 10.3390/pharmaceutics16101252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Centella asiatica, widely known as Gotu kola, is a traditional herb celebrated for its benefits in skin health and wound healing. Recent research has provided new insights into its efficacy, particularly through topical applications. This review highlights the plant's mechanisms, focusing on its active compounds such as asiaticoside, madecassoside, asiatic acid, and madecassic acid, which enhance collagen synthesis, modulate inflammation, and offer antioxidant protection. Clinical trials have been collected and summarized that innovative delivery systems, such as hydrogels, nanostructures or microneedles, can accelerate wound healing, reduce wound size, and improve recovery times in various wound types, including diabetic ulcers and burns. Future research will likely refine these technologies and explore new applications, reinforcing the role of C. asiatica in contemporary wound care. Advances in formulation and delivery will continue to enhance the plant's therapeutic potential, offering promising solutions for effective wound management.
Collapse
Affiliation(s)
| | - Magdalena Paczkowska-Walendowska
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (K.W.); (E.G.); (J.C.-P.)
| | | | | |
Collapse
|
9
|
Todd L, Chin MHW, Coppens MO. Two conjectures on 3D Voronoi structures: a toolkit with biomedical case studies. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2024; 9:912-919. [PMID: 39205672 PMCID: PMC11348831 DOI: 10.1039/d4me00036f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/19/2024] [Indexed: 09/04/2024]
Abstract
3D Voronoi scaffolds are widely applied in the field of additive manufacturing as they are known for their light weight structural resilience and share many topological similarities to various natural (bone, tumours, lymph node) and synthetic environments (foam, functionally gradient porous materials). Unfortunately, the structural design features that promote these topological similarities (such as the number of vertices) are often unpredictable and require the trial and error of varying design features to achieve the desired 3D Voronoi structure. This article provides a toolkit, consisting of equations, based on over 12 000 3D Voronoi structures. These equations allow design features, such as the number of generating points (G), to be efficiently and accurately predicted based on the desired structural parameters (within ±3G). Based on these equations we are proposing, to the best of our knowledge, two new mathematical conjectures that relate the number of vertices or edges, and the average edge length to G in Voronoi structures. These equations have been validated for a wide range of parameter values and Voronoi network sizes. A design code is provided allowing any of over 12 000 structures to be selected, easily adjusted based on user requirements, and 3D printed. Biomedical case studies relevant to T-cell culturing, bone scaffolds and kidney tumours are presented to illustrate the design code.
Collapse
Affiliation(s)
- Lucy Todd
- Centre for Nature Inspired Engineering & Department of Chemical Engineering, University College London Torrington Place London WC1E 7JE United Kingdom
| | - Matthew H W Chin
- Centre for Nature Inspired Engineering & Department of Chemical Engineering, University College London Torrington Place London WC1E 7JE United Kingdom
| | - Marc-Olivier Coppens
- Centre for Nature Inspired Engineering & Department of Chemical Engineering, University College London Torrington Place London WC1E 7JE United Kingdom
| |
Collapse
|
10
|
Liu H, Xing F, Yu P, Zhe M, Duan X, Liu M, Xiang Z, Ritz U. A review of biomacromolecule-based 3D bioprinting strategies for structure-function integrated repair of skin tissues. Int J Biol Macromol 2024; 268:131623. [PMID: 38642687 DOI: 10.1016/j.ijbiomac.2024.131623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 04/22/2024]
Abstract
When skin is damaged or affected by diseases, it often undergoes irreversible scar formation, leading to aesthetic concerns and psychological distress for patients. In cases of extensive skin defects, the patient's life can be severely compromised. In recent years, 3D printing technology has emerged as a groundbreaking approach to skin tissue engineering, offering promising solutions to various skin-related conditions. 3D bioprinting technology enables the precise fabrication of structures by programming the spatial arrangement of cells within the skin tissue and subsequently printing skin replacements either in a 3D bioprinter or directly at the site of the defect. This study provides a comprehensive overview of various biopolymer-based inks, with a particular emphasis on chitosan (CS), starch, alginate, agarose, cellulose, and fibronectin, all of which are natural polymers belonging to the category of biomacromolecules. Additionally, it summarizes artificially synthesized polymers capable of enhancing the performance of these biomacromolecule-based bioinks, thereby composing hybrid biopolymer inks aimed at better application in skin tissue engineering endeavors. This review paper examines the recent advancements, characteristics, benefits, and limitations of biological 3D bioprinting techniques for skin tissue engineering. By utilizing bioinks containing seed cells, hydrogels with bioactive factors, and biomaterials, complex structures resembling natural skin can be accurately fabricated in a layer-by-layer manner. The importance of biological scaffolds in promoting skin wound healing and the role of 3D bioprinting in skin tissue regeneration processes is discussed. Additionally, this paper addresses the challenges and constraints associated with current 3D bioprinting technologies for skin tissue and presents future perspectives. These include advancements in bioink formulations, full-thickness skin bioprinting, vascularization strategies, and skin appendages bioprinting.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Xing
- Department of Pediatric Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Duan
- Department of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhou Xiang
- Department of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Orthopedics, Sanya People's Hospital, 572000 Sanya, Hainan, China.
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
11
|
Yekeler HB, Guler E, Beato PS, Priya S, Abobakr FKM, Dogan M, Uner B, Kalaskar DM, Cam ME. Design and in vitro evaluation of curcumin-loaded PLGA nanoparticle-embedded sodium alginate/gelatin 3D printed scaffolds for Alzheimer's disease. Int J Biol Macromol 2024; 268:131841. [PMID: 38679260 DOI: 10.1016/j.ijbiomac.2024.131841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Targeted nanoparticles (NPs) are aimed at improving clinical outcomes by enhancing the diagnostic and therapeutic efficacy of drugs in the treatment of Alzheimer's disease (AD). METHODS Curcumin (CUR)-loaded poly-lactic-co-glycolic acid (PLGA) NPs (CNPs) were produced to demonstrate a prolonged release and successfully embedded into 3D printed sodium alginate (SA)/gelatin (GEL) scaffolds that can dissolve rapidly sublingually. Characterization and in vitro activity of the NPs and scaffolds were evaluated. RESULTS Based on the in vitro drug release studies, 99.6 % of the encapsulated CUR was released in a controlled manner within 18 days for the CNPs. In vitro cell culture studies showed that all samples exhibited cell viability above 84.2 % and no significant cytotoxic effect on SH-SY5Y cells. The samples were analyzed through 2 different pathways by PCR analysis. Real-time PCR results indicated that CNP and CNP-embedded SA/GEL scaffolds (CNPSGS) may show neuroprotective effects by modulating the Wnt/β-catenin pathway. The gene expression level of β-catenin slightly increased compared to the gene expression levels of other proteins and enzymes with these treatments. However, the PI3K/Akt/GSK-3β signaling pathway was regulated at the same time because of the crosstalk between these 2 pathways. CONCLUSION CNPSGS might be an effective therapeutic alternative for AD treatment.
Collapse
Affiliation(s)
- Humeyra Betul Yekeler
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Türkiye; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Türkiye; UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK; MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye
| | - Ece Guler
- Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Türkiye; UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK; MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye; Department of Pharmacology, Faculty of Pharmacy, Istanbul Kent University, Kagithane 34406, Istanbul, Türkiye
| | - Patricia Santos Beato
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | - Sushma Priya
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | | | - Murat Dogan
- Department of Pharmaceutical Biotechnology, Cumhuriyet University, Sivas 58140, Türkiye; Cancer Survivorship Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 625 N. Michigan Ave., Suite 2100, Chicago, IL, 60611, USA
| | - Burcu Uner
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul Kent University, Kagithane 34406, Istanbul, Türkiye
| | - Deepak M Kalaskar
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | - Muhammet Emin Cam
- Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Türkiye; UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK; MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye; Department of Pharmacology, Faculty of Pharmacy, Istanbul Kent University, Kagithane 34406, Istanbul, Türkiye; Biomedical Engineering Department, University of Aveiro, Aveiro 3810-193, Portugal; Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul 34854, Türkiye.
| |
Collapse
|
12
|
Joseph A, Muhammad L F, S Vijayan A, Xavier J, K B M, Karthikeyan A, Gopinath N, P V M, Nair BG. 3D printed arrowroot starch-gellan scaffolds for wound healing applications. Int J Biol Macromol 2024; 264:130604. [PMID: 38447843 DOI: 10.1016/j.ijbiomac.2024.130604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Skin, the largest organ in the body, blocks the entry of environmental pollutants into the system. Any injury to this organ allows infections and other harmful substances into the body. 3D bioprinting, a state-of-the-art technique, is suitable for fabricating cell culture scaffolds to heal chronic wounds rapidly. This study uses starch extracted from Maranta arundinacea (Arrowroot plant) (AS) and gellan gum (GG) to develop a bioink for 3D printing a scaffold capable of hosting animal cells. Field emission scanning electron microscopy (FE-SEM) and X-ray diffraction analysis (XRD) prove that the isolated AS is analogous to commercial starch. The cell culture scaffolds developed are superior to the existing monolayer culture. Infrared microscopy shows the AS-GG interaction and elucidates the mechanism of hydrogel formation. The physicochemical properties of the 3D-printed scaffold are analyzed to check the cell adhesion and growth; SEM images have confirmed that the AS-GG printed scaffold can support cell growth and proliferation, and the MTT assay shows good cell viability. Cell behavioral and migration studies reveal that cells are healthy. Since the scaffold is biocompatible, it can be 3D printed to any shape and structure and will biodegrade in the requisite time.
Collapse
Affiliation(s)
- Abey Joseph
- Department of Bioscience & Engineering, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Fathah Muhammad L
- Department of Bioscience & Engineering, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Athira S Vijayan
- School of Material Science and Engineering, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Joseph Xavier
- Toxicology division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum, Kerala, India
| | - Megha K B
- Toxicology division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum, Kerala, India
| | - Akash Karthikeyan
- Department of Bioscience & Engineering, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Nigina Gopinath
- Department of Bioscience & Engineering, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Mohanan P V
- Toxicology division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum, Kerala, India
| | - Baiju G Nair
- Department of Bioscience & Engineering, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India.
| |
Collapse
|
13
|
Choudhary V, Choudhary M, Bollag WB. Exploring Skin Wound Healing Models and the Impact of Natural Lipids on the Healing Process. Int J Mol Sci 2024; 25:3790. [PMID: 38612601 PMCID: PMC11011291 DOI: 10.3390/ijms25073790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Cutaneous wound healing is a complex biological process involving a series of well-coordinated events aimed at restoring skin integrity and function. Various experimental models have been developed to study the mechanisms underlying skin wound repair and to evaluate potential therapeutic interventions. This review explores the diverse array of skin wound healing models utilized in research, ranging from rodent excisional wounds to advanced tissue engineering constructs and microfluidic platforms. More importantly, the influence of lipids on the wound healing process is examined, emphasizing their role in enhancing barrier function restoration, modulating inflammation, promoting cell proliferation, and promoting remodeling. Lipids, such as phospholipids, sphingolipids, and ceramides, play crucial roles in membrane structure, cell signaling, and tissue repair. Understanding the interplay between lipids and the wound microenvironment provides valuable insights into the development of novel therapeutic strategies for promoting efficient wound healing and tissue regeneration. This review highlights the significance of investigating skin wound healing models and elucidating the intricate involvement of lipids in the healing process, offering potential avenues for improving clinical outcomes in wound management.
Collapse
Affiliation(s)
- Vivek Choudhary
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (V.C.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Mrunal Choudhary
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (V.C.)
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (V.C.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Department of Dermatology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
14
|
Teng F, Wang W, Wang ZQ, Wang GX. Analysis of bioprinting strategies for skin diseases and injuries through structural and temporal dynamics: historical perspectives, research hotspots, and emerging trends. Biofabrication 2024; 16:025019. [PMID: 38350130 DOI: 10.1088/1758-5090/ad28f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/13/2024] [Indexed: 02/15/2024]
Abstract
This study endeavors to investigate the progression, research focal points, and budding trends in the realm of skin bioprinting over the past decade from a structural and temporal dynamics standpoint. Scholarly articles on skin bioprinting were obtained from WoSCC. A series of bibliometric tools comprising R software, CiteSpace, HistCite, and an alluvial generator were employed to discern historical characteristics, evolution of active topics, and upcoming tendencies in the area of skin bioprinting. Over the past decade, there has been a consistent rise in research interest in skin bioprinting, accompanied by an extensive array of meaningful scientific collaborations. Concurrently, diverse dynamic topics have emerged during various periods, as substantiated by an aggregate of 22 disciplines, 74 keywords, and 187 references demonstrating citation bursts. Four burgeoning research subfields were discerned through keyword clustering-namely, #3 'in situbioprinting', #6 'vascular', #7 'xanthan gum', and #8 'collagen hydrogels'. The keyword alluvial map reveals that Module 1, including 'transplantation' etc, has primarily dominated the research module over the previous decade, maintaining enduring relevance despite annual shifts in keyword focus. Additionally, we mapped out the top six key modules from 2023 being 'silk fibroin nanofiber', 'system', 'ionic liquid', 'mechanism', and 'foot ulcer'. Three recent research subdivisions were identified via timeline visualization of references, particularly Clusters #0 'wound healing', #4 'situ mineralization', and #5 '3D bioprinter'. Insights derived from bibliometric analyses illustrate present conditions and trends in skin bioprinting research, potentially aiding researchers in pinpointing central themes and pioneering novel investigative approaches in this field.
Collapse
Affiliation(s)
- Fei Teng
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Wei Wang
- Department of Ultrasound, University-Town Hospital of Chongqing Medical University, Chongqing 400042, People's Republic of China
| | - Zhi-Qiang Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Gui-Xue Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Modern Life Science Experiment Teaching Center at Bioengineering College of Chongqing University, Chongqing 400030, People's Republic of China
| |
Collapse
|
15
|
Zheng Y, Pan C, Xu P, Liu K. Hydrogel-mediated extracellular vesicles for enhanced wound healing: the latest progress, and their prospects for 3D bioprinting. J Nanobiotechnology 2024; 22:57. [PMID: 38341585 PMCID: PMC10858484 DOI: 10.1186/s12951-024-02315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Extracellular vesicles have shown promising tissue recovery-promoting effects, making them increasingly sought-after for their therapeutic potential in wound treatment. However, traditional extracellular vesicle applications suffer from limitations such as rapid degradation and short maintenance during wound administration. To address these challenges, a growing body of research highlights the role of hydrogels as effective carriers for sustained extracellular vesicle release, thereby facilitating wound healing. The combination of extracellular vesicles with hydrogels and the development of 3D bioprinting create composite hydrogel systems boasting excellent mechanical properties and biological activity, presenting a novel approach to wound healing and skin dressing. This comprehensive review explores the remarkable mechanical properties of hydrogels, specifically suited for loading extracellular vesicles. We delve into the diverse sources of extracellular vesicles and hydrogels, analyzing their integration within composite hydrogel formulations for wound treatment. Different composite methods as well as 3D bioprinting, adapted to varying conditions and construction strategies, are examined for their roles in promoting wound healing. The results highlight the potential of extracellular vesicle-laden hydrogels as advanced therapeutic tools in the field of wound treatment, offering both mechanical support and bioactive functions. By providing an in-depth examination of the various roles that these composite hydrogels can play in wound healing, this review sheds light on the promising directions for further research and development. Finally, we address the challenges associated with the application of composite hydrogels, along with emerging trends of 3D bioprinting in this domain. The discussion covers issues such as scalability, regulatory considerations, and the translation of this technology into practical clinical settings. In conclusion, this review underlines the significant contributions of hydrogel-mediated extracellular vesicle therapy to the field of 3D bioprinting and wound healing and tissue regeneration. It serves as a valuable resource for researchers and practitioners alike, fostering a deeper understanding of the potential benefits, applications, and challenges involved in utilizing composite hydrogels for wound treatment.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Chuqiao Pan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Peng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| |
Collapse
|
16
|
Cui H, Cai J, He H, Ding S, Long Y, Lin S. Tailored chitosan/glycerol micropatterned composite dressings by 3D printing for improved wound healing. Int J Biol Macromol 2024; 255:127952. [PMID: 37951437 DOI: 10.1016/j.ijbiomac.2023.127952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/26/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Wound infection control is a primary clinical concern nowadays. Various innovative solutions have been developed to fabricate adaptable wound dressings with better control of infected wound healing. This work presents a facile approach by leveraging 3D printing to fabricate chitosan/glycerol into composite dressings with tailored micropatterns to improve wound healing. The bioinks of chitosan/glycerol were investigated as suitable for 3D printing. Then, three tailored micropatterns (i.e., sheet, strip, and mesh) with precise geometry control were 3D printed onto a commercial dressing to fabricate the micropatterned composite dressings. In vitro and in vivo studies indicate that these micropatterned dressings could speed up wound healing due to their increased water uptake capacity (up to ca. 16-fold@2 min), benign cytotoxicity (76.7 % to 90.4 % of cell viability), minor hemolytic activity (<1 %), faster blood coagulation effects (within 76.3 s), low blood coagulation index (14.5 % to 18.7 % @ 6 min), enhanced antibacterial properties (81.0 % to 86.1 % against S. aureus, 83.7 % to 96.5 % against E. coli), and effective inhibition of wound inflammation factors of IL-1β and TNF-α. Such tailored micropatterned composite dressing is facile to obtain, highly reproducible, and cost-efficient, making it a promising implication for improved and personalized contaminated wound healing.
Collapse
Affiliation(s)
- Haoran Cui
- Systems Engineering Institute, Academy of Military Sciences, Tianjin 300161, People's Republic of China
| | - Junjie Cai
- Systems Engineering Institute, Academy of Military Sciences, Tianjin 300161, People's Republic of China; Bethune International Peace Hospital, Shijiazhuang 050051, People's Republic of China
| | - Hanjiao He
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, People's Republic of China
| | - Sheng Ding
- Systems Engineering Institute, Academy of Military Sciences, Tianjin 300161, People's Republic of China
| | - Yi Long
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, People's Republic of China.
| | - Song Lin
- Systems Engineering Institute, Academy of Military Sciences, Tianjin 300161, People's Republic of China.
| |
Collapse
|
17
|
Saifullah Q, Sharma A. Current Trends on Innovative Technologies in Topical Wound Care for Advanced Healing and Management. Curr Drug Res Rev 2024; 16:319-332. [PMID: 37807417 DOI: 10.2174/0125899775262048230925054922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/19/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVES To investigate critically traditional and modern techniques for cutaneous wound healing and to provide comprehensive information on these novel techniques to encounter the challenges with the existing wound healing methods. SIGNIFICANCE The financial burden and mortality associated with wounds is increasing, so managing wounds is essential. Traditional wound treatments include surgical and non-surgical methods, while modern techniques are advancing rapidly. This review examines the various traditional and modern techniques used for cutaneous wound healing. KEY FINDINGS Traditional wound treatments include surgical techniques such as debridement, skin flaps, and grafts. Non-surgical treatments include skin replacements, topical formulations, scaffold-based skin grafts, and hydrogel-based skin dressings. More modern techniques include using nanoparticles, growth factors, and bioactive substances in wound dressings. Bioengineered skin substitutes using biomaterials, cells, and growth factors are also being developed. Other techniques include stem cell therapy, growth factor/cytokine therapy, vacuum-assisted wound closure, and 3D-printed/bio-printed wound dressings. CONCLUSION Traditional wound treatments have been replaced by modern techniques such as stem cell therapy, growth factor/cytokine therapy, vacuum-assisted wound closure, and bioengineered skin substitutes. However, most of these strategies lack effectiveness and thorough evaluation. Therefore, further research is required to develop new techniques for cutaneous wound healing that are effective, cost-efficient, and appealing to patients.
Collapse
Affiliation(s)
- Qazi Saifullah
- Department of Pharmacy, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Abhishek Sharma
- Department of Pharmacy, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Punjab, 140413, India
| |
Collapse
|
18
|
Antezana PE, Municoy S, Ostapchuk G, Catalano PN, Hardy JG, Evelson PA, Orive G, Desimone MF. 4D Printing: The Development of Responsive Materials Using 3D-Printing Technology. Pharmaceutics 2023; 15:2743. [PMID: 38140084 PMCID: PMC10747900 DOI: 10.3390/pharmaceutics15122743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Additive manufacturing, widely known as 3D printing, has revolutionized the production of biomaterials. While conventional 3D-printed structures are perceived as static, 4D printing introduces the ability to fabricate materials capable of self-transforming their configuration or function over time in response to external stimuli such as temperature, light, or electric field. This transformative technology has garnered significant attention in the field of biomedical engineering due to its potential to address limitations associated with traditional therapies. Here, we delve into an in-depth review of 4D-printing systems, exploring their diverse biomedical applications and meticulously evaluating their advantages and disadvantages. We emphasize the novelty of this review paper by highlighting the latest advancements and emerging trends in 4D-printing technology, particularly in the context of biomedical applications.
Collapse
Affiliation(s)
- Pablo Edmundo Antezana
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3, Buenos Aires 1113, Argentina; (P.E.A.); (S.M.)
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires 1428, Argentina;
| | - Sofia Municoy
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3, Buenos Aires 1113, Argentina; (P.E.A.); (S.M.)
| | - Gabriel Ostapchuk
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Nodo Constituyentes, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina; (G.O.); (P.N.C.)
- Departamento de Micro y Nanotecnología, Gerencia de Desarrollo Tecnológico y Proyectos Especiales, Gerencia de Área de Investigación, Desarrollo e Innovación, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina
| | - Paolo Nicolás Catalano
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Nodo Constituyentes, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina; (G.O.); (P.N.C.)
- Departamento de Micro y Nanotecnología, Gerencia de Desarrollo Tecnológico y Proyectos Especiales, Gerencia de Área de Investigación, Desarrollo e Innovación, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química Analítica Instrumental, Junín 954, Buenos Aires 1113, Argentina
| | - John G. Hardy
- Materials Science Institute, Lancaster University, Lancaster LA1 4YB, UK;
- Department of Chemistry, Faraday Building, Lancaster University, Lancaster LA1 4YB, UK
| | - Pablo Andrés Evelson
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires 1428, Argentina;
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain;
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
| | - Martin Federico Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3, Buenos Aires 1113, Argentina; (P.E.A.); (S.M.)
| |
Collapse
|
19
|
Yayehrad AT, Siraj EA, Matsabisa M, Birhanu G. 3D printed drug loaded nanomaterials for wound healing applications. Regen Ther 2023; 24:361-376. [PMID: 37692197 PMCID: PMC10491785 DOI: 10.1016/j.reth.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/03/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023] Open
Abstract
Wounds are a stern healthcare concern in the growth of chronic disease conditions as they can increase healthcare costs and complicate internal and external health. Advancements in the current and newer management systems for wound healing should be in place to counter the health burden of wounds. Researchers discovered that two-dimensional (2D) media lacks appropriate real-life detection of cellular matter as these have highly complicated and diverse structures, compositions, and interactions. Hence, innovation towards three-dimensional (3D) media is called to conquer the high-level assessment and characterization in vivo using new technologies. The application of modern wound dressings prepared from a degenerated natural tissue, biodegradable biopolymer, synthetic polymer, or a composite of these materials in wound healing is currently an area of innovation in tissue regeneration medicine. Moreover, the integration of 3D printing and nanomaterial science is a promising approach with the potential for individualized, flexible, and precise technology for wound care approaches. This review encompasses the outcomes of various investigations on recent advances in 3D-printed drug-loaded natural, synthetic, and composite nanomaterials for wound healing. The challenges associated with their fabrication, clinical application progress, and future perspectives are also addressed.
Collapse
Affiliation(s)
- Ashagrachew Tewabe Yayehrad
- Department of Pharmacy, School of Health Sciences, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia, PO Box: 79
| | - Ebrahim Abdella Siraj
- Department of Pharmacy, School of Health Sciences, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia, PO Box: 79
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia, PO Box: 1176
| | - Motlalepula Matsabisa
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Gebremariam Birhanu
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
20
|
Deptuła M, Zawrzykraj M, Sawicka J, Banach-Kopeć A, Tylingo R, Pikuła M. Application of 3D- printed hydrogels in wound healing and regenerative medicine. Biomed Pharmacother 2023; 167:115416. [PMID: 37683592 DOI: 10.1016/j.biopha.2023.115416] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Hydrogels are three-dimensional polymer networks with hydrophilic properties. The modifiable properties of hydrogels and the structure resembling living tissue allow their versatile application. Therefore, increasing attention is focused on the use of hydrogels as bioinks for three-dimensional (3D) printing in tissue engineering. Bioprinting involves the fabrication of complex structures from several types of materials, cells, and bioactive compounds. Stem cells (SC), such as mesenchymal stromal cells (MSCs) are frequently employed in 3D constructs. SCs have desirable biological properties such as the ability to differentiate into various types of tissue and high proliferative capacity. Encapsulating SCs in 3D hydrogel constructs enhances their reparative abilities and improves the likelihood of reaching target tissues. In addition, created constructs can simulate the tissue environment and mimic biological signals. Importantly, the immunogenicity of scaffolds is minimized through the use of patient-specific cells and the biocompatibility and biodegradability of the employed biopolymers. Regenerative medicine is taking advantage of the aforementioned capabilities in regenerating various tissues- muscle, bones, nerves, heart, skin, and cartilage.
Collapse
Affiliation(s)
- Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Medical University of Gdansk, Poland.
| | | | - Justyna Sawicka
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Poland
| | - Adrianna Banach-Kopeć
- Department of Chemistry, Technology and Biochemistry of Food, Faculty of Chemistry, Gdansk University of Technology, Poland
| | - Robert Tylingo
- Department of Chemistry, Technology and Biochemistry of Food, Faculty of Chemistry, Gdansk University of Technology, Poland
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Medical University of Gdansk, Poland
| |
Collapse
|
21
|
Al Mamun A, Ullah A, Chowdhury MEH, Marei HE, Madappura AP, Hassan M, Rizwan M, Gomes VG, Amirfazli A, Hasan A. Oxygen releasing patches based on carbohydrate polymer and protein hydrogels for diabetic wound healing: A review. Int J Biol Macromol 2023; 250:126174. [PMID: 37558025 DOI: 10.1016/j.ijbiomac.2023.126174] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Diabetic wounds are among the major healthcare challenges, consuming billions of dollars of resources and resulting in high numbers of morbidity and mortality every year. Lack of sufficient oxygen supply is one of the most dominant causes of impaired healing in diabetic wounds. Numerous clinical and experimental studies have demonstrated positive outcomes as a result of delivering oxygen at the diabetic wound site, including enhanced angiogenesis, antibacterial and cell proliferation activities. However, prolonged and sustained delivery of oxygen to improve the wound healing process has remained a major challenge due to rapid release of oxygen from oxygen sources and limited penetration of oxygen into deep skin tissues. Hydrogels made from sugar-based polymers such as chitosan and hyaluronic acid, and proteins such as gelatin, collagen and hemoglobin have been widely used to deliver oxygen in a sustained delivery mode. This review presents an overview of the recent advances in oxygen releasing hydrogel based patches as a therapeutic modality to enhance diabetic wound healing. Various types of oxygen releasing wound healing patch have been discussed along with their fabrication method, release profile, cytocompatibility and in vivo results. We also briefly discuss the challenges and prospects related to the application of oxygen releasing biomaterials as wound healing therapeutics.
Collapse
Affiliation(s)
- Abdulla Al Mamun
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, Doha, Qatar
| | - Asad Ullah
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, Doha, Qatar
| | | | - Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Alakananda Parassini Madappura
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, Doha, Qatar
| | - Mahbub Hassan
- School of Chemical & Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| | | | - Vincent G Gomes
- School of Chemical & Biomolecular Engineering, The University of Sydney, NSW 2006, Australia; Sydney Nano Institute, Sydney, NSW 2006, Australia
| | - Alidad Amirfazli
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, Doha, Qatar.
| |
Collapse
|
22
|
Wang Z, Liang X, Wang G, Wang X, Chen Y. Emerging Bioprinting for Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2304738. [PMID: 37566537 DOI: 10.1002/adma.202304738] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Bioprinting has attracted much attention due to its suitability for fabricating biomedical devices. In particular, bioprinting has become one of the growing centers in the field of wound healing, with various types of bioprinted devices being developed, including 3D scaffolds, microneedle patches, and flexible electronics. Bioprinted devices can be designed with specific biostructures and biofunctions that closely match the shape of wound sites and accelerate the regeneration of skin through various approaches. Herein, a comprehensive review of the bioprinting of smart wound dressings is presented, emphasizing the crucial effect of bioprinting in determining biostructures and biofunctions. The review begins with an overview of bioprinting techniques and bioprinted devices, followed with an in-depth discussion of polymer-based inks, modification strategies, additive ingredients, properties, and applications. The strategies for the modification of bioprinted devices are divided into seven categories, including chemical synthesis of novel inks, physical blending, coaxial bioprinting, multimaterial bioprinting, physical absorption, chemical immobilization, and hybridization with living cells, and examples are presented. Thereafter, the frontiers of bioprinting and wound healing, including 4D bioprinting, artificial intelligence-assisted bioprinting, and in situ bioprinting, are discussed from a perspective of interdisciplinary sciences. Finally, the current challenges and future prospects in this field are highlighted.
Collapse
Affiliation(s)
- Zijian Wang
- Department of Biomedical Engineering, Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
- Department of Urology, Hubei Province Key Laboratory of Urinary System Diseases, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiao Liang
- Department of Biomedical Engineering, Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Guanyi Wang
- Department of Urology, Hubei Province Key Laboratory of Urinary System Diseases, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xinghuan Wang
- Department of Urology, Hubei Province Key Laboratory of Urinary System Diseases, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yun Chen
- Department of Biomedical Engineering, Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| |
Collapse
|
23
|
SARIAN MN, ZULKEFLI N, CHE ZAIN MS, MANIAM S, FAKURAZI S. A review with updated perspectives on in vitro and in vivo wound healing models. Turk J Biol 2023; 47:236-246. [PMID: 38152620 PMCID: PMC10751087 DOI: 10.55730/1300-0152.2659] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/31/2023] [Accepted: 08/10/2023] [Indexed: 12/29/2023] Open
Abstract
A skin wound or perforation triggers a series of homeostatic reactions to safeguard internal organs from invasion by pathogens or other substances that could damage body tissues. An injury may occasionally heal quickly, leading to the closure of the skin's structure. Healing from chronic wounds takes a long time. Although many treatment options are available to manage wound healing, an unmet therapy need remains because of the complexity of the processes and the other factors involved. It is crucial to conduct consistent research on novel therapeutic approaches to find an effective healing agent. Therefore, this work aims to cover various in vitro and in vivo methodologies that could be utilised to examine wound recovery. Before deciding on the optimal course of action, several techniques' benefits, drawbacks, and factors need to be reviewed.
Collapse
Affiliation(s)
- Murni Nazira SARIAN
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (National University of Malaysia), 43600, Bandar Baru Bangi, Selangor,
Malaysia
| | - Nabilah ZULKEFLI
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (National University of Malaysia), 43600, Bandar Baru Bangi, Selangor,
Malaysia
| | - Mohamad Shazeli CHE ZAIN
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia (Science University of Malaysia), 11800, Pulau Pinang,
Malaysia
| | - Sandra MANIAM
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (University of Putra Malaysia), Serdang 43400, Selangor,
Malaysia
| | - Sharida FAKURAZI
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (University of Putra Malaysia), Serdang 43400, Selangor,
Malaysia
| |
Collapse
|
24
|
S H, Unni VV, Gayathri, B N, Chandran S, Sambhudevan S. Bio-based polymers containing traditional medicinal fillers for wound healing applications - An evaluation of neoteric development and future perspectives. Biotechnol J 2023; 18:e2300006. [PMID: 37170732 DOI: 10.1002/biot.202300006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
In recent years, health-care providers have seen more patients with difficult-to-treat wounds and burns. The biopolymer-based wound dressing protects the wounded area while assisting in the recovery of dermal and epithelial tissues throughout the healing process. The overall number of patients with chronic lesions has been expanding due to developing society, over weight, and cardiovascular illness. For the treatment of chronic wounds, there is an increasing demand for the development of ideal wound dressing materials with excellent properties such as antibacterial activity, biocompatibility, free radical scavenging capacity, non-adherent property, hydrophilicity, and so on. Nevertheless, owing to the above mention properties, natural polymers are being used for several key functions of biomedicine like narcotic distribution systems, tissue manufacturing, bandages, and so on. Accordingly, the significance of these bio-based polymers interfered with healing functions that lead to informing and inspiring youth and scientist researchers worldwide to grab with these far-reaching areas of medicine and biology. The review highlights the physiochemical properties of natural polymers, the biological evaluation of various materials as wound dressings, their synthesis and mechanical properties, clinical status, challenges, and future perspectives.
Collapse
Affiliation(s)
- Hema S
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | - Vaani V Unni
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | - Gayathri
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | - Niranjan B
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | - Smitha Chandran
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | - Sreedha Sambhudevan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| |
Collapse
|
25
|
Abdelhamid HN, Sultan S, Mathew AP. 3D printing of cellulose/leaf-like zeolitic imidazolate frameworks (CelloZIF-L) for adsorption of carbon dioxide (CO 2) and heavy metal ions. Dalton Trans 2023; 52:2988-2998. [PMID: 36779352 DOI: 10.1039/d2dt04168e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Metal-organic frameworks (MOFs) have advanced several technologies. However, it is difficult to market MOFs without processing them into a commercialized structure, causing an unnecessary delay in the material's use. Herein, three-dimensional (3D) printing of cellulose/leaf-like zeolitic imidazolate frameworks (ZIF-L), denoted as CelloZIF-L, is reported via direct ink writing (DIW, robocasting). Formulating CelloZIF-L into 3D objects can dramatically affect the material's properties and, consequently, its adsorption efficiency. The 3D printing process of CelloZIF-L is simple and can be applied via direct printing into a solution of calcium chloride. The synthesis procedure enables the formation of CelloZIF-L with a ZIF content of 84%. 3D printing enables the integration of macroscopic assembly with microscopic properties, i.e., the formation of the hierarchical structure of CelloZIF-L with different shapes, such as cubes and filaments, with 84% loading of ZIF-L. The materials adsorb carbon dioxide (CO2) and heavy metals. 3D CelloZIF-L exhibited a CO2 adsorption capacity of 0.64-1.15 mmol g-1 at 1 bar (0 °C). The materials showed Cu2+ adsorption capacities of 389.8 ± 14-554.8 ± 15 mg g-1. They displayed selectivities of 86.8%, 6.7%, 2.4%, 0.93%, 0.61%, and 0.19% toward Fe3+, Al3+, Co2+, Cu2+, Na+, and Ca2+, respectively. The simple 3D printing procedure and the high adsorption efficiencies reveal the promising potential of our materials for industrial applications.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Division of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, Stockholm, SE-10691, Sweden. .,Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71515, Egypt.,Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), El-Shorouk City, Suez Desert Road, P.O. Box 43, Cairo 11837, Egypt
| | - Sahar Sultan
- Division of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, Stockholm, SE-10691, Sweden.
| | - Aji P Mathew
- Division of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, Stockholm, SE-10691, Sweden.
| |
Collapse
|
26
|
Uchida DT, Bruschi ML. 3D Printing as a Technological Strategy for the Personalized Treatment of Wound Healing. AAPS PharmSciTech 2023; 24:41. [PMID: 36698047 PMCID: PMC9876655 DOI: 10.1208/s12249-023-02503-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Wound healing is a dynamic process which involves stages of hemostasis, inflammation, proliferation and remodeling. Any error in this process results in abnormal wound healing, generating financial burdens for health systems and even affecting the physical and mental health of the patient. Traditional dressings do not meet the complexities of ideal treatment in all types of wounds. For this reason, in the last decades, different materials for drug delivery and for the treatment of wounds have been proposed reaching novel level of standards, such as 3D printing techniques. The use of natural or synthetic polymers, and the correct design of these printed products loaded with cells and/or combined with active compounds, can generate an effective system for the treatment of wounds, improving the healing process and generating customized dressings according to the patient needs. This manuscript provides a comprehensive review of different types of 3D printing techniques, as well as its use in wound healing and its different stages, including the advantages and limitations of additive manufacturing and future perspectives.
Collapse
Affiliation(s)
- Denise Tiemi Uchida
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Avenida Colombo, n. 5790, K68, S05, 87020-900, Maringa, PR, Brazil
| | - Marcos Luciano Bruschi
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Avenida Colombo, n. 5790, K68, S05, 87020-900, Maringa, PR, Brazil.
| |
Collapse
|
27
|
Rigogliuso S, Campora S, Notarbartolo M, Ghersi G. Recovery of Bioactive Compounds from Marine Organisms: Focus on the Future Perspectives for Pharmacological, Biomedical and Regenerative Medicine Applications of Marine Collagen. Molecules 2023; 28:molecules28031152. [PMID: 36770818 PMCID: PMC9920902 DOI: 10.3390/molecules28031152] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Marine environments cover more than 70% of the Earth's surface and are among the richest and most complex ecosystems. In terms of biodiversity, the ocean represents an important source, still not widely exploited, of bioactive products derived from species of bacteria, plants, and animals. However, global warming, in combination with multiple anthropogenic practices, represents a serious environmental problem that has led to an increase in gelatinous zooplankton, a phenomenon referred to as jellyfish bloom. In recent years, the idea of "sustainable development" has emerged as one of the essential elements of green-economy initiatives; therefore, the marine environment has been re-evaluated and considered an important biological resource. Several bioactive compounds of marine origin are being studied, and among these, marine collagen represents one of the most attractive bio-resources, given its use in various disciplines, such as clinical applications, cosmetics, the food sector, and many other industrial applications. This review aims to provide a current overview of marine collagen applications in the pharmacological and biomedical fields, regenerative medicine, and cell therapy.
Collapse
Affiliation(s)
- Salvatrice Rigogliuso
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| | - Simona Campora
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
- Correspondence: (S.C.); (M.N.); Tel.: +39-091-238-62813 (S.C.); +39-091-238-97426 (M.N.)
| | - Monica Notarbartolo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
- Correspondence: (S.C.); (M.N.); Tel.: +39-091-238-62813 (S.C.); +39-091-238-97426 (M.N.)
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
- Abiel s.r.l., c/o Department STEBICEF, University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| |
Collapse
|
28
|
Application of Hydrogels as Three-Dimensional Bioprinting Ink for Tissue Engineering. Gels 2023; 9:gels9020088. [PMID: 36826258 PMCID: PMC9956898 DOI: 10.3390/gels9020088] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
The use of three-dimensional bioprinting technology combined with the principle of tissue engineering is important for the construction of tissue or organ regeneration microenvironments. As a three-dimensional bioprinting ink, hydrogels need to be highly printable and provide a stiff and cell-friendly microenvironment. At present, hydrogels are used as bioprinting inks in tissue engineering. However, there is still a lack of summary of the latest 3D printing technology and the properties of hydrogel materials. In this paper, the materials commonly used as hydrogel bioinks; the advanced technologies including inkjet bioprinting, extrusion bioprinting, laser-assisted bioprinting, stereolithography bioprinting, suspension bioprinting, and digital 3D bioprinting technologies; printing characterization including printability and fidelity; biological properties, and the application fields of bioprinting hydrogels in bone tissue engineering, skin tissue engineering, cardiovascular tissue engineering are reviewed, and the current problems and future directions are prospected.
Collapse
|
29
|
Pectin-based inks development for 3D bioprinting of scaffolds. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03402-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Ke H, Yang H, Zhao Y, Li T, Xin D, Gai C, Jiang Z, Wang Z. 3D Gelatin Microsphere Scaffolds Promote Functional Recovery after Spinal Cord Hemisection in Rats. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204528. [PMID: 36453595 PMCID: PMC9875663 DOI: 10.1002/advs.202204528] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/22/2022] [Indexed: 05/24/2023]
Abstract
Spinal cord injury (SCI) damages signal connections and conductions, with the result that neuronal circuits are disrupted leading to neural dysfunctions. Such injuries represent a serious and relatively common central nervous system condition and current treatments have limited success in the reconstruction of nerve connections in injured areas, especially where sizeable gaps are present. Biomaterial scaffolds have become an effective alternative to nerve transplantation in filling these gaps and provide the foundation for simulating the 3D structure of solid organs. However, there remain some limitations with the application of 3D bioprinting for preparation of biomaterial scaffolds. Here, the approach in constructing and testing mini-tissue building blocks and self-assembly, solid 3D gelatin microsphere (GM) scaffolds with multiple voids as based on the convenient preparation of gelatin microspheres by microfluidic devices is described. These 3D GM scaffolds demonstrate suitable biocompatibility, biodegradation, porosity, low preparation costs, and relative ease of production. Moreover, 3D GM scaffolds can effectively bridge injury gaps, establish nerve connections and signal transductions, mitigate inflammatory microenvironments, and reduce glial scar formation. Accordingly, these 3D GM scaffolds can serve as a novel and effective bridging method to promote nerve regeneration and reconstruction and thus recovery of nerve function after SCI.
Collapse
Affiliation(s)
- Hongfei Ke
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012P. R. China
| | - Hongru Yang
- State Key Laboratory of Crystal MaterialsShandong University27 Shanda NanluJinanShandong250100P. R. China
| | - Yijing Zhao
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012P. R. China
| | - Tingting Li
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012P. R. China
| | - Danqing Xin
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012P. R. China
| | - Chengcheng Gai
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012P. R. China
| | - Zige Jiang
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012P. R. China
| | - Zhen Wang
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012P. R. China
| |
Collapse
|
31
|
Municoy S, Antezana PE, Bellino MG, Desimone MF. Development of 3D-Printed Collagen Scaffolds with In-Situ Synthesis of Silver Nanoparticles. Antibiotics (Basel) 2022; 12:antibiotics12010016. [PMID: 36671217 PMCID: PMC9855044 DOI: 10.3390/antibiotics12010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
UV-irradiation method has grown as an alternative approach to in situ synthetize silver nanoparticles (AgNPs) for avoiding the use of toxic reducing agents. In this work, an antimicrobial material by in situ synthesizing AgNPs within 3D-printed collagen-based scaffolds (Col-Ag) was developed. By modifying the concentration of AgNO3 (0.05 and 0.1 M) and UV irradiation time (2 h, 4 h, and 6 h), the morphology and size of the in situ prepared AgNPs could be controlled. As a result, star-like silver particles of around 23 ± 4 μm and spherical AgNPs of 220 ± 42 nm were obtained for Ag 0.05 M, while for Ag 0.1 M cubic particles from 0.3 to 1.0 μm and round silver precipitates of 3.0 ± 0.4 μm were formed in the surface of the scaffolds at different UV irradiation times. However, inside the material AgNPs of 10-28 nm were obtained. The DSC thermal analysis showed that a higher concentration of Ag stabilizes the 3D-printed collagen-based scaffolds, while a longer UV irradiation interval produces a decrease in the denaturation temperature of collagen. The enzymatic degradation assay also revealed that the in situ formed AgNPs act as stabilizing and reinforcement agent which also improve the swelling capacity of collagen-based material. Finally, antimicrobial activity of Col-Ag was studied, showing high bactericidal efficiency against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. These results showed that the UV irradiation method was really attractive to modulate the size and shape of in situ synthesized AgNPs to develop antimicrobial 3D-printed collagen scaffolds with different thermal, swelling and degradation properties.
Collapse
Affiliation(s)
- Sofia Municoy
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
| | - Pablo Edmundo Antezana
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
| | - Martín Gonzalo Bellino
- Instituto de Nanociencia y Nanotecnología, Comisión Nacional de Energía Atómica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín 1650, Argentina
| | - Martín Federico Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
- Correspondence:
| |
Collapse
|
32
|
Dell AC, Wagner G, Own J, Geibel JP. 3D Bioprinting Using Hydrogels: Cell Inks and Tissue Engineering Applications. Pharmaceutics 2022; 14:2596. [PMID: 36559090 PMCID: PMC9784738 DOI: 10.3390/pharmaceutics14122596] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
3D bioprinting is transforming tissue engineering in medicine by providing novel methods that are precise and highly customizable to create biological tissues. The selection of a "cell ink", a printable formulation, is an integral part of adapting 3D bioprinting processes to allow for process optimization and customization related to the target tissue. Bioprinting hydrogels allows for tailorable material, physical, chemical, and biological properties of the cell ink and is suited for biomedical applications. Hydrogel-based cell ink formulations are a promising option for the variety of techniques with which bioprinting can be achieved. In this review, we will examine some of the current hydrogel-based cell inks used in bioprinting, as well as their use in current and proposed future bioprinting methods. We will highlight some of the biological applications and discuss the development of new hydrogels and methods that can incorporate the completed print into the tissue or organ of interest.
Collapse
Affiliation(s)
- Annika C. Dell
- The John B. Pierce Laboratory, Inc., New Haven, CT 06519, USA
- Fraunhofer IMTE, Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, 23562 Lübeck, Germany
| | | | - Jason Own
- Yale University, New Haven, CT 06520, USA
| | - John P. Geibel
- The John B. Pierce Laboratory, Inc., New Haven, CT 06519, USA
- Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
33
|
Antezana PE, Municoy S, Orive G, Desimone MF. Design of a New 3D Gelatin-Alginate Scaffold Loaded with Cannabis sativa Oil. Polymers (Basel) 2022; 14:4506. [PMID: 36365500 PMCID: PMC9658303 DOI: 10.3390/polym14214506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 09/20/2023] Open
Abstract
There is an increasing medical need for the development of new materials that could replace damaged organs, improve healing of critical wounds or provide the environment required for the formation of a new healthy tissue. The three-dimensional (3D) printing approach has emerged to overcome several of the major deficiencies of tissue engineering. The use of Cannabis sativa as a therapy for some diseases has spread throughout the world thanks to its benefits for patients. In this work, we developed a bioink made with gelatin and alginate that was able to be printed using an extrusion 3D bioprinter. The scaffolds obtained were lyophilized, characterized and the swelling was assessed. In addition, the scaffolds were loaded with Cannabis sativa oil extract. The presence of the extract provided antimicrobial and antioxidant activity to the 3D scaffolds. Altogether, our results suggest that the new biocompatible material printed with 3D technology and with the addition of Cannabis sativa oil could become an attractive alternative to common treatments of soft-tissue infections and wound repair.
Collapse
Affiliation(s)
- Pablo Edmundo Antezana
- Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Sofía Municoy
- Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Martín Federico Desimone
- Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
| |
Collapse
|
34
|
Wang X, Ma Y, Niu X, Su T, Huang X, Lu F, Chang Q. Direct three-dimensional printed egg white hydrogel wound dressing promotes wound healing with hitching adipose stem cells. Front Bioeng Biotechnol 2022; 10:930551. [PMID: 36072289 PMCID: PMC9441893 DOI: 10.3389/fbioe.2022.930551] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Current wound dressing based on hydrogel offers a promising way to accelerate the healing process, yet great challenges remain in the development of a highly integrated and efficient platform with the combination of therapeutic biomolecules and stem cells. Herein, a natural hydrogel wound dressing from egg white can be conveniently obtained by feasible physical crosslinking, the prepared hydrogel dressing features interconnected microporous channels, direct 3D printing, cytocompatibility, and intrinsic biomolecules to advance cell behavior. The 3D printed egg white hydrogels promote the adhesion and proliferation of adipose-derived stem cells (ASCs) without obvious cytotoxicity. In addition, this integrated hydrogel platform accompanied with adipose-derived stem cells accelerates wound healing through the enhancement of fibroblast proliferation, angiogenesis, and collagen rearrangement in the wound bed. The egg white hydrogel provides an effective wound caring product possessing low cost, easy availability along with ready manufacturing, and advanced therapeutic effect, which may be extended for the management of chronic or other complicated wounds.
Collapse
Affiliation(s)
| | | | | | | | | | - Feng Lu
- *Correspondence: Feng Lu, ; Qiang Chang,
| | | |
Collapse
|
35
|
Ibrahim R, Mndlovu H, Kumar P, Adeyemi SA, Choonara YE. Cell Secretome Strategies for Controlled Drug Delivery and Wound-Healing Applications. Polymers (Basel) 2022; 14:2929. [PMID: 35890705 PMCID: PMC9324118 DOI: 10.3390/polym14142929] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/10/2022] Open
Abstract
There is significant interest in using stem cells in the management of cutaneous wounds. However, potential safety, efficacy, and cost problems associated with whole-cell transplantation hinder their clinical application. Secretome, a collective of mesenchymal stem-cell-stored paracrine factors, and immunomodulatory cytokines offer therapeutic potential as a cell-free therapy for the treatment of cutaneous wounds. This review explores the possibility of secretome as a treatment for cutaneous wounds and tissue regeneration. The review mainly focuses on in vitro and in vivo investigations that use biomaterials and secretome together to treat wounds, extend secretome retention, and control release to preserve their biological function. The approaches employed for the fabrication of biomaterials with condition media or extracellular vesicles are discussed to identify their future clinical application in wound treatment.
Collapse
Affiliation(s)
| | | | | | | | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (R.I.); (H.M.); (P.K.); (S.A.A.)
| |
Collapse
|
36
|
Barczewski BF, Junqueira LDA, Raposo FJ, Brandão MAF, Raposo NRB. Aplicações da manufatura aditiva em oftalmologia. REVISTA BRASILEIRA DE OFTALMOLOGIA 2022. [DOI: 10.37039/1982.8551.20220052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
Optical Behavior of Human Skin Substitutes: Absorbance in the 200-400 nm UV Range. Biomedicines 2022; 10:biomedicines10071640. [PMID: 35884945 PMCID: PMC9313464 DOI: 10.3390/biomedicines10071640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022] Open
Abstract
The most recent generation of bioengineered human skin allows for the efficient treatment of patients with severe skin defects. Despite UV sunlight can seriously affect human skin, the optical behavior in the UV range of skin models is still unexplored. In the present study, absorbance and transmittance of the UGRSKIN bioartificial skin substitute generated with human skin cells combined with fibrin-agarose biomaterials were evaluated for: UV-C (200−280 nm), -B (280−315 nm), and -A (315−400 nm) spectral range after 7, 14, 21 and 28 days of ex vivo development. The epidermis of the bioartificial skin substitute was able to mature and differentiate in a time-dependent manner, expressing relevant molecules able to absorb most of the incoming UV radiation. Absorbance spectral behavior of the skin substitutes showed similar patterns to control native skin (VAF > 99.4%), with values 0.85−0.90 times lower than control values at 7 and 14- days and 1.05−1.10 times the control values at 21- and 28-days. UV absorbance increased, and UV transmission decreased with culture time, and comparable results to the control were found at 21 and 28 days. These findings support the use of samples corresponding to 21 or 28 days of development for clinical purposes due to their higher histological similarities with native skin, but also because of their absorbance of UV radiation.
Collapse
|
38
|
Lahmar A, Rjab M, Sioud F, Selmi M, Salek A, Kilani-Jaziri S, Chekir Ghedira L. Design of 3D Hybrid Plant Extract/Marine and Bovine Collagen Matrixes as Potential Dermal Scaffolds for Skin Wound Healing. ScientificWorldJournal 2022; 2022:8788061. [PMID: 35812001 PMCID: PMC9262554 DOI: 10.1155/2022/8788061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Tissue engineering involves the use of smart biomimetic hybrid matrices to reinforce the cellular interaction with the matrix and restore native properties after regeneration. In this study, we highlight the potential of 3D collagen sponges soaked with bioactive extract, to enhance the wound healing process in vivo. Acid-soluble collagen from two sources, marine and bovine, were extracted and characterized physiochemically using Fourier transform infrared spectroscopy (FTIR) and SDS-PAGE. Our results confirmed that the extracted collagens were mainly composed of collagen type I with slight molecular structure differences. Both collagens present two different α chains (α1 and α2) and one β chain. Highly interconnected 3D scaffolds from collagen from the skin are designed and added by the widely known healing plants Pistacia lentiscus and Calendula officinalis. The resulting 3D collagen matrices possess fine biocompatibility with skin cells, Hacat (keratinocytes), and 3T3-L1 (fibroblasts) cells. To evaluate the potential wound healing effect, a collagen sponge soaked with the bioactive extract was tested on BALB/c mice. Our findings confirmed that sponges significantly improve animal re-epithelialization by increasing wound closure. Consequently, spongy collagen scaffolds loaded with Pistacia lentiscus and Calendula officinalis could be used as potential wound dressing material.
Collapse
Affiliation(s)
- Aida Lahmar
- Research Unit for Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne Street, Monastir 5000, Tunisia
| | - Maroua Rjab
- Research Unit for Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne Street, Monastir 5000, Tunisia
| | - Fairouz Sioud
- Research Unit for Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne Street, Monastir 5000, Tunisia
| | - Mouna Selmi
- Research Unit for Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne Street, Monastir 5000, Tunisia
| | - Abir Salek
- Research Unit for Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne Street, Monastir 5000, Tunisia
| | - Soumaya Kilani-Jaziri
- Research Unit for Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne Street, Monastir 5000, Tunisia
- Department of Pharmaceutical Sciences A, Faculty of Pharmacy of Monastir, University of Monastir, Avicenne Street, Monastir 5019, Tunisia
| | - Leila Chekir Ghedira
- Research Unit for Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne Street, Monastir 5000, Tunisia
| |
Collapse
|
39
|
Kamolz LP, Kotzbeck P, Schintler M, Spendel S. Skin regeneration, repair, and reconstruction: present and future. Eur Surg 2022. [DOI: 10.1007/s10353-022-00757-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Summary
Background
Large skin defects caused by trauma (e.g., burns) or due to other reasons (e.g., tumor-related skin resections) require sufficient skin replacement. The constant improvement of innovative methods of skin replacement and skin expansion mean that even burn victims with more than 80% body surface burned have a realistic chance of survival. Due to these new developments, not only has survival rate increased, but also quality of life has increased tremendously over the past decades.
Methods
The aim of this review is to present an overview of current standards and future trends concerning the treatment of skin defects. The main focus is placed on the most important technologies and future trends.
Results
Autologous skin grafting was developed more than 3500 years ago. Several approaches and techniques have been discovered and established in burn care and plastic surgery since then. Great achievements were made during the 19th and 20th centuries. Many of these old and new techniques are still part of modern burn and plastic surgery. Today, autologous skin grafting is still considered to be the gold standard for many wounds, but new technologies have been developed, ranging from biological to synthetic skin replacement materials.
Conclusion
Today, old and new technologies are available which allow us new treatment concepts. All this has led to the reconstructive clockwork for reconstructive surgery of the 21st century.
Collapse
|