1
|
Tao J, Gu Y, Zhou W, Wang Y. Dual-payload antibody-drug conjugates: Taking a dual shot. Eur J Med Chem 2025; 281:116995. [PMID: 39481229 DOI: 10.1016/j.ejmech.2024.116995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
Antibody-drug conjugates (ADCs) enable the precise delivery of cytotoxic agents by conjugating small-molecule drugs with monoclonal antibodies (mAbs). Over recent decades, ADCs have demonstrated substantial clinical efficacy. However, conventional ADCs often encounter various clinical challenges, including suboptimal efficacy, significant adverse effects, and the development of drug resistance, limiting their broader clinical application. Encouragingly, a next-generation approach-dual-payload ADCs-has emerged as a pioneering strategy to address these challenges. Dual-payload ADCs are characterized by the incorporation of two distinct therapeutic payloads on the same antibody, enhancing treatment efficacy by promoting synergistic effects and reducing the risk of drug resistance. However, the synthesis of dual-payload ADCs is complex due to the presence of multiple functional groups on antibodies. In this review, we comprehensively summarize the construction strategies for dual-payload ADCs, ranging from the design of ADC components to orthogonal chemistry. The subsequent sections explore current challenges and propose prospective strategies, highlighting recent advancements in dual-payload ADC research, thereby laying the foundation for the development of next-generation ADCs.
Collapse
Affiliation(s)
- Junjie Tao
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Gu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Zhou
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China.
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
2
|
Mukherjee A, Bandyopadhyay D. Targeted Therapy in Breast Cancer: Advantages and Advancements of Antibody-Drug Conjugates, a Type of Chemo-Biologic Hybrid Drugs. Cancers (Basel) 2024; 16:3517. [PMID: 39456611 PMCID: PMC11505910 DOI: 10.3390/cancers16203517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Cancer is a significant health challenge globally, with millions of people affected every year, resulting in high morbidity and mortality. Although other treatment options are available with limitations, chemotherapy, either standalone or combined with other therapeutic procedures, is the most commonly used practice of treating cancer. In chemotherapy, cancer cells/malignant tumors are targeted; however, due to less target specificity, along with malignant cells, normal cells are also affected, which leads to various off-target effects (side effects) that impact the patient quality of life. Out of all the different types of cancers, breast cancer is the most common type of cancer in humans worldwide. Current anticancer drug discovery research aims to develop therapeutics with higher potency and lower toxicity, which is only possible through target-specific therapy. Antibody-drug conjugates (ADCs) are explicitly designed to target malignant tumors and minimize off-target effects by reducing systemic cytotoxicity. Several ADCs have been approved for clinical use and have shown moderate to good efficacy so far. Considering various aspects, chemotherapy and ADCs are useful in treating cancer. However, ADCs provide a more focused and less toxic approach, which is especially helpful in cases where resistance to chemotherapy (drug resistance) occurs and in the type of malignancies in which specific antigens are overexpressed. Ongoing ADC research aims to develop more target-specific cancer treatments. In short, this study presents a concise overview of ADCs specific to breast cancer treatment. This study provides insight into the classifications, mechanisms of action, structural aspects, and clinical trial phases (current status) of these chemo-biologic drugs (ADCs).
Collapse
Affiliation(s)
- Attrayo Mukherjee
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Patia, Bhubaneswar 751024, Odisha, India;
| | - Debasish Bandyopadhyay
- School of Integrative Biological and Chemical Sciences (SIBCS), University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- School of Earth, Environmental, and Marine Sciences (SEEMS), University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| |
Collapse
|
3
|
Glaviano A, Wander SA, Baird RD, Yap KCH, Lam HY, Toi M, Carbone D, Geoerger B, Serra V, Jones RH, Ngeow J, Toska E, Stebbing J, Crasta K, Finn RS, Diana P, Vuina K, de Bruin RAM, Surana U, Bardia A, Kumar AP. Mechanisms of sensitivity and resistance to CDK4/CDK6 inhibitors in hormone receptor-positive breast cancer treatment. Drug Resist Updat 2024; 76:101103. [PMID: 38943828 DOI: 10.1016/j.drup.2024.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024]
Abstract
Cell cycle dysregulation is a hallmark of cancer that promotes eccessive cell division. Cyclin-dependent kinase 4 (CDK4) and cyclin-dependent kinase 6 (CDK6) are key molecules in the G1-to-S phase cell cycle transition and are crucial for the onset, survival, and progression of breast cancer (BC). Small-molecule CDK4/CDK6 inhibitors (CDK4/6i) block phosphorylation of tumor suppressor Rb and thus restrain susceptible BC cells in G1 phase. Three CDK4/6i are approved for the first-line treatment of patients with advanced/metastatic hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) BC in combination with endocrine therapy (ET). Though this has improved the clinical outcomes for survival of BC patients, there is no established standard next-line treatment to tackle drug resistance. Recent studies suggest that CDK4/6i can modulate other distinct effects in both BC and breast stromal compartments, which may provide new insights into aspects of their clinical activity. This review describes the biochemistry of the CDK4/6-Rb-E2F pathway in HR+ BC, then discusses how CDK4/6i can trigger other effects in BC/breast stromal compartments, and finally outlines the mechanisms of CDK4/6i resistance that have emerged in recent preclinical studies and clinical cohorts, emphasizing the impact of these findings on novel therapeutic opportunities in BC.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90123, Italy
| | - Seth A Wander
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Richard D Baird
- Cancer Research UK Cambridge Centre, Hills Road, Cambridge CB2 0QQ, UK
| | - Kenneth C-H Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Masakazu Toi
- School of Medicine, Kyoto University, Kyoto, Japan
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90123, Italy
| | - Birgit Geoerger
- Gustave Roussy Cancer Center, Department of Pediatric and Adolescent Oncology, Inserm U1015, Université Paris-Saclay, Villejuif, France
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Robert H Jones
- Cardiff University and Velindre Cancer Centre, Museum Avenue, Cardiff CF10 3AX, UK
| | - Joanne Ngeow
- Lee Kong Chian School of Medicine (LKCMedicine), Nanyang Technological University, Experimental Medicine Building, 636921, Singapore; Cancer Genetics Service (CGS), National Cancer Centre Singapore, 168583, Singapore
| | - Eneda Toska
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Justin Stebbing
- School of Life Sciences, Anglia Ruskin University, Cambridge, UK; Division of Cancer, Imperial College London, Hammersmith Campus, London, UK
| | - Karen Crasta
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore; Healthy Longetivity Translational Program, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
| | - Richard S Finn
- Department of Oncology, Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90123, Italy
| | - Karla Vuina
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Robertus A M de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Uttam Surana
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; SiNOPSEE Therapeutics Pte Ltd, A⁎STARTCentral, 139955, Singapore
| | - Aditya Bardia
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore.
| |
Collapse
|
4
|
Tang Q, Li H, Zhao XT, Li ZY, Ma CX, Zhou SQ, Chen DD. Opportunities and Challenges in the Development of Antibody-Drug Conjugate for Triple-Negative Breast Cancer: The Diverse Choices and Changing Needs. World J Oncol 2024; 15:527-542. [PMID: 38993251 PMCID: PMC11236369 DOI: 10.14740/wjon1853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/11/2024] [Indexed: 07/13/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous breast cancer subtype, which is also characterized by the aggressive phenotype, high recurrence rate, and poor prognosis. Antibody-drug conjugate (ADC) is a monoclonal antibody with a cytotoxic payload connected by a linker. ADC is gaining more and more attention as a targeted anti-cancer agent. Clinical studies of emerging ADC drugs such as sacituzumab govitecan and trastuzumab deruxtecan in patients with metastatic breast cancer (including TNBC) are progressing rapidly. In view of its excellent clinical efficacy and good tolerability, Sacituzumab govitecan gained accelerated approval by the FDA for the treatment of advanced metastatic TNBC in 2020. This review discusses the treatment status and challenges in TNBC, with an emphasis on the current status of ADC development and clinical trials in TNBC and metastatic breast cancer. We also summarize the clinical experience and future exploration directions of ADC development for TNBC patients.
Collapse
Affiliation(s)
- Qi Tang
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
- These authors contributed equally to this article
| | - Hui Li
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
- These authors contributed equally to this article
| | - Xin Tong Zhao
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
- These authors contributed equally to this article
| | - Ze Ying Li
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
| | - Chun Xiao Ma
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
| | - Shao Qiang Zhou
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
| | - De Dian Chen
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
| |
Collapse
|
5
|
Jiang M, Li Q, Xu B. Spotlight on ideal target antigens and resistance in antibody-drug conjugates: Strategies for competitive advancement. Drug Resist Updat 2024; 75:101086. [PMID: 38677200 DOI: 10.1016/j.drup.2024.101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a novel and promising approach in targeted therapy, uniting the specificity of antibodies that recognize specific antigens with payloads, all connected by the stable linker. These conjugates combine the best targeted and cytotoxic therapies, offering the killing effect of precisely targeting specific antigens and the potent cell-killing power of small molecule drugs. The targeted approach minimizes the off-target toxicities associated with the payloads and broadens the therapeutic window, enhancing the efficacy and safety profile of cancer treatments. Within precision oncology, ADCs have garnered significant attention as a cutting-edge research area and have been approved to treat a range of malignant tumors. Correspondingly, the issue of resistance to ADCs has gradually come to the fore. Any dysfunction in the steps leading to the ADCs' action within tumor cells can lead to the development of resistance. A deeper understanding of resistance mechanisms may be crucial for developing novel ADCs and exploring combination therapy strategies, which could further enhance the clinical efficacy of ADCs in cancer treatment. This review outlines the brief historical development and mechanism of ADCs and discusses the impact of their key components on the activity of ADCs. Furthermore, it provides a detailed account of the application of ADCs with various target antigens in cancer therapy, the categorization of potential resistance mechanisms, and the current state of combination therapies. Looking forward, breakthroughs in overcoming technical barriers, selecting differentiated target antigens, and enhancing resistance management and combination therapy strategies will broaden the therapeutic indications for ADCs. These progresses are anticipated to advance cancer treatment and yield benefits for patients.
Collapse
Affiliation(s)
- Mingxia Jiang
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiao Li
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Binghe Xu
- Department of Medical Oncology, State Key Laboratory of Mocelular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
6
|
Sajjad F, Jalal A, Jalal A, Gul Z, Mubeen H, Rizvi SZ, Un-Nisa EA, Asghar A, Butool F. Multi-omic analysis of dysregulated pathways in triple negative breast cancer. Asia Pac J Clin Oncol 2024. [PMID: 38899578 DOI: 10.1111/ajco.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
The aggressive characteristics of triple-negative breast cancer (TNBC) and the absence of targeted medicines make TNBC a challenging clinical case. The molecular landscape of TNBC has been well-understood thanks to recent developments in multi-omic analysis, which have also revealed dysregulated pathways and possible treatment targets. This review summarizes the utilization of multi-omic approaches in elucidating TNBC's complex biology and therapeutic avenues. Dysregulated pathways including cell cycle progression, immunological modulation, and DNA damage response have been uncovered in TNBC by multi-omic investigations that integrate genomes, transcriptomics, proteomics, and metabolomics data. Methods like this pave the door for the discovery of new therapeutic targets, such as the EGFR, PARP, and mTOR pathways, which in turn direct the creation of more precise treatments. Recent developments in TNBC treatment strategies, including immunotherapy, PARP inhibitors, and antibody-drug conjugates, show promise in clinical trials. Emerging biomarkers like MUC1, YB-1, and immune-related markers offer insights into personalized treatment approaches and prognosis prediction. Despite the strengths of multi-omic analysis in offering a more comprehensive view and personalized treatment strategies, challenges exist. Large sample sizes and ensuring high-quality data remain crucial for reliable findings. Multi-omic analysis has revolutionized TNBC research, shedding light on dysregulated pathways, potential targets, and emerging biomarkers. Continued research efforts are imperative to translate these insights into improved outcomes for TNBC patients.
Collapse
Affiliation(s)
- Fatima Sajjad
- School of Interdisciplinary Engineering and Sciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ahmer Jalal
- Faculty of Sciences and Technology, University of Central Punjab, Lahore, Pakistan
| | - Amir Jalal
- Department of Biochemistry, Sahara Medical College, Narowal, Pakistan
| | - Zulekha Gul
- Environmental and Biological Science, Nanjing University of Science and Technology, Nanjing, China
| | - Hira Mubeen
- Faculty of Sciences and Technology, University of Central Punjab, Lahore, Pakistan
| | - Seemal Zahra Rizvi
- Faculty of Sciences and Technology, University of Central Punjab, Lahore, Pakistan
| | - Ex Alim Un-Nisa
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research, Lahore, Pakistan
| | - Andleeb Asghar
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences Lahore, Lahore, Pakistan
| | - Farah Butool
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University Lahore, Lahore, Pakistan
| |
Collapse
|
7
|
Chen Z, Hu T, Zhou J, Gu X, Chen S, Qi Q, Wang L. Overview of tumor immunotherapy based on approved drugs. Life Sci 2024; 340:122419. [PMID: 38242494 DOI: 10.1016/j.lfs.2024.122419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/25/2023] [Accepted: 01/07/2024] [Indexed: 01/21/2024]
Abstract
Tumor immunotherapy has become a new hotspot for cancer treatment. Various immunotherapies, such as immune checkpoint inhibitors, oncolytic viruses (OVs), cytokines, and cancer vaccines, have been used to treat tumors. They operate through different mechanisms, along with certain toxicities and side effects. Understanding the mechanisms by which immunotherapy modulates the immune system is essential for improving the efficacy and managing these adverse effects. This article discusses various currently approved cancer immunotherapy mechanisms and related agents approved by the Food and Drug Administration, the European Medicines Agency, and the Medicines and Medical Devices Agency. We also review the latest progress in immune drugs approved by the National Medical Products Administration, including monoclonal antibodies, cytokines, OVs, and chimeric antigen receptor-T cell therapy, to help understand the clinical application of tumor immunotherapy.
Collapse
Affiliation(s)
- Ziqin Chen
- College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Tiantian Hu
- Clinical Base of Qingpu Traditional Medicine Hospital, the Academy of Integrative Medicine of Fudan University, Shanghai 201700, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; The Academy of Integrative Medicine of Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai 200011, China
| | - Xiaolei Gu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Song Chen
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Qing Qi
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; The Academy of Integrative Medicine of Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai 200011, China.
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; The Academy of Integrative Medicine of Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai 200011, China.
| |
Collapse
|
8
|
Shen L, Sun X, Chen Z, Guo Y, Shen Z, Song Y, Xin W, Ding H, Ma X, Xu W, Zhou W, Che J, Tan L, Chen L, Chen S, Dong X, Fang L, Zhu F. ADCdb: the database of antibody-drug conjugates. Nucleic Acids Res 2024; 52:D1097-D1109. [PMID: 37831118 PMCID: PMC10768060 DOI: 10.1093/nar/gkad831] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a class of innovative biopharmaceutical drugs, which, via their antibody (mAb) component, deliver and release their potent warhead (a.k.a. payload) at the disease site, thereby simultaneously improving the efficacy of delivered therapy and reducing its off-target toxicity. To design ADCs of promising efficacy, it is crucial to have the critical data of pharma-information and biological activities for each ADC. However, no such database has been constructed yet. In this study, a database named ADCdb focusing on providing ADC information (especially its pharma-information and biological activities) from multiple perspectives was thus developed. Particularly, a total of 6572 ADCs (359 approved by FDA or in clinical trial pipeline, 501 in preclinical test, 819 with in-vivo testing data, 1868 with cell line/target testing data, 3025 without in-vivo/cell line/target testing data) together with their explicit pharma-information was collected and provided. Moreover, a total of 9171 literature-reported activities were discovered, which were identified from diverse clinical trial pipelines, model organisms, patient/cell-derived xenograft models, etc. Due to the significance of ADCs and their relevant data, this new database was expected to attract broad interests from diverse research fields of current biopharmaceutical drug discovery. The ADCdb is now publicly accessible at: https://idrblab.org/adcdb/.
Collapse
Affiliation(s)
- Liteng Shen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiuna Sun
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Zhen Chen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yu Guo
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zheyuan Shen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yi Song
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wenxiu Xin
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
| | - Haiying Ding
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
| | - Xinyue Ma
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Weiben Xu
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wanying Zhou
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Jinxin Che
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lili Tan
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Liangsheng Chen
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Siqi Chen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaowu Dong
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Luo Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
9
|
Cherifi F, Da Silva A, Martins-Branco D, Awada A, Nader-Marta G. Pharmacokinetics and pharmacodynamics of antibody-drug conjugates for the treatment of patients with breast cancer. Expert Opin Drug Metab Toxicol 2024; 20:45-59. [PMID: 38214896 DOI: 10.1080/17425255.2024.2302460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
INTRODUCTION Currently three antibody-drug-conjugates (ADC) are approved by the European Medicines Agency (EMA) for treatment of breast cancer (BC) patient: trastuzumab-emtansine, trastuzumab-deruxtecan and sacituzumab-govitecan. ADC are composed of a monoclonal antibody (mAb) targeting a specific antigen, a cytotoxic payload and a linker. Pharmacokinetics (PK) and pharmacodynamics (PD) distinguish ADC from conventional chemotherapy and must be understood by clinicians. AREAS COVERED Our review delineates the PK/PD profiles of ADC approved for the treatment of BC with insight for future development. This is an expert opinion literature review based on the EMA's Assessment Reports, enriched by a comprehensive literature search performed on Medline in August 2023. EXPERT OPINION All three ADC distributions are described by a two-compartment structure: tissue and serum. Payload concentration peak is immediate but remains at low concentration. The distribution varied for all ADC only with body weight. mAb will be metabolised firstly by the saturable complex formation of ADC/Tumour-Receptor and secondly by binding of FcgRs in immune cells. They are all excreted in the bile and faeces with minimal urine elimination. Dose adjustments, apart from weight, are not recommended. Novel ADC are composed of cleavable linkers with various targets/payloads with the same PK/PD properties, but novel structures of ADC are in development.
Collapse
Affiliation(s)
- François Cherifi
- Oncology Medicine Department, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Breast Cancer Unit, CLCC François Baclesse, Institut Normand du Sein, Caen, France
| | - Angélique Da Silva
- Departments of Pharmacology and Medical Oncology, Caen-Normandy University Hospital, PICARO Cardio-Oncology Program, Normandie Univ, UNICAEN, INSERM U1086 ANTICIPE, Caen, France
| | - Diogo Martins-Branco
- Academic Trials Promoting Team (ATPT), Institut Jules Bordet, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (U.L.B), Brussels, Belgium
| | - Ahmad Awada
- Oncology Medicine Department, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Guilherme Nader-Marta
- Academic Trials Promoting Team (ATPT), Institut Jules Bordet, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (U.L.B), Brussels, Belgium
| |
Collapse
|
10
|
Dumitru AV, Stoica EE, Covache-Busuioc RA, Bratu BG, Cirstoiu MM. Unraveling the Intricate Link: Deciphering the Role of the Golgi Apparatus in Breast Cancer Progression. Int J Mol Sci 2023; 24:14073. [PMID: 37762375 PMCID: PMC10531533 DOI: 10.3390/ijms241814073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer represents a paramount global health challenge, warranting intensified exploration of the molecular underpinnings influencing its progression to facilitate the development of precise diagnostic instruments and customized therapeutic regimens. Historically, the Golgi apparatus has been acknowledged for its primary role in protein sorting and trafficking within cellular contexts. However, recent findings suggest a potential link between modifications in Golgi apparatus function and organization and the pathogenesis of breast cancer. This review delivers an exhaustive analysis of this correlation. Specifically, we examine the consequences of disrupted protein glycosylation, compromised protein transport, and inappropriate oncoprotein processing on breast cancer cell dynamics. Furthermore, we delve into the impacts of Golgi-mediated secretory routes on the release of pro-tumorigenic factors during the course of breast cancer evolution. Elucidating the nuanced interplay between the Golgi apparatus and breast cancer can pave the way for innovative therapeutic interventions and the discovery of biomarkers, potentially enhancing the diagnostic, prognostic, and therapeutic paradigms for afflicted patients. The advancement of such research could substantially expedite the realization of these objectives.
Collapse
Affiliation(s)
- Adrian Vasile Dumitru
- Department of Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Evelina-Elena Stoica
- Department of Obstetrics and Gynaecology, University Emergency Hospital, 050098 Bucharest, Romania;
| | | | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Monica-Mihaela Cirstoiu
- Department of Obstetrics and Gynaecology, University Emergency Hospital, 050098 Bucharest, Romania;
- Department of Obstetrics and Gynaecology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|