1
|
Jindal A, Kumar Sharma P, Kumar A. Self-nanoemulsifying drug delivery system (SNEDDS) as nano-carrier framework for permeability modulating approaches of BCS class III drug. J Drug Target 2025:1-21. [PMID: 40013328 DOI: 10.1080/1061186x.2025.2469751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/10/2025] [Accepted: 02/15/2025] [Indexed: 02/28/2025]
Abstract
The purpose of this review is to focus on the Self-Nanoemulsifying Drug Delivery System (SNEDDS) as an effective nanocarrier framework for permeability modulating approaches (PMA) of BCS class-III drugs and its challenges. Present review updates the recent trends in the SNEDDS research where it was employed as a cargo carrier for PMA and challenges. Patient compliance, ease of administration and non-invasiveness mode are non-trivial aspects in the oral administration of drugs. However, low aqueous solubility and impaired permeability are two prominent challenges resulting poor absorption of a drug. SNEDDS emerged as a dual nano-carrier system to enable nanodispersion of PMA via e.g. ion-pairing, phospholipid-complex, surfactant-drug interaction, loading of non-ionizable, free drug bases etc. These PMAs are embedded within the lipid phase of SNEDDS to produce nanosizing, enhancing nano-dispersibility via micellization/solubilization mechanism owing to its ternary components. Review highlights different PMAs employed in bioavailability enhancement of BCS class-III. It covers excipients employed in SNEDDS-loaded PMA, strategies for the hydrophobic transformation of water-soluble drugs for BCS class-III drugs. SNEDDS as a nano-cargo system for PMAs significantly modifies the bioavailability of BCS class-III drugs. SNEDDS is an isotropic-mixture of oil, surfactant:co-surfactant offers multipoint access to PMA loading and produces nano-dispersion in aqueous-medium.
Collapse
Affiliation(s)
- Amulya Jindal
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Pankaj Kumar Sharma
- Department of Pharmacy, Raj Kumar Goel Institute of Technology, Ghaziabad, Uttar Pradesh, India
| | - Anoop Kumar
- Department of Pharmacy, Dr. K. N. Modi Institute of Pharmaceutical Education and Research, Modinagar, Uttar Pradesh, India
| |
Collapse
|
2
|
Sabale V, Girhepunje M, Ingole A, Warokar A, Sawarkar K, Sabale P. Acyl chitosan based self-nanoemulsifying drug delivery system of lipophilic drug with enhanced oral bioavailability and mucoadhesion: Formulation development, optimization and in vitro/in vivo characterization. Int J Biol Macromol 2025; 306:141257. [PMID: 39986527 DOI: 10.1016/j.ijbiomac.2025.141257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
This study developed a mucoadhesive self-nano emulsifying drug delivery system (SNEDDS) with synthesized acyl chitosan coating for enhancing oral bioavailability and drug retention of Amphotericin B (AB) which is conventionally administered parenterally owing to its poor bioavailability. Acyl chitosan was synthesized and characterized. The AB and acyl chitosan Amphotericin B (ACAB) SNEDDS were prepared using capryol 90, kolliphor RH 40 and propylene glycol and optimized using Box- Behnken Design (BBD). After preliminary evaluation of both the SNEDDS, the optimized formulation underwent compatibility, thermodynamic stability, robustness to dilution, dissolution, permeation, mucoadhesion, SEM, and in vivo pharmacokinetic studies. Both AB and ACAB SNEDDS were transparent with sizes of 70.68 nm and 83 nm, respectively and had spherical morphology. ACAB SNEDDS exhibited controlled release of the drug (85.6 %) over AB SNEDDS (90.5 %) and increased drug permeation (97 % Vs 75 %) over 24 h. For ACAB SNEDDS higher drug plasma concentration (0.254 ± 0.03 μg/mL) over AB SNEDDS (0.194 μg/mL) and AB suspension (0.152 ± 0.03 μg/mL) was observed from in vivo pharmacokinetic studies on rats. The developed ACAB SNEDDS improved the solubility, permeability, oral bioavailability and drug retention through mucoadhesion.
Collapse
Affiliation(s)
- Vidya Sabale
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur 440037, Maharashtra, India.
| | - Mrunali Girhepunje
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur 440037, Maharashtra, India
| | - Ashwini Ingole
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur 440037, Maharashtra, India
| | - Amol Warokar
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur 440037, Maharashtra, India
| | - Krutika Sawarkar
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur 440037, Maharashtra, India
| | - Prafulla Sabale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Mahatma Jyotiba Fuley Shaikshanik Parisar, Nagpur 440 033, Maharashtra, India
| |
Collapse
|
3
|
Al-Balushi RA, Chaudhuri A, Kandimalla R, Haque A, Alenezi KM, Saeed M, Changez M, Al Harthy T, Al Hinaai M, Siddiqui S, Agrawal AK, Aqil F. In vitro anticancer effects of frankincense and its nanoemulsions for enhanced cancer cell targeting. Front Pharmacol 2025; 16:1403780. [PMID: 39981177 PMCID: PMC11839425 DOI: 10.3389/fphar.2025.1403780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 01/10/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Frankincense has demonstrated promising in vitro anticancer activity. However, its conventional delivery methods face significant challenges due to limited oral bioavailability. To address these limitations, this study focuses on developing optimized nanoemulsions (NEs) of Frankincense oil (FO) to enhance its therapeutic efficacy. Methods Frankincense resins were extracted and characterized using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS), identifying key metabolites including isopinocarveol, α-thujene, p-cymene, carvone, germacrene A, and various methyl esters. FO-based nanoemulsions (FO-NEs) were prepared and optimized using a 3-factor, 3-level Box-Behnken Design (BBD), with 10% FO (v/v), 40% surfactant (cremophor EL), and co-surfactant (Transcutol P). The optimized FO-NEs were evaluated for particle size, polydispersity index (PDI), zeta potential, and morphology using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Cytotoxicity, wound healing, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) assays were performed against breast cancer (MDA-MB-231, MDA-MB-231-TR) and lung cancer (A549, A549-TR, H1299) cell lines. Results The optimized FO-NEs exhibited an average particle size of 65.1 ± 4.21 nm, a PDI of 0.258 ± 0.04, and a zeta potential of -22.3 ± 1.2 mV. SEM and AFM confirmed the spherical morphology of the FO-NEs. In vitro cytotoxicity studies revealed enhanced anticancer activity of FO-NEs (IC50 = 13.2 μg/mL) compared to free FO (IC50 = 22.5 μg/mL) against resistant breast cancer MDA-MB-231-TR cells. FO-NEs significantly improved cancer cell internalization, disrupted mitochondrial membrane potential, and increased ROS generation, leading to enhanced cytotoxic effects. Discussion The results demonstrate that nanoemulsion-based delivery significantly enhances the bioactivity and cellular uptake of frankincense oil compared to its free form. FO-NEs exhibit potent anticancer activity, particularly against drug-resistant cancer cell lines, suggesting their potential as a viable strategy for improving the therapeutic efficacy of frankincense in cancer treatment.
Collapse
Affiliation(s)
- Rayya A. Al-Balushi
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A’Sharqiyah University, Ibra, Oman
| | - Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Raghuram Kandimalla
- Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Ashanul Haque
- Department of Chemistry, College of Science, University of Hail, Hail, Saudi Arabia
| | - Khalaf M. Alenezi
- Department of Chemistry, College of Science, University of Hail, Hail, Saudi Arabia
| | - Mohd. Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Mohammad Changez
- College of Health Sciences, University of Buraimi, Al Buraimi, Oman
| | - Thuraya Al Harthy
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A’Sharqiyah University, Ibra, Oman
| | - Mohammed Al Hinaai
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A’Sharqiyah University, Ibra, Oman
| | - Samra Siddiqui
- Department Health Services Management, College of Public Health and Health Informatics, University of Hail, Hail, Saudi Arabia
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Farrukh Aqil
- Brown Cancer Center, University of Louisville, Louisville, KY, United States
- Department of Medicine, University of Louisville, Louisville, KY, United States
| |
Collapse
|
4
|
Chen L, Zhang X, Xie J, Xiao T, Zhong H, He H, Zhang G, Liu H. Valsartan Loaded Solid Self-Nanoemulsifying Delivery System to Enhance Oral Absorption and Bioavailability. AAPS PharmSciTech 2025; 26:45. [PMID: 39849239 DOI: 10.1208/s12249-024-03032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Valsartan (VST) is an angiotensin II receptor antagonist with low oral bioavailability. The present study developed a solid self-nanoemulsifying drug delivery system (S-SNEDDS) to enhance the oral absorption and bioavailability of VST. VST-loaded liquid SNEDDS (VST@L-SNEDDS) was prepared by investigating the solubility of VST and constructing the pseudo-ternary phase diagrams. The formulation of VST@S-SNEDDS was obtained by adsorbing VST@L-SNEDDS onto a solid carrier. In vitro studies including drug dissolution, stability, cytotoxicity, and Caco-2 uptake of VST@S-SNEDDS were assessed. An in vivo pharmacokinetic study of VST@S-SNEDDS was employed to evaluate the oral bioavailability of VST. VST@L-SNEDDS, with an average particle size of 19.90 nm and zeta potential of -20.57 mV, consisted of 12.37% VST (drug loading), 21.91% ethyl oleate, 45.50% RH 40, and 20.22% Transcutol HP. VST@S-SNEDDS was prepared using Neusilin® UFL2 as a solid adsorbent, which contained VST@L-SNEDDS at 2.28 ± 0.15 g/g. The in vitro release study demonstrated that VST@S-SNEDDS exhibited rapid release characteristic without affecting by the pH of the media, and dissolution rates exceeded 90% within 60 min in different media. The long-term stability of VST@S-SNEDDS was better than that of VST@L-SNEDDS. These two formulations increased the Caco-2 uptake significantly. The area under the drug concentration-time curve (AUC0-24h) and peak drug concentration in plasma (Cmax) of VST@S-SNEDDS increased by 2.28-fold and 4.86-fold compared to raw VST, respectively. The proposed VST@S-SNEDDS represents a novel approach to enhance the oral absorption and bioavailability of VST, providing a promising avenue for hypertension treatment.
Collapse
Affiliation(s)
- Lusi Chen
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Xin Zhang
- School of Food and Biological, Wuyi University, Jiangmen, 529000, China
| | - Jiayu Xie
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Tao Xiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Huiying Zhong
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Haibing He
- Jiangsu Haizhihong Biomedical Co., Ltd, Nantong, 226133, China.
| | - Guoqing Zhang
- Jiangsu Yunshi Pharmaceutical Technology Co., Ltd, Nantong, 226133, China.
| | - Hongfei Liu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
- School of Food and Biological, Wuyi University, Jiangmen, 529000, China.
- Jiangsu Haizhihong Biomedical Co., Ltd, Nantong, 226133, China.
| |
Collapse
|
5
|
Bodnár K, Papp B, Sinka D, Fehér P, Ujhelyi Z, Lekli I, Kajtár R, Nacsa F, Bácskay I, Józsa L. Development of Salvia officinalis-Based Self-Emulsifying Systems for Dermal Application: Antioxidant, Anti-Inflammatory, and Skin Penetration Enhancement. Pharmaceutics 2025; 17:140. [PMID: 40006508 PMCID: PMC11858885 DOI: 10.3390/pharmaceutics17020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES The present study focused on the formulation and evaluation of novel topical systems containing Salvia officinalis (sage), emphasizing their antioxidant and anti-inflammatory properties. Sage, rich in carnosol, offers considerable therapeutic potential, yet its low water solubility limits its effectiveness in traditional formulations. The aim of our experimental work was to improve the solubility and thus bioavailability of the active ingredient by developing self-nano/microemulsifying drug delivery systems (SN/MEDDSs) with the help of Labrasol and Labrafil M as the nonionic surfactants, Transcutol HP as the co-surfactant, and isopropyl myristate as the oily phase. METHODS The formulations were characterized for droplet size, zeta potential, polydispersity index (PDI), encapsulation efficacy, and stability. The composition exhibiting the most favorable characteristics, with particle sizes falling within the nanoscale range, was incorporated into a cream and a gel, which were compared for their textural properties, carnosol penetration, biocompatibility and efficacy. RESULTS Release studies conducted using Franz diffusion cells demonstrated that the SNEDDS-based cream achieved up to 80% carnosol release, outperforming gels. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) test and enzyme-linked immunosorbent assays (ELISA) showed strong efficacy, with an in vivo carrageenan-induced rat paw edema model revealing that the SNEDDS-based cream significantly reduced inflammation. CONCLUSIONS These findings highlight the potential of SNEDDS-enhanced topical formulations in improving therapeutic outcomes. Further research is warranted to confirm their long-term safety and efficacy.
Collapse
Affiliation(s)
- Krisztina Bodnár
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.B.); (B.P.); (D.S.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
| | - Boglárka Papp
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.B.); (B.P.); (D.S.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
| | - Dávid Sinka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.B.); (B.P.); (D.S.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.B.); (B.P.); (D.S.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.B.); (B.P.); (D.S.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
| | - István Lekli
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Richárd Kajtár
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Fruzsina Nacsa
- MEDITOP Pharmaceutical Ltd., Pilisborosjeno Ady Endre Street 1, 2097 Pilisborosjeno, Hungary;
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.B.); (B.P.); (D.S.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
| | - Liza Józsa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.B.); (B.P.); (D.S.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
| |
Collapse
|
6
|
Basar M, Khan MI, Akhtar MF, Anwar F, Saleem A, Madni A, Ahmad Z, Sharif A, Akhtar B, Shakoor U, Khan A. Olive oil and castor oil-based self-nanoemulsifying drug delivery system of flurbiprofen can relieve peripheral pain and inflammation through reduction of oxidative stress and inflammatory biomarkers: a comprehensive formulation and pharmacological insights. Inflammopharmacology 2025; 33:353-379. [PMID: 39776028 DOI: 10.1007/s10787-024-01632-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Flurbiprofen (FBP) is poorly water-soluble BCS class II drug with anti-inflammatory and analgesic effects, used to treat arthritis and degenerative joint diseases. This study was aimed to develop SNEDDS loaded with FBP. Six SNEDDS using two oils olive oil (F1OLV, F2OLV, F3OLV) and castor oil (F4CAS, F5CAS, F6CAS) with three different Smix ratios consisting of Tween 20 and PEG 400 (1:1, 1:2, 2:1) were prepared and characterized. Compatibility between FBP and polymers was investigated using FTIR. SNEDDS were characterized for physicochemical attributes. Two optimized formulations were investigated at 10 mg/kg dose given orally in Wistar rats for analgesic activity by hot plate and tail flick methods, and anti-inflammatory activity by carrageenan induced paw edema method. Anti-inflammatory activity was further explored by motor coordination and motility by Rota rod and cage activity tests. Following anesthesia blood samples were collected before dissection to measure inflammatory mediators and oxidative stress markers. Sciatica nerves and hind paws of rats were also removed for histopathological evaluation. FTIR studies revealed compatibility of FBP with other components. Droplet size of F1OLV, F2OLV, F3OLV was 128.5 ± 0.7 nm, 202.5 ± 1.3 nm, and 541.5 ± 1.7 nm, whereas it was 142.5 ± 1.1 nm, 215.4 ± 1.2 nm and 349.9 ± 1.8 nm for F4CAS, F5CAS, F6CAS. %EE of F1OLV, F2OLV, F3OLV was found 85 ± 4.89%-91 ± 4.67%, whereas the %EE F4CAS, F5CAS, F6CAS was 84 ± 4.15%-90 ± 4.21%. DSC curves of F1OLV and F4CAS revealed amorphous nature of the FBP. SEM showed spherical shape of globules. % of drug released in the pH medium 1.2 for plain FBP, F1OLV and F4CAS was 25%, 59% and 57%. % drug released in the pH 6.8 for plain FBP, F1OLV and F4CAS was 59%, 85% and 83%. Oral administration of FBP-loaded SNEDDS (F1OLV and F4CAS) significantly decreased paw diameter and enhanced motor coordination in rats when compared to the disease control group. This was linked to the ability of FBP to reduce inflammation and oxidative stress, with histological studies indicating decreased tissue damage in SNEDDS treated groups, implying the possibility of tissue recovery. Administration of both formulations started to demonstrate analgesic and anti-inflammatory effects after one hour of administration. In addition to anti-inflammatory effect, both formulations improved motor coordination, motility, and reduced infiltration of inflammatory cells in the inflamed paws. The anti-inflammatory and analgesic activities were attributed to decreased serum levels of IL-6 and TNF-α, increased activity of SOD and reduced nitrite content in sciatic nerves. Histopathological evaluation revealed reduced vascularity, inflammation and synovial hyperplasia. The overall findings suggest that the FBP loaded SNEDDS can be used as carriers for improved delivery of FBP which can effectively be used to cure pain and inflammation.
Collapse
Affiliation(s)
- Mazaghul Basar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, 54000, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, 54000, Pakistan.
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, 54000, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, 54000, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Zulcaif Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, 54000, Pakistan
| | - Ali Sharif
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Bushra Akhtar
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Uzma Shakoor
- Islam Medical and Pharmacy College, Gujranwala, Pakistan
| | - Aslam Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 45210, Pakistan
| |
Collapse
|
7
|
Anuradha U, Bhavana V, Chary PS, Rajana N, Parida KK, Kalia NP, Khatri DK, Mehra NK. Thymoquinone loaded nanoemulgel in streptozotocin induced diabetic wound. Nanomedicine (Lond) 2024; 19:2577-2604. [PMID: 39569618 DOI: 10.1080/17435889.2024.2422805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
Aim: To treat diabetic wound healing with a novel Thymoquinone (TQ) loaded nanoformulation by using combination of essentials oils.Methods: TQ nanoemulsion (NE) was developed with seabuckthorn & lavender essential oils by phase inversion method and mixture design. Further, DIAGEL is obtained by incorporating NE into 1% carbopol®934. Furthermore, particle size, polydispersity index, thermodynamic stability studies, rheology, spreadability, drug content, in-vitro drug release, ex-vivo permeation, anti-oxidant assay, antimicrobial studies, angioirritance, HAT-CAM assay, in-vitro and in-vivo studies were determined.Results: NE has a particle size of 17.79 ± 0.61 nm, 0.206 ± 0.012 PDI & found to be thermodynamically stable. DIAGEL exhibited pseudoplastic behavior, sustained drug release, better permeation of TQ and a drug content of 98.54 ± 0.08%. DIAGEL stored for 6 months at room temperature and 2-8°C showed no degradation. Further, an improved angiogenesis, absence of angio-irritancy, remarkable antioxidant and antimicrobial activities against Candida albicans & S. aureus were observed. Cytotoxicity analysis revealed nearly 2.28 -folds higher IC50 value than drug solution. Furthermore, inflammatory mediators were reduced in DIAGEL treated animal groups. The histopathological studies confirmed skin healing with regeneration and granulation of tissue.Conclusion: The novel formulation has strong anti-inflammatory, angiogenesis, antioxidant and appreciable diabetic wound healing properties.
Collapse
Affiliation(s)
- Urati Anuradha
- Department of Biological Sciences, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Kishan Kumar Parida
- Department of Biological Sciences, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Nitin Pal Kalia
- Department of Biological Sciences, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
8
|
Mohite P, Sule S, Pawar A, Alharbi HM, Maitra S, Subramaniyan V, Kumarasamy V, Uti DE, Ogbu CO, Oodo SI, Kumer A, Idowu AO, Okoye ONN. Development and characterization of a self-nano emulsifying drug delivery system (SNEDDS) for Ornidazole to improve solubility and oral bioavailability of BCS class II drugs. Sci Rep 2024; 14:27724. [PMID: 39532892 PMCID: PMC11557912 DOI: 10.1038/s41598-024-73760-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024] Open
Abstract
This study aimed to investigate the in vitro performance of self-nanoemulsifying drug delivery systems (SNEDDSs) of Ornidazole (ORD), a poorly water-soluble drug. Self-nanoemulsifying drug delivery systems of ORD were prepared using various oils, non-ionic surfactants, and/or water-soluble co-solvents and assessed visually/by droplet size measurement. Equilibrium solubility of ORD in the anhydrous and diluted SNEDDS was conducted to achieve the maximum drug loading. The in vitro dissolution of SNEDDS was studied to compare the solubility of the representative formulations with API. The results from the characterization and solubility studies showed that SNEDDS formulations were stable with lower droplet sizes and showed higher ORD solubility. From the dissolution studies, it was found that the developed A7-SNEDDS formulation provided a significantly higher rate of ORD release (98.94 ± 0.68 in 1.0 h) compared to API. ORD-loaded SNEDDS formulations could be a potential oral pharmaceutical product with high drug-loading capacity, improved drug dissolution, and enhanced oral bioavailability.
Collapse
Affiliation(s)
- Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Manor Road, Palghar, Maharashtra, India
| | - Shruti Sule
- MES's College of Pharmacy, Sonai, Tal- Newasa, Ahmednagar, Maharashtra, India
| | - Anil Pawar
- MES's College of Pharmacy, Sonai, Tal- Newasa, Ahmednagar, Maharashtra, India
| | - Hanan M Alharbi
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Swastika Maitra
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Vetriselvan Subramaniyan
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Daniel Ejim Uti
- Department of Research Publications, Kampala International University, Main Campus, P. O. Box 20000, Kampala, Uganda.
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria.
| | - Celestine O Ogbu
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria
| | - Simon Inedu Oodo
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria
| | - Ajoy Kumer
- Chemistry, IUBAT-International University of Business Agriculture & Technology, Dhaka, Bangladesh
| | - Ayodeji Oluwafemi Idowu
- Centre for Excellence in Functional foods and Gastronomy Faculty of Agro-industry, Prince of Songkla University, Hat Yai, Thailand
| | - Okechukwu N N Okoye
- Department of Industrial Chemistry, College of Science, Evangel University Akaeze, Ebonyi, Nigeria
| |
Collapse
|
9
|
Ghareb N, Darwish KM, Nafie MS, Elrayess R, Abourobe NM, Fattah SA, Hazem RM, Mehanna ET, Elrayess R. Development, biological evaluation, and molecular modelling of some benzene-sulfonamide derivatives as protein tyrosine phosphatase-1B inhibitors for managing diabetes mellitus and associated metabolic disorders. RSC Med Chem 2024; 16:d4md00594e. [PMID: 39464651 PMCID: PMC11499946 DOI: 10.1039/d4md00594e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/28/2024] [Indexed: 10/29/2024] Open
Abstract
Exploring new inhibitors with good bioavailability and high selectivity for managing type 2 diabetes mellitus (T2DM) and its associated complications is a major challenge for research, academia, and the pharmaceutical industry. Protein tyrosine phosphatase-1B (PTP1B) arose as an important negative regulator in insulin signaling pathways associated with metabolic disorders, including T2DM and obesity. Novel neutral compounds with a benzene-sulfonamide scaffold were designed and synthesized based on structural- and ligand-based drug design strategies for fragment growth. Promising hits against PTP1B were identified through in vitro enzymology inhibition assay. Mechanistic aspects of the compound's different inhibition activities were rigorously investigated through molecular docking coupled with explicit dynamics simulations. Four identified hits, 3c, 8, 10a, and 11, with sub-micromolar PTP-1B IC50 and significant predicted pharmacokinetic and pharmacodynamic parameters, were further biologically evaluated for their anti-diabetic, anti-obesity, anti-inflammatory, and anti-oxidant effects in a high-fat diet (HFD) + streptozotocin (STZ)-induced T2DM rat model. All these hit compounds exhibited a significant anti-diabetic and anti-obesity effect and a significant efficacy in reducing oxidative stress and increasing anti-oxidant enzymes while reducing inflammatory markers. Improving compound potency was further highlighted by improving the pharmacokinetic profile of the most active compound, 10a, through nano formulation. Compound 10a nano formulation showed the most promising anti-diabetic and anti-obesity effects and a remarkable histopathological improvement in all organs studied.
Collapse
Affiliation(s)
- Nagat Ghareb
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt +20 064 3230741 +20 102 548 8849
| | - Khaled M Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University New Galala 43713 Egypt
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah Sharjah 27272 United Arab Emirates
- Department of Chemistry, Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| | - Ranwa Elrayess
- Department of Zoology, Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| | - Noha M Abourobe
- Department of Pharmaceutics, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Shaimaa A Fattah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Reem M Hazem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Eman T Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Ranza Elrayess
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt +20 064 3230741 +20 102 548 8849
- Pharmaceutical Organic Chemistry Department, College of Pharmacy, Al-Ayen University Dhi-Qar 64001 Iraq
| |
Collapse
|
10
|
Shin Y, Kim M, Kim C, Jeon H, Koo J, Oh J, Shin S, Youn YS, Lim C, Oh KT. Development and Characterization of Olaparib-Loaded Solid Self-Nanoemulsifying Drug Delivery System (S-SNEDDS) for Pharmaceutical Applications. AAPS PharmSciTech 2024; 25:221. [PMID: 39317842 DOI: 10.1208/s12249-024-02927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
This study aims to enhance the solubility of Olaparib, classified as biopharmaceutical classification system (BCS) class IV due to its low solubility and bioavailability using a solid self-nanoemulsifying drug delivery system (S-SNEDDS). For this purpose, SNEDDS formulations were created using Capmul MCM as the oil, Tween 80 as the surfactant, and PEG 400 as the co-surfactant. The SNEDDS formulation containing olaparib (OLS-352), selected as the optimal formulation, showed a mean droplet size of 87.0 ± 0.4 nm and drug content of 5.53 ± 0.09%. OLS-352 also demonstrated anticancer activity against commonly studied ovarian (SK-OV-3) and breast (MCF-7) cancer cell lines. Aerosil® 200 and polyvinylpyrrolidone (PVP) K30 were selected as solid carriers, and S-SNEDDS formulations were prepared using the spray drying method. The drug concentration in S-SNEDDS showed no significant changes (98.4 ± 0.30%, 25℃) with temperature fluctuations during the 4-week period, demonstrating improved storage stability compared to liquid SNEDDS (L-SNEDDS). Dissolution tests under simulated gastric and intestinal conditions revealed enhanced drug release profiles compared to those of the raw drug. Additionally, the S-SNEDDS formulation showed a fourfold greater absorption in the Caco-2 assay than the raw drug, suggesting that S-SNEDDS could improve the oral bioavailability of poorly soluble drugs like olaparib, thus enhancing therapeutic outcomes. Furthermore, this study holds significance in crafting a potent and cost-effective pharmaceutical formulation tailored for the oral delivery of poorly soluble drugs.
Collapse
Affiliation(s)
- Yuseon Shin
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Mikyung Kim
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Chaeyeon Kim
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Hyewon Jeon
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Jain Koo
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Jimin Oh
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Soyoung Shin
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
- College of Pharmacy, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Chaemin Lim
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13488, Republic of Korea.
| | - Kyung Taek Oh
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea.
- College of Pharmacy, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
11
|
Woo MR, Woo S, Bak YW, Cheon S, Kim JS, Ji SH, Park S, Kim JO, Jin SG, Choi HG. Comparison of two self-nanoemulsifying drug delivery systems using different solidification techniques for enhanced solubility and oral bioavailability of poorly water-soluble celecoxib. Colloids Surf B Biointerfaces 2024; 241:114044. [PMID: 38964274 DOI: 10.1016/j.colsurfb.2024.114044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/21/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024]
Abstract
In this study, we aimed to develop a solid self-nanoemulsifying drug delivery system (S-SNEDDS) and a solid self-nanoemulsifying granule system (S-SNEGS) to enhance the solubility and oral bioavailability of celecoxib. This process involved the preparation of a liquid SNEDDS (L-SNEDDS) and its subsequent solidification into a S-SNEDDS and a S-SNEGS. The L-SNEDDS consisted of celecoxib (drug), Captex® 355 (Captex; oil), Tween® 80 (Tween 80; surfactant) and D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS; cosurfactant) in a weight ratio of 3.5:25:60:15 to produce the smallest nanoemulsion droplet size. The S-SNEDDS and S-SNEGS were prepared with L-SNEDDS/Ca-silicate/Avicel PH 101 in a weight ratio of 103.5:50:0 using a spray dryer and 103.5:50:100 using a fluid bed granulator, respectively. We compared the two novel developed systems and celecoxib powder based on their solubility, dissolution rate, physicochemical properties, flow properties and oral bioavailability in rats. S-SNEGS showed a significant improvement in solubility and dissolution rate compared to S-SNEDDS and celecoxib powder. Both systems had been converted from crystalline drug to amorphous form. Furthermore, S-SNEGS exhibited a significantly reduced angle of repose, compressibility index and Hausner ratio than S-SNEDDS, suggesting that S-SNEGS was significantly superior in flow properties. Compared to S-SNEDDS and celecoxib powder, S-SNEGS increased the oral bioavailability (AUC value) in rats by 1.3 and 4.5-fold, respectively. Therefore, S-SNEGS wolud be recommended as a solid self-nanoemulsifying system suitable for poorly water-soluble celecoxib.
Collapse
Affiliation(s)
- Mi Ran Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Sanghyun Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Young-Woo Bak
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Seunghyun Cheon
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Jung Suk Kim
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Sang Hun Ji
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Seonghyeon Park
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan 712-749, South Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea.
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea.
| |
Collapse
|
12
|
Khan MS, Fatima M, Wahab S, Khalid M, Kesharwani P. Gallic acid loaded self-nano emulsifying hydrogel-based drug delivery system against onychomycosis. Nanomedicine (Lond) 2024; 19:2065-2083. [PMID: 39143900 PMCID: PMC11485813 DOI: 10.1080/17435889.2024.2386923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
Aim: To developed and investigate gallic acid (GA) loaded self-nanoemulsifying drug delivery systems (SNEDDS) for treating onychomycosis via transungual route.Materials & methods: The SNEDDS were prepared by direct dispersion technique and were evaluated for characteristics parameters using Fourier transform infrared, differential scanning calorimetry, confocal microscopy, transmission electron microscopy and zeta sizer. Furthermore, the safety of prepared formulation was evaluated via Hen's egg test-chorioallantoic membrane study and stability was confirmed using different parameters. Also, its effectiveness was evaluated against fungal strain Trichophyton mentagrophytes.Results: The SNEDDS displayed a particle size of 199.8 ± 4.21 nm and a zeta potential; of -22.75 ± 2.09 mV. Drug release study illustrated a sustained release pattern with a release of 70.34 ± 0.20% over a period of 24 h. The penetration across the nail plate was found to be 1.59 ± 0.002 µg/mg and 0.97 ± 0.001 µg/mg for GA loaded SNEDDS and GA solution respectively. An irritation score of 0.52 ± 0.005 and 3.84 ± 0.001 was reported for GA loaded SNEDDS hydrogel and GA solution, indicating a decrease in the drug's irritation potential from slightly irritating to non irritating due to its entrapment within the SNEDDS.Conclusion: GA loaded SNEDDS has potential to address limitations of conventional treatments, enhancing the drug's efficacy and reducing the likelihood of resistance in the treatment of Onychomycosis.
Collapse
Affiliation(s)
- Mohammad Sameer Khan
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha62529, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
13
|
Liu X, Müllertz A, Bar-Shalom D, Berthelsen R. Development and in vitro evaluation of an infant friendly self-nanoemulsifying drug delivery system (SNEDDS) loaded with an amphotericin B-monoacyl phosphatidylcholine complex for oral delivery. Int J Pharm 2024; 660:124286. [PMID: 38815640 DOI: 10.1016/j.ijpharm.2024.124286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/30/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Until relatively recently, the pediatric population has largely been ignored during the development of new drug products, which has led to a high level of "off-label" use of drugs in this particular population. In this study, an infant friendly self-nanoemulsifying drug delivery system (SNEDDS) was developed for oral delivery of a commonly used "off-label" drug - amphotericin B (AmB). AmB was complexed with monoacyl-phosphatidylcholine (MAPC) by lyophilization, transforming crystalline AmB into its amorphous state in the AmB-MAPC complex (APC). The APC-loaded SNEDDS (APC-SNEDDS) showed excellent self-emulsifying properties; after dispersion of the APC-SNEDDS in purified water, nanoscale emulsion droplets were formed within 1 min with a z-average size of 179 ± 1 nm. In vitro pediatric gastrointestinal (GI) digestion and dissolution results showed that the APC-SNEDDS significantly increased the amount of AmB solubilized in aqueous phase and that the precipitated AmB from the APC-SNEDDS re-dissolved faster, compared with crystalline AmB in SNEDDS (AmB-SNEDDS), the complex without the SNEDDS (APC), the physical mixture of AmB and MAPC (AmB/MAPC PM), and crystalline AmB alone (AmB). Overall, the present in vitro results suggest that integrating the APC into an infant friendly SNEDDS is a promising approach for oral delivery of AmB to young pediatric patients.
Collapse
Affiliation(s)
- Xiaona Liu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark; Bioneer:FARMA, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Daniel Bar-Shalom
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Ragna Berthelsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
14
|
Abdul Hussein HM, Ghareeb MM. Unveiling the Preparation and Characterization of Lercanidipine Hydrochloride in an Oral Solid Self-Nanoemulsion for Enhancing Oral Delivery. Cureus 2024; 16:e64468. [PMID: 39139335 PMCID: PMC11319794 DOI: 10.7759/cureus.64468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 08/15/2024] Open
Abstract
INTRODUCTION Chronic kidney disease (CKD) is becoming increasingly prevalent worldwide, particularly among the elderly, along with an increase in the incidence of hypertension and cardiovascular disorders. Developing lipid-based oral dosage forms with a higher expected bioavailability of antihypertensive drugs with nephroprotective effects poses a challenge. Lercanidipine hydrochloride (LRCH) is a newer type of third-generation dihydropyridine calcium channel blocker that functions as an antihypertensive and has significant nephroprotective effects. Due to its extensive first-pass metabolism, its bioavailability is about 10% and increases to 3-4 times when taken with a high-fat meal. Targeting this drug to the lymphatic system using the solid self-nano-emulsifying drug delivery system (SSNEDDS) is a promising approach for improving LRCH's bioavailability and dispersion rate. SSNEDDS combines the benefits of both liquid self-emulsifying and solid dosage forms, improving drug stability and extending storage time. MATERIALS AND METHODS In this study, liquid SNEDDS composed of 10% peppermint oil, 67% Tween 20, and 22.5% propylene glycol was solidified using two adsorbent agent mixtures (SSNEDDS1: Avicel PH 101 and Aerosil 200) and (SSNEDDS2: Avicel PH 102 and Aerosil 200) separately. The prepared formulations were evaluated for powder flow, drug content, and an in-vitro dispersion test in comparison to the brand-marketed tablet as a standard or pure drug. DSC and X-ray diffraction analysis were also used. RESULTS The SSNEDDS2 shows excellent flowability, a higher drug content (99.761%), and a significantly higher and faster dispersion rate of 100% within 10 minutes compared to 92% of the marketed LRCH tablet and 18.1% of the pure drug for 60 minutes. The solid-state characterization of the formulation composed of SSNEDDS2 confirmed that the LRCH was in an amorphous form inside the solidified nano system without interacting with the excipient. CONCLUSION This study successfully prepared LRCH using the promising strategy of SSNEDDS as a hard gelatin capsule with a higher dispersion rate. It improved its stability and expected bioavailability compared to the brand-marketed tablet as the standard.
Collapse
Affiliation(s)
- Haneen M Abdul Hussein
- Department of Pharmaceutics, Ministry of Health and Environment, Babylon Health Directorate, Babylon, IRQ
| | - Mowafaq M Ghareeb
- Department of Pharmaceutics, College of Pharmacy, University of Baghdad, Baghdad, IRQ
| |
Collapse
|
15
|
Kumar S, Taumar D, Gaikwad S, More A, Nema V, Mukherjee A. Antiretroviral action of Rosemary oil-based atazanavir formulation and the role of self-nanoemulsifying drug delivery system in the management of HIV-1 infection. Drug Deliv Transl Res 2024; 14:1888-1908. [PMID: 38161197 DOI: 10.1007/s13346-023-01492-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Atazanavir or ATV is an FDA-approved, HIV-1 protease inhibitor that belongs to the azapeptide group. Over time, it has been observed that ATV can cause multiple adverse side effects in the form of liver diseases including elevations in serum aminotransferase, indirect hyper-bilirubinemia, and idiosyncratic acute liver injury aggravating the underlying chronic viral hepatitis. Hence, there is an incessant need to explore the safe and efficacious method of delivering ATV in a controlled manner that may reduce the proportion of its idiosyncratic reactions in patients who are on antiretroviral therapy for years. In this study, we assessed ATV formulation along with Rosemary oil to enhance the anti-HIV-1 activity and its controlled delivery through self-nanoemulsifying drug delivery system or SNEDDS to enhance its oral bioavailability. While the designing, development, and characterization of ATV-SNEDDS were addressed through various evaluation parameters and pharmacokinetic-based studies, in vitro cell-based experiments assured the safety and efficacy of the designed ATV formulation. The study discovered the potential of ATV-SNEDDS to inhibit HIV-1 infection at a lower concentration as compared to its pure counterpart. Simultaneously, we could also demonstrate the ATV and Rosemary oil providing leads for designing and developing such formulations for the management of HIV-1 infections with the alleviation in the risk of adverse reactions.
Collapse
Affiliation(s)
- Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), NH-58, Delhi-Roorkee Highway, Meerut, 250005, Uttar Pradesh, India
| | - Dhananjay Taumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), NH-58, Delhi-Roorkee Highway, Meerut, 250005, Uttar Pradesh, India
| | - Shraddha Gaikwad
- Division of Virology, ICMR-National AIDS Research Institute, Ministry of Health & Family Welfare, Plot No. 73, 'G' Block, MIDC, Bhosari, Pune, 411026, Maharashtra, India
| | - Ashwini More
- Division of Virology, ICMR-National AIDS Research Institute, Ministry of Health & Family Welfare, Plot No. 73, 'G' Block, MIDC, Bhosari, Pune, 411026, Maharashtra, India
| | - Vijay Nema
- Division of Virology, ICMR-National AIDS Research Institute, Ministry of Health & Family Welfare, Plot No. 73, 'G' Block, MIDC, Bhosari, Pune, 411026, Maharashtra, India
| | - Anupam Mukherjee
- Division of Virology, ICMR-National AIDS Research Institute, Ministry of Health & Family Welfare, Plot No. 73, 'G' Block, MIDC, Bhosari, Pune, 411026, Maharashtra, India.
| |
Collapse
|
16
|
Reyna-Lázaro L, Morales-Becerril A, Aranda-Lara L, Isaac-Olivé K, Ocampo-García B, Gibbens-Bandala B, Olea-Mejía O, Morales-Avila E. Pharmaceutical Nanoplatforms Based on Self-nanoemulsifying Drug Delivery Systems for Optimal Transport and Co-delivery of siRNAs and Anticancer Drugs. J Pharm Sci 2024; 113:1907-1918. [PMID: 38369021 DOI: 10.1016/j.xphs.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Small interfering RNAs (siRNAs) have the ability to induce selective gene silencing, although siRNAs are vulnerable to degradation in vivo. Various active pharmaceutical ingredients (APIs) are currently used as effective therapeutics in the treatment of cancer. However, routes of administration are limited due to their physicochemical and biopharmaceutical properties. This research aimed to develop oral pharmaceutical formulations based on self-nanoemulsifying drug delivery systems (SNEDDS) for optimal transport and co-delivery of siRNAs related to cancer and APIs. Formulations were developed using optimal mixing design (Design-Expert 11 software) for SNEDDS loading with siRNA (water/oil emulsion), API (oil/water emulsion), and siRNA-API (multiphase water/oil/water emulsion). The final formulations were characterized physicochemically and biologically. The nanosystems less than 50 nm in size had a drug loading above 48 %. The highest drug release occurred at intestinal pH, allowing drug protection in physiological fluids. SNEDDS-siRNA-APIs showed a twofold toxicity effect than APIs in solution and higher transfection and internalization of siRNA in cancer cells with respect to free siRNAs. In the duodenum, higher permeability was observed with SNEDDS-API than with the API solution, as determined by ex-vivo fluorescence microscopy. The multifunctional formulation based on SNEDDS was successfully prepared, siRNA, hydrophobic chemotherapeutics (doxorubicin, valrubicin and methotrexate) and photosensitizers (rhodamine b and protoporphyrin IX) agents were loaded, using a chitosan-RNA core, and Labrafil® M 1944 CS, Cremophor® RH40, phosphatidylcholine shell, forming stable hybrid SNEDDS as multiphasic emulsion, suitable as co-delivery system with a potent anticancer activity.
Collapse
Affiliation(s)
- Luz Reyna-Lázaro
- Universidad Autónoma del Estado de México, Facultad de Química, Toluca 50120, Estado de México, Mexico
| | - Aideé Morales-Becerril
- Universidad Autónoma del Estado de México, Facultad de Química, Toluca 50120, Estado de México, Mexico
| | - Liliana Aranda-Lara
- Universidad Autónoma del Estado de México, Facultad de Medicina, Toluca 50180, Estado de México, Mexico
| | - Keila Isaac-Olivé
- Universidad Autónoma del Estado de México, Facultad de Medicina, Toluca 50180, Estado de México, Mexico
| | - Blanca Ocampo-García
- Instituto Nacional de Investigaciones Nucleares, Departamento de Materiales Radiactivos, Ocoyoacac 52750, Estado de México, Mexico
| | - Brenda Gibbens-Bandala
- Instituto Nacional de Investigaciones Nucleares, Departamento de Materiales Radiactivos, Ocoyoacac 52750, Estado de México, Mexico
| | - Oscar Olea-Mejía
- Centro Conjunto de Investigación en Química Sustentable (CCIQS), Universidad Autónoma del Estado de México-Universidad Nacional Autónoma de México, Km 14.5 Carretera Toluca-Ixtlahuaca, San Cayetano de Morelos, 50200 Toluca, Mexico
| | - Enrique Morales-Avila
- Universidad Autónoma del Estado de México, Facultad de Química, Toluca 50120, Estado de México, Mexico.
| |
Collapse
|
17
|
Alfaraj R, Hababah S, Eltayb EK, Alqahtani FY, Aleanizy FS. Isotretinoin self-nano-emulsifying drug delivery system: Preparation, optimization and antibacterial evaluation. Saudi Pharm J 2024; 32:102063. [PMID: 38650911 PMCID: PMC11033190 DOI: 10.1016/j.jsps.2024.102063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
Purpose Isotretinoin (ITN) is a poorly water-soluble drug. The objective of this study was to design a successful liquid self-nanoemulsifying drug delivery system (L-SNEDDS) for ITN to improve its solubility, dissolution rate, and antibacterial activity. Methods According to solubility and emulsification studies, castor oil, Cremophor EL, and Transcutol HP were selected as system excipients. A pseudo ternary phase diagram was constructed to reveal the self-emulsification area. The developed SNEDDS were visually assessed, and the droplet size was measured. In vitro release studies and stability studies were conducted. The antimicrobial effectiveness against multiple bacterial strains, including Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and different accessory gene regulator (Agr) variants were investigated for the optimum ITN-loaded SNEDDS formulation. Results Characterization studies showed emulsion homogeneity and stability (%T 95.40-99.20, A graded) with low droplet sizes (31.87 ± 1.23 nm-115.47 ± 0.36 nm). It was found that the developed ITN-SNEDDS provided significantly a higher release rate (>96 % in 1 h) as compared to the raw drug (<10 % in 1 h). The in vitro antimicrobial activities of pure ITN and ITN-loaded SNEDDS demonstrated a remarkable inhibitory effect on bacterial growth with statistically significant findings (p < 0.0001) for all tested strains when treated with ITN-SNEDDS as compared to the raw drug. Conclusion These outcomes suggested that SNEDDS could be a potential approach for improving solubility, dissolution rates, and antibacterial activity of ITN.
Collapse
Affiliation(s)
- Rihaf Alfaraj
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- King Saud University, 11495 Riyadh, Saudi Arabia
| | - Sandra Hababah
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- King Saud University, 11495 Riyadh, Saudi Arabia
| | - Esra K. Eltayb
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- King Saud University, 11495 Riyadh, Saudi Arabia
| | - Fulwah Y. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- King Saud University, 11495 Riyadh, Saudi Arabia
| | - Fadilah S. Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- King Saud University, 11495 Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Mohite P, Joshi A, Singh S, Prajapati B. Solubility enhancement of fexofenadine using self-nano emulsifying drug delivery system for improved biomimetic attributes. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:433-445. [PMID: 37832935 DOI: 10.1016/j.pharma.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Fexofenadine is a poorly water-soluble drug, which limit its bioavailability and ultimately therapeutic efficacy. Liquid self-nano emulsifying drug delivery system (L-SNEDDs) is an approach that can enhance the solubility of fexofenadine by increasing its surface area and reducing the particle size, which increases the rate and extent of drug dissolution. METHOD In this investigation, L-SNEDDs of fexofenadine was made up using surfactants and co-surfactant. The SNEDDS formulation was optimized using a pseudo-ternary phase diagram and characterized. RESULTS The optimized L-SNEDDS incorporated fexofenadine were thermodynamically stable and showed mean droplet size and zeta potential of 155nm and -18mV, respectively unaffected by the media pH. In addition, the viscosity, and refractive index were observed 18.4 and 1.49 cps, respectively for optimized L-SNEDDS fortified fexofenadine. The results of Fourier transform infrared spectroscopy revealed an insignificant interaction between the fexofenadine and excipients. A drug loading efficiency of 94.20% resulted with a complete in vitro drug release in 2h, compared with the pure drug, which demonstrate significant improvement in the efficacy. Moreover, these results signify that on further in vivo assessment L-SNEDDS fortified fexofenadine can indicate improvement in pharmacokinetic and clinical outcome. CONCLUSION Thus, the investigation revealed that, the L-SNEDDs incorporated fexofenadine was most effective with a mixture of surfactant and co-surfactant with improved solubility intend to relieve pain associated with inflammation with single-dose oral administration.
Collapse
Affiliation(s)
- Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India.
| | - Anjali Joshi
- MES's College of Pharmacy, Sonai, Ahmednagar, Maharashtra, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, 50200 Chiang Mai Thailand; Office of Research Administration, Chiang Mai University, 50200 Chiang Mai Thailand
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat 384012, India
| |
Collapse
|
19
|
Lee SM, Lee JG, Yun TH, Kim CH, Cho JH, Kim KS. The Impact of Polymers on Enzalutamide Solid Self-Nanoemulsifying Drug Delivery System and Improved Bioavailability. Pharmaceutics 2024; 16:457. [PMID: 38675118 PMCID: PMC11055097 DOI: 10.3390/pharmaceutics16040457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Enzalutamide (ENZ), marketed under the brand name Xtandi® as a soft capsule, is an androgen receptor signaling inhibitor drug actively used in clinical settings for treating prostate cancer. However, ENZ's low solubility and bioavailability significantly hinder the achievement of optimal therapeutic outcomes. In previous studies, a liquid self-nanoemulsifying drug delivery system (L-SNEDDS) containing ENZ was developed among various solubilization technologies. However, powder formulations that included colloidal silica rapidly formed crystal nuclei in aqueous solutions, leading to a significant decrease in dissolution. Consequently, this study evaluated the efficacy of adding a polymer as a recrystallization inhibitor to a solid SNEDDS (S-SNEDDS) to maintain the drug in a stable, amorphous state in aqueous environments. Polymers were selected based on solubility tests, and the S-SNEDDS formulation was successfully produced via spray drying. The optimized S-SNEDDS formulation demonstrated through X-ray diffraction and differential scanning calorimetry data that it significantly reduced drug crystallinity and enhanced its dissolution rate in simulated gastric and intestinal fluid conditions. In an in vivo study, the bioavailability of orally administered formulations was increased compared to the free drug. Our results highlight the effectiveness of solid-SNEDDS formulations in enhancing the bioavailability of ENZ and outline the potential translational directions for oral drug development.
Collapse
Affiliation(s)
- Su-Min Lee
- Department of Pharmaceutical Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea; (S.-M.L.); (J.-G.L.); (T.-H.Y.); (C.-H.K.)
| | - Jeong-Gyun Lee
- Department of Pharmaceutical Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea; (S.-M.L.); (J.-G.L.); (T.-H.Y.); (C.-H.K.)
| | - Tae-Han Yun
- Department of Pharmaceutical Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea; (S.-M.L.); (J.-G.L.); (T.-H.Y.); (C.-H.K.)
| | - Chul-Ho Kim
- Department of Pharmaceutical Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea; (S.-M.L.); (J.-G.L.); (T.-H.Y.); (C.-H.K.)
| | - Jung-Hyun Cho
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Kyeong-Soo Kim
- Department of Pharmaceutical Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea; (S.-M.L.); (J.-G.L.); (T.-H.Y.); (C.-H.K.)
| |
Collapse
|
20
|
Elhoseny SM, Saleh NM, Meshali MM. Self-Nanoemulsion Intrigues the Gold Phytopharmaceutical Chrysin: In Vitro Assessment and Intrinsic Analgesic Effect. AAPS PharmSciTech 2024; 25:54. [PMID: 38443653 DOI: 10.1208/s12249-024-02767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/10/2024] [Indexed: 03/07/2024] Open
Abstract
Chrysin is a natural flavonoid with a wide range of bioactivities. Only a few investigations have assessed the analgesic activity of chrysin. The lipophilicity of chrysin reduces its aqueous solubility and bioavailability. Hence, self-nanoemulsifying drug delivery systems (SNEDDS) were designed to overcome this problem. Kollisolv GTA, Tween 80, and Transcutol HP were selected as oil, surfactant, and cosurfactant, respectively. SNEDDS A, B, and C were prepared, loaded with chrysin (0.1%w/w), and extensively evaluated. The optimized formula (B) encompasses 25% Kollisolv GTA, 18.75% Tween 80, and 56.25% Transcutol HP was further assessed. TEM, in vitro release, and biocompatibility towards the normal oral epithelial cell line (OEC) were estimated. Brain targeting and acetic acid-induced writhing in a mouse model were studied. After testing several adsorbents, powdered SNEDDS B was formulated and evaluated. The surfactant/cosurfactant (S/CoS) ratio of 1:3 w/w was appropriate for the preparation of SNEDDS. Formula B exhibited instant self-emulsification, spherical nanoscaled droplets of 155.4 ± 32.02 nm, and a zeta potential of - 12.5 ± 3.40 mV. The in vitro release proved the superiority of formula B over chrysin suspension (56.16 ± 10.23 and 9.26 ± 1.67%, respectively). The biocompatibility of formula B towards OEC was duplicated (5.69 ± 0.03 µg/mL). The nociceptive pain was mitigated by formula B more efficiently than chrysin suspension as the writhing numbers reduced from 8.33 ± 0.96 to 0 after 60 min of oral administration. Aerosil R972 was selected as an adsorbent, and its chemical compatibility was confirmed. In conclusion, our findings prove the therapeutic efficacy of chrysin self-nanoemulsion as a potential targeting platform to combat pain.
Collapse
Affiliation(s)
- Samar Mohamed Elhoseny
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Noha Mohamed Saleh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mahasen Mohamed Meshali
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
21
|
Preeti, Sambhakar S, Malik R, Bhatia S, Harrasi AA, Saharan R, Aggarwal G, Kumar S, Sehrawat R, Rani C. Lipid Horizons: Recent Advances and Future Prospects in LBDDS for Oral Administration of Antihypertensive Agents. Int J Hypertens 2024; 2024:2430147. [PMID: 38410720 PMCID: PMC10896658 DOI: 10.1155/2024/2430147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/20/2023] [Accepted: 01/18/2024] [Indexed: 02/28/2024] Open
Abstract
The lipid-based drug delivery system (LBDDS) is a well-established technique that is anticipated to bring about comprehensive transformations in the pharmaceutical field, impacting the management and administration of drugs, as well as treatment and diagnosis. Various LBDDSs verified to be an efficacious mechanism for monitoring hypertension systems are SEDDS (self-nano emulsifying drug delivery), nanoemulsion, microemulsions, vesicular systems (transferosomes and liposomes), and solid lipid nanoparticles. LBDDSs overcome the shortcomings that are associated with antihypertensive agents because around fifty percent of the antihypertensive agents experience a few drawbacks including short half-life because of hepatic first-pass metabolism, poor aqueous solubility, low permeation rate, and undesirable side effects. This review emphasizes antihypertensive agents that were encapsulated into the lipid carrier to improve their poor oral bioavailability. Incorporating cutting-edge technologies such as nanotechnology and targeted drug delivery, LBDDS holds promise in addressing the multifactorial nature of hypertension. By fine-tuning drug release profiles and enhancing drug uptake at specific sites, LBDDS can potentially target renin-angiotensin-aldosterone system components, sympathetic nervous system pathways, and endothelial dysfunction, all of which play crucial roles in hypertension pathophysiology. The future of hypertension management using LBDDS is promising, with ongoing reviews focusing on precision medicine approaches, improved biocompatibility, and reduced toxicity. As we delve deeper into understanding the intricate mechanisms underlying hypertension, LBDDS offers a pathway to develop next-generation antihypertensive therapies that are safer, more effective, and tailored to individual patient needs.
Collapse
Affiliation(s)
- Preeti
- Banasthali Vidyapith, Vanasthali Road, Aliyabad 304022, Rajasthan, India
- Gurugram Global College of Pharmacy, Haily Mandi Rd, Farukh Nagar 122506, Haryana, India
| | - Sharda Sambhakar
- Banasthali Vidyapith, Vanasthali Road, Aliyabad 304022, Rajasthan, India
| | - Rohit Malik
- Gurugram Global College of Pharmacy, Haily Mandi Rd, Farukh Nagar 122506, Haryana, India
- SRM Modinagar College of Pharmacy, SRMIST, Delhi-NCR Campus, Ghaziabad, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mouz, Nizwa, Oman
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mouz, Nizwa, Oman
| | - Renu Saharan
- Banasthali Vidyapith, Vanasthali Road, Aliyabad 304022, Rajasthan, India
- Maharishi Markandeshwar Deemed to be University, Mullana, Ambala 133203, Haryana, India
| | - Geeta Aggarwal
- Banasthali Vidyapith, Vanasthali Road, Aliyabad 304022, Rajasthan, India
| | - Suresh Kumar
- Bharat Institute of Pharmacy, Pehladpur, Babain, Kurukshetra 136132, Haryana, India
| | - Renu Sehrawat
- School of Medical & Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 122103, India
| | - Chanchal Rani
- Gurugram Global College of Pharmacy, Haily Mandi Rd, Farukh Nagar 122506, Haryana, India
| |
Collapse
|
22
|
Papp B, Le Borgne M, Perret F, Marminon C, Józsa L, Pető Á, Kósa D, Nagy L, Kéki S, Ujhelyi Z, Pallér Á, Budai I, Bácskay I, Fehér P. Formulation and Investigation of CK2 Inhibitor-Loaded Alginate Microbeads with Different Excipients. Pharmaceutics 2023; 15:2701. [PMID: 38140042 PMCID: PMC10748227 DOI: 10.3390/pharmaceutics15122701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of this study was to formulate and characterize CK2 inhibitor-loaded alginate microbeads via the polymerization method. Different excipients were used in the formulation to improve the penetration of an active agent and to stabilize our preparations. Transcutol® HP was added to the drug-sodium alginate mixture and polyvinylpyrrolidone (PVP) was added to the hardening solution, alone and in combination. To characterize the formulations, mean particle size, scanning electron microscopy analysis, encapsulation efficiency, swelling behavior, an enzymatic stability test and an in vitro dissolution study were performed. The cell viability assay and permeability test were also carried out on the Caco-2 cell line. The anti-oxidant and anti-inflammatory effects of the formulations were finally evaluated. The combination of Transcutol® HP and PVP in the formulation of sodium alginate microbeads could improve the stability, in vitro permeability, anti-oxidant and anti-inflammatory effects of the CK2 inhibitor.
Collapse
Affiliation(s)
- Boglárka Papp
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.P.); (L.J.); (Á.P.); (D.K.); (Z.U.); (Á.P.); (I.B.)
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - Marc Le Borgne
- Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, 69373 Lyon, France; (M.L.B.); (C.M.)
| | - Florent Perret
- Univ Lyon, Université Lyon 1, CNRS, INSA, CPE, ICBMS, 69622 Lyon, France;
| | - Christelle Marminon
- Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, 69373 Lyon, France; (M.L.B.); (C.M.)
| | - Liza Józsa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.P.); (L.J.); (Á.P.); (D.K.); (Z.U.); (Á.P.); (I.B.)
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - Ágota Pető
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.P.); (L.J.); (Á.P.); (D.K.); (Z.U.); (Á.P.); (I.B.)
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - Dóra Kósa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.P.); (L.J.); (Á.P.); (D.K.); (Z.U.); (Á.P.); (I.B.)
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - Lajos Nagy
- Department of Applied Chemistry, Faculty of Science and Technology, Institute of Chemistry, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary; (L.N.); (S.K.)
| | - Sándor Kéki
- Department of Applied Chemistry, Faculty of Science and Technology, Institute of Chemistry, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary; (L.N.); (S.K.)
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.P.); (L.J.); (Á.P.); (D.K.); (Z.U.); (Á.P.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - Ádám Pallér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.P.); (L.J.); (Á.P.); (D.K.); (Z.U.); (Á.P.); (I.B.)
| | - István Budai
- Faculty of Engineering, University of Debrecen, Ótemető Utca 2–4, H-4028 Debrecen, Hungary;
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.P.); (L.J.); (Á.P.); (D.K.); (Z.U.); (Á.P.); (I.B.)
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.P.); (L.J.); (Á.P.); (D.K.); (Z.U.); (Á.P.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| |
Collapse
|
23
|
Al Ashmawy AZG, Alyami MH, Eissa NG, Balata GF, El Nahas HM. Oral bioavailability enhancement of doxazosin mesylate: Nanosuspension versus self-nanoemulsifying drug delivery systems. ADMET AND DMPK 2023; 12:167-176. [PMID: 38560714 PMCID: PMC10974821 DOI: 10.5599/admet.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/29/2023] [Indexed: 04/04/2024] Open
Abstract
Background and purpose Doxazosin mesylate (DOX) is an antihypertensive drug that possesses poor water solubility and, hence, poor release properties. Both nanosuspensions and self-nanoemulsifying drug delivery systems (SNEDDS) are becoming nanotechnology techniques for the enhancement of water solubility of different drugs. Experimental approach The study's goal was to identify the best drug delivery system able to enhance the release and antihypertensive effect of DOX by comparing the physical characteristics such as particle size, zeta potential, entrapment efficiency, release rate, and main arterial blood pressure of DOX-loaded nanosuspensions and SNEDDS in liquid and solid form. Key results DOX nanosuspension preparation had a particle size of 385±13 nm, poly-dispersity index of 0.049±3, zeta potential of 50 ± 4 mV and drug release after 20 min (91±0.43 %). Liquid SNEDDS had a droplet size of 224±15 nm, poly-dispersity index of (0.470±0.01), zeta potential of -5±0.10 mV and DR20min of 93±4 %. Solid SEDDS showed particle size of 79±14 nm, poly-dispersity index of 1±0.00, a zeta potential of -18 ±0.26 mv and DR20min of 100 ±2.72 %. Conclusion Finally, in terms of the mean arterial blood pressure lowering, solid SNEDDS performed better effect than both liquid SNEDDS and nanosuspension (P >0.05).
Collapse
Affiliation(s)
- Al Zahraa G. Al Ashmawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammad H. Alyami
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia
| | - Noura G. Eissa
- Badr University in Cairo Research Center, Badr University in Cairo, Badr City, Cairo 11829, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Gehan F. Balata
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Practice Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Hanan M. El Nahas
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
24
|
Parveen N, Sheikh A, Molugulu N, Annadurai S, Wahab S, Kesharwani P. Drug permeation enhancement, efficacy, and safety assessment of azelaic acid loaded SNEDDS hydrogel to overcome the treatment barriers of atopic dermatitis. ENVIRONMENTAL RESEARCH 2023; 236:116850. [PMID: 37558118 DOI: 10.1016/j.envres.2023.116850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Atopic dermatitis is one of the most widespread chronic inflammatory skin conditions that can occur at any age, though the prevalence is highest in children. The purpose of the current study was to prepare and optimize the azelaic acid (AzA) loaded SNEDDS using Pseudo ternary phase diagram, which was subsequently incorporated into the Carbopol 940 hydrogel for the treatment of atopic dermatitis. The composition was evaluated for size, entrapment efficiency, in vitro, ex vivo, and in vivo studies. The polydispersity index of the optimized preparation was found to be less than 0.5, and the size of the distributed globules was found to be 151.20 ± 3.67 nm. The SNEDDS hydrogel was characterized for pH, viscosity, spreadability, and texture analysis. When compared to the marketed formulation, SNEDDS hydrogel was found to have a higher rate of permeation through the rat skin. In addition, a skin irritation test carried out on experimental animals showed that the SNEDDS formulation did not exhibit any erythematous symptoms after a 24-h exposure. In conclusion, the topical delivery of AzA through the skin using SNEDDS hydrogel could prove to be an effective approach for the treatment of atopic dermatitis.
Collapse
Affiliation(s)
- Neha Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nagashekhara Molugulu
- School of Pharmacy, Monash University, Bandar Sunway, Jalan Lagoon Selatan, 47500, Malaysia
| | - Sivakumar Annadurai
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
25
|
Haji Ali B, Shirvaliloo M, Fathi-Karkan S, Mirinejad S, Ulucan-Karnak F, Sargazi S, Sargazi S, Sheervalilou R, Rahman MM. Nanotechnology-Based Strategies for Extended-Release Delivery of Angiotensin Receptor Blockers (ARBs): A Comprehensive Review. Chem Biodivers 2023; 20:e202301157. [PMID: 37796134 DOI: 10.1002/cbdv.202301157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/06/2023]
Abstract
There has been a significant shift in the perception of hypertension as an important contributor to the global disease burden. Approximately 6 % and 8 % of pregnancies are affected by hypertension, which can adversely affect the mother and the fetus. Furthermore, a hypertensive individual is at increased risk of developing kidney disease, arterial hardening, eye damage, and strokes. Using angiotensin receptor blockers (ARBs) is widespread in treating hypertension, heart failure, coronary artery disease, and diabetic nephropathy. Despite this, some ARBs have limited use due to their poor oral bioavailability and water solubility. To tackle this, a variety of nanoparticle (NP)-based systems, such as polymeric NPs (i. e., dendrimers), polymeric micelles, polymer-drug conjugates, lipid NPs, nanoemulsions, self-emulsifying drug delivery systems (SEDDS), solid lipid NPs (SLNs), nanostructured lipid carriers (NLCs), carbon-based nanocarriers, inorganic NPs, and nanocrystals, have been recently developed for efficient delivery of losartan, Valsartan (Val), Olmesartan (OLM), Telmisartan (TEL), Candesartan, Eprosartan, Irbesartan, and Azilsartan to target cells. This review article provides a literature-based comparison of the various classes of ARBs, their mechanisms of action, and an overview of the nanoformulations developed for ARB delivery and successfully applied to managing hypertension, diabetic complications, and other conditions.
Collapse
Affiliation(s)
- Bahareh Haji Ali
- Department of Medical Physics, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 9453155166, Iran
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fulden Ulucan-Karnak
- Department of Medical Biochemistry, Institute of Health Sciences, Ege University, İzmir, 35100, Turkey
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran, Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sara Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
26
|
Preeti, Sambhakar S, Malik R, Bhatia S, Al Harrasi A, Rani C, Saharan R, Kumar S, Geeta, Sehrawat R. Nanoemulsion: An Emerging Novel Technology for Improving the Bioavailability of Drugs. SCIENTIFICA 2023; 2023:6640103. [PMID: 37928749 PMCID: PMC10625491 DOI: 10.1155/2023/6640103] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023]
Abstract
The pharmaceutical sector has made considerable strides recently, emphasizing improving drug delivery methods to increase the bioavailability of various drugs. When used as a medication delivery method, nanoemulsions have multiple benefits. Their small droplet size, which is generally between 20 and 200 nanometers, creates a significant interfacial area for drug dissolution, improving the solubility and bioavailability of drugs that are weakly water-soluble. Additionally, nanoemulsions are a flexible platform for drug administration across various therapeutic areas since they can encapsulate hydrophilic and hydrophobic medicines. Nanoemulsion can be formulated in multiple dosage forms, for example, gels, creams, foams, aerosols, and sprays by using low-cost standard operative processes and also be taken orally, topically, topically, intravenously, intrapulmonary, intranasally, and intraocularly. The article explores nanoemulsion formulation and production methods, emphasizing the role of surfactants and cosurfactants in creating stable formulations. In order to customize nanoemulsions to particular medication delivery requirements, the choice of components and production techniques is crucial in assuring the stability and efficacy of the finished product. Nanoemulsions are a cutting-edge technology with a lot of potential for improving medication bioavailability in a variety of therapeutic contexts. They are a useful tool in the creation of innovative pharmaceutical formulations due to their capacity to enhance drug solubility, stability, and delivery. Nanoemulsions are positioned to play a crucial role in boosting medication delivery and enhancing patient outcomes as this field of study continues to advance.
Collapse
Affiliation(s)
- Preeti
- Banasthali Vidyapith, Vanasthali Road, Aliyabad, Rajasthan 304022, India
- Gurugram Global College of Pharmacy, Haily Mandi Rd, Farukh Nagar, Haryana 122506, India
| | - Sharda Sambhakar
- Banasthali Vidyapith, Vanasthali Road, Aliyabad, Rajasthan 304022, India
| | - Rohit Malik
- Gurugram Global College of Pharmacy, Haily Mandi Rd, Farukh Nagar, Haryana 122506, India
| | - Saurabh Bhatia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Oman
| | - Ahmed Al Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Oman
| | - Chanchal Rani
- Gurugram Global College of Pharmacy, Haily Mandi Rd, Farukh Nagar, Haryana 122506, India
| | - Renu Saharan
- Banasthali Vidyapith, Vanasthali Road, Aliyabad, Rajasthan 304022, India
- Maharishi Markandeswar Deemed to be University, Mullana, Ambala, Haryana 133203, India
| | - Suresh Kumar
- Ganpati Institute of Pharmacy, Yamunanagar, Haryana 135102, India
| | - Geeta
- Banasthali Vidyapith, Vanasthali Road, Aliyabad, Rajasthan 304022, India
| | - Renu Sehrawat
- School of Medical & Allied Sciences, K R Mangalam University, Gurugram, Haryana 122103, India
| |
Collapse
|
27
|
Asghar Z, Jamshaid T, Sajid-ur-Rehman M, Jamshaid U, Gad HA. Novel Transethosomal Gel Containing Miconazole Nitrate; Development, Characterization, and Enhanced Antifungal Activity. Pharmaceutics 2023; 15:2537. [PMID: 38004517 PMCID: PMC10675164 DOI: 10.3390/pharmaceutics15112537] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Miconazole nitrate (MCNR) is a BCS class II antifungal drug with poor water solubility. Although numerous attempts have been made to increase its solubility, formulation researchers struggle with this significant issue. Transethosomes are promising novel nanocarriers for improving the solubility and penetration of drugs that are inadequately soluble and permeable. Thus, the objective of this study was to develop MCNR-loaded transethosomal gel in order to enhance skin permeation and antifungal activity. MCNR-loaded transethosomes (MCNR-TEs) were generated using the thin film hydration method and evaluated for their zeta potential, particle size, polydispersity index, and entrapment efficiency (EE%). SEM, FTIR, and DSC analyses were also done to characterize the optimized formulation of MCNR-TEs (MT-8). The optimized formulation of MCNR-TEs was incorporated into a carbopol 934 gel base to form transethosomal gel (MNTG) that was subjected to ex vivo permeation and drug release studies. In vitro antifungal activity was carried out against Candida albicans through the cup plate technique. An in vivo skin irritation test was also performed on Wistar albino rats. MT-8 displayed smooth spherical transethosomal nanoparticles with the highest EE% (89.93 ± 1.32%), lowest particle size (139.3 ± 1.14 nm), polydispersity index (0.188 ± 0.05), and zeta potential (-18.1 ± 0.10 mV). The release profile of MT-8 displayed an initial burst followed by sustained release, and the release data were best fitted with the Korsmeyer-Peppas model. MCNR-loaded transethosomal gel was stable and showed a non-Newtonian flow. It was found that ex vivo drug permeation of MNTG was 48.76%, which was significantly higher than that of MNPG (plain gel) (p ≤ 0.05) following a 24-h permeation study. The prepared MCNR transethosomal gel exhibited increased antifungal activity, and its safety was proven by the results of an in vivo skin irritation test. Therefore, the developed transethosomal gel can be a proficient drug delivery system via a topical route with enhanced antifungal activity and skin permeability.
Collapse
Affiliation(s)
- Zara Asghar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (Z.A.); (M.S.-u.-R.)
| | - Talha Jamshaid
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (Z.A.); (M.S.-u.-R.)
| | - Muhammad Sajid-ur-Rehman
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (Z.A.); (M.S.-u.-R.)
| | - Usama Jamshaid
- Department of Pharmaceutics, Faculty of Pharmacy, Strasbourg University, 67084 Strasbourg, France;
| | - Heba A. Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| |
Collapse
|
28
|
Jahan RN, Khan Z, Akhtar MS, Ansari MD, Solanki P, Ahmad FJ, Aqil M, Sultana Y. Development of Bedaquiline-Loaded SNEDDS Using Quality by Design (QbD) Approach to Improve Biopharmaceutical Attributes for the Management of Multidrug-Resistant Tuberculosis (MDR-TB). Antibiotics (Basel) 2023; 12:1510. [PMID: 37887211 PMCID: PMC10603879 DOI: 10.3390/antibiotics12101510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Background: The ever-growing emergence of antibiotic resistance associated with tuberculosis (TB) has become a global challenge. In 2012, the USFDA gave expedited approval to bedaquiline (BDQ) as a new treatment for drug-resistant TB in adults when no other viable options are available. BDQ is a diarylquinoline derivative and exhibits targeted action on mycobacterium tuberculosis, but due to poor solubility, the desired therapeutic action is not achieved. Objective: To develop a QbD-based self-nanoemulsifying drug delivery system of bedaquiline using various oils, surfactants, and co-surfactants. Methods: The quality target product profile (QTPP) and critical quality attributes (CQAs) were identified with a patient-centric approach, which facilitated the selection of critical material attributes (CMAs) during pre-formulation studies and initial risk assessment. Caprylic acid as a lipid, propylene glycol as a surfactant, and Transcutol-P as a co-surfactant were selected as CMAs for the formulation of bedaquiline fumarate SNEDDS. Pseudo-ternary phase diagrams were constructed to determine the optimal ratio of oil and Smix. To optimize the formulation, a Box-Benkhen design (BBD) was used. The optimized formulation (BDQ-F-SNEDSS) was further evaluated for parameters such as droplet size, polydispersity index (PDI), percentage transmittance, dilution studies, stability studies, and cell toxicity through the A549 cell. Results: Optimized BDQ-F-SNEDDS showed well-formed droplets of 98.88 ± 2.1 nm with a zeta potential of 21.16 mV. In vitro studies showed enhanced drug release with a high degree of stability at 25 ± 2 °C, 60 ± 5% and 40 ± 2 °C, 75 ± 5%. Furthermore, BDQ-F-SNEDDS showed promising cell viability in A549 cells, indicating BDQ-F-SNEDDS as a safer formulation for oral delivery. Conclusion: Finally, it was concluded that the utilization of a QbD approach in the development of BDQ-F-loaded SNEDDS offers a promising strategy to improve the biopharmaceutical properties of the drug, resulting in potential cost and time savings.
Collapse
Affiliation(s)
- Rao Nargis Jahan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (R.N.J.); (M.D.A.); (F.J.A.)
| | - Zafar Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (R.N.J.); (M.D.A.); (F.J.A.)
| | - Md. Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Al-Fara, Abha 62223, Saudi Arabia
| | - Mohd Danish Ansari
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (R.N.J.); (M.D.A.); (F.J.A.)
| | - Pavitra Solanki
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India;
| | - Farhan J. Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (R.N.J.); (M.D.A.); (F.J.A.)
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (R.N.J.); (M.D.A.); (F.J.A.)
| | - Yasmin Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (R.N.J.); (M.D.A.); (F.J.A.)
| |
Collapse
|
29
|
Ateeq MAM, Aalhate M, Mahajan S, Kumar GS, Sen S, Singh H, Gupta U, Maji I, Dikundwar A, Guru SK, Singh PK. Self-nanoemulsifying drug delivery system (SNEDDS) of docetaxel and carvacrol synergizes the anticancer activity and enables safer toxicity profile: optimization, and in-vitro, ex-vivo and in-vivo pharmacokinetic evaluation. Drug Deliv Transl Res 2023; 13:2614-2638. [PMID: 37067745 DOI: 10.1007/s13346-023-01342-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 04/18/2023]
Abstract
Docetaxel (DTX) is a first-line chemotherapeutic molecule with a broad-spectrum anticancer activity. On the other hand, carvacrol (CV) has anti-inflammatory, antioxidant, cytotoxic, and hepatoprotective properties that could reduce undue toxicity caused by DTX chemotherapy. Thus, in order to overcome the challenges posed by DTX's poor aqueous solubility, low permeability, hepatic first pass, and systemic toxicities, we have developed a novel solid self-nanoemulsifying drug delivery system (S-SNEDDS) co-loaded with DTX and CV. In the present investigation, liquid-SNEDDS (L-SNEDDS) were fabricated using Nigella sativa oil, Cremophor RH 40, and Ethanol which was converted into solid by lyophilization using Aerosil 200. The reconstituted CV-DTX-S-SNEDDS showed an average globule size of < 200 nm with promising flow properties (angle of repose θ: 33.22 ± 0.06). Additionally, 2.3-fold higher dissolution of DTX was observed from CV-DTX-S-SNEDDS after 6 h as compared to free DTX. Similar trend was followed in dialysis release experiments with 1.5-fold higher release within 24 h. Ex vivo permeation studies demonstrated significantly increased permeation of 1077.02 ± 12.72 μg/cm2 of CV-DTX-S-SNEDDS after 12 h. In vitro cell cytotoxicity studies revealed 5.2-fold reduction in IC50 as compared to free DTX in MDA-MB-231 cells. Formulation was able to induce higher apoptosis in cells treated with CV-DTX-S-SNEDDS as compared to free DTX and CV. It was evident from toxicity studies that CV-DTX-S-SNEDDS was well tolerated at higher dose where CV was able to manage the toxic effects of free DTX. In vivo pharmacokinetic study showed 3.4-fold increased Cmax and improved oral bioavailability as compared to free DTX. Thus, CV-DTX-S-SNEDDS could be an encouraging option for facilitating DTX oral therapy.
Collapse
Affiliation(s)
- Mohd Aman Mohd Ateeq
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Gogikar Shiva Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, India
| | - Sibu Sen
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, India
| | - Hoshiyar Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Amol Dikundwar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
30
|
van Staden D, Haynes RK, Viljoen JM. The Development of Dermal Self-Double-Emulsifying Drug Delivery Systems: Preformulation Studies as the Keys to Success. Pharmaceuticals (Basel) 2023; 16:1348. [PMID: 37895819 PMCID: PMC10610238 DOI: 10.3390/ph16101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Self-emulsifying drug delivery systems (SEDDSs) are lipid-based systems that are superior to other lipid-based oral drug delivery systems in terms of providing drug protection against the gastrointestinal (GI) environment, inhibition of drug efflux as mediated by P-glycoprotein, enhanced lymphatic drug uptake, improved control over plasma concentration profiles of drugs, enhanced stability, and drug loading efficiency. Interest in dermal spontaneous emulsions has increased, given that systems have been reported to deliver drugs across mucus membranes, as well as the outermost layer of the skin into the underlying layers. The background and development of a double spontaneous emulsion incorporating four anti-tubercular drugs, clofazimine (CFZ), isoniazid (INH), pyrazinamide (PZY), and rifampicin (RIF), are described here. Our methods involved examination of oil miscibility, the construction of pseudoternary phase diagrams, the determination of self-emulsification performance and the emulsion stability index of primary emulsions (PEs), solubility, and isothermal micro calorimetry compatibility and examination of emulsions via microscopy. Overall, the potential of self-double-emulsifying drug delivery systems (SDEDDSs) as a dermal drug delivery vehicle is now demonstrated. The key to success here is the conduct of preformulation studies to enable the development of dermal SDEDDSs. To our knowledge, this work represents the first successful example of the production of SDEDDSs capable of incorporating four individual drugs.
Collapse
Affiliation(s)
- Daniélle van Staden
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), Building G16, North-West University, 11 Hoffman Street, Potchefstroom 2520, South Africa; (D.v.S.); (R.K.H.)
| | - Richard K. Haynes
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), Building G16, North-West University, 11 Hoffman Street, Potchefstroom 2520, South Africa; (D.v.S.); (R.K.H.)
- Rural Health Research Institute, Charles Sturt University, 346 Leeds Parade, Orange, NSW 2800, Australia
| | - Joe M. Viljoen
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), Building G16, North-West University, 11 Hoffman Street, Potchefstroom 2520, South Africa; (D.v.S.); (R.K.H.)
| |
Collapse
|
31
|
Zewail MB, El-Gizawy SA, Asaad GF, Shabana ME, El-Dakroury WA. Chitosan coated clove oil-based nanoemulsion: An attractive option for oral delivery of leflunomide in rheumatoid arthritis. Int J Pharm 2023; 643:123224. [PMID: 37451327 DOI: 10.1016/j.ijpharm.2023.123224] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/25/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Rheumatoid arthritis (RA), a distressing inflammatory autoimmune disease, is managed mainly by Disease-modifying antirheumatic drugs (DMARDs), e.g. leflunomide (LEF). LEF (BCS class II) has limited solubility and adverse effects following its systemic exposure. The appealing antirheumatic properties of both clove oil and chitosan (CS) were exploited to design oral leflunomide (LEF)-loaded nanoemulsion (NE) system to augment the therapeutic action of LEF and decrease its systemic side effects as well. Different LEF-NEs were prepared using clove oil, Tween® 20 (surfactant), and PEG 400(co-surfactant) and characterized by thermodynamic stability, percentage transmittance, cloud point, size analysis, and drug content. Optimized LEF-NE was subjected to CS coating forming LEF-CS-NE that exhibited nanometric size range, prolonged drug release, and good physical stability. In vivo anti-rheumatic activity of pure LEF, market LEF, and LEF-CS-NE was assessed utilizing a complete Freund's adjuvant (CFA) rat model. Treatment with LEF-CS-NE reduced edema rate (48.68% inhibition) and caused a marked reduction in interleukin-6 (IL-6) (510.9 ± 2.48 pg/ml), tumor necrosis factor- α (TNF-α) (397.3 ± 2.53 pg/ml), and rheumatoid factor (RF) (42.58 ± 0.49 U/ml). Furthermore, LEF-CS-NE reduced serum levels of glutamic pyruvic transaminase (GPT) to (83.19%) and glutamic oxaloacetic transaminase (GOT) to (40.68%) compared to the control + ve group. The effects of LEF-CS-NE were also superior to both pure and market LEF and showed better results in histopathological studies of paws, liver, kidney, lung, and heart. The remarkable therapeutic and safety profile of LEF-CS-NE makes it a potential oral system for the management of RA.
Collapse
Affiliation(s)
- Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Sanaa A El-Gizawy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Gihan F Asaad
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Marwa E Shabana
- Pathology Department, National Research Centre, Dokki, Giza, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| |
Collapse
|
32
|
Ansari MM, Vo DK, Choi HI, Ryu JS, Bae Y, Bukhari NI, Zeb A, Kim JK, Maeng HJ. Formulation and Evaluation of a Self-Microemulsifying Drug Delivery System of Raloxifene with Improved Solubility and Oral Bioavailability. Pharmaceutics 2023; 15:2073. [PMID: 37631288 PMCID: PMC10459739 DOI: 10.3390/pharmaceutics15082073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Poor aqueous solubility and dissolution limit the oral bioavailability of Biopharmaceutics Classification System (BCS) class II drugs. In this study, we aimed to improve the aqueous solubility and oral bioavailability of raloxifene hydrochloride (RLX), a BCS class II drug, using a self-microemulsifying drug delivery system (SMEDDS). Based on the solubilities of RLX, Capryol 90, Tween 80/Labrasol ALF, and polyethylene glycol 400 (PEG-400) were selected as the oil, surfactant mixture, and cosurfactant, respectively. Pseudo-ternary phase diagrams were constructed to determine the optimal composition (Capryol 90/Tween 80/Labrasol ALF/PEG-400 in 150/478.1/159.4/212.5 volume ratio) for RLX-SMEDDS with a small droplet size (147.1 nm) and stable microemulsification (PDI: 0.227). Differential scanning calorimetry and powder X-ray diffraction of lyophilized RLX-SMEDDS revealed the loss of crystallinity, suggesting a molecularly dissolved or amorphous state of RLX in the SMEDDS formulation. Moreover, RLX-SMEDDS exhibited significantly higher saturation solubility and dissolution rate in water, simulated gastric fluid (pH 1.2), and simulated intestinal fluid (pH 6.8) than RLX powder. Additionally, oral administration of RLX-SMEDDS to female rats resulted in 1.94- and 1.80-fold higher area under the curve and maximum plasma concentration, respectively, than the RLX dispersion. Collectively, our findings suggest SMEDDS is a promising oral formulation to enhance the therapeutic efficacy of RLX.
Collapse
Affiliation(s)
- Muhammad Mohsin Ansari
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Dang-Khoa Vo
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Ho-Ik Choi
- College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Jeong-Su Ryu
- College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Yumi Bae
- College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Nadeem Irfan Bukhari
- Punjab University College of Pharmacy, University of Punjab, Lahore 54590, Pakistan
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Jin-Ki Kim
- College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| |
Collapse
|
33
|
Frei G, Haimhoffer Á, Csapó E, Bodnár K, Vasvári G, Nemes D, Lekli I, Gyöngyösi A, Bácskay I, Fehér P, Józsa L. In Vitro and In Vivo Efficacy of Topical Dosage Forms Containing Self-Nanoemulsifying Drug Delivery System Loaded with Curcumin. Pharmaceutics 2023; 15:2054. [PMID: 37631267 PMCID: PMC10459893 DOI: 10.3390/pharmaceutics15082054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
The external use of curcumin is rare, although it can be a valuable active ingredient in the treatment of certain inflammatory diseases. The aim of our experimental work was to formulate topical dosage forms containing curcumin for the treatment of atopic dermatitis. Curcumin has extremely poor solubility and bioavailability, so we have tried to increase it with the usage of self-emulsifying drug delivery systems. Creams and gels were formulated using penetration-enhancing surfactants and gelling agents. The release of the drug from the vehicle and its penetration through the membrane were determined using a Franz diffusion cell. An MTT cytotoxicity and in vitro antioxidant assays were performed on HaCaT cell line. The in vivo anti-inflammatory effect of the preparations was tested by measuring rat paw edema. In addition, we examined the degree of inflammation induced by UV radiation after pretreatment with the cream and the gel on rats. For the gels containing SNEDDS, the highest penetration was measured after half an hour, while for the cream, it took one hour to reach the maximum concentration. The gel containing Pemulen TR-1 showed the highest drug release. It was determined that the curcumin-containing preparations can be safely applied on the skin and have antioxidant effects. The animal experiments have proven the effectiveness of curcumin-containing topical preparations.
Collapse
Affiliation(s)
- Gréta Frei
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (G.F.); (Á.H.); (E.C.); (K.B.); (G.V.); (D.N.); (I.B.); (P.F.)
| | - Ádám Haimhoffer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (G.F.); (Á.H.); (E.C.); (K.B.); (G.V.); (D.N.); (I.B.); (P.F.)
- Healthcare Industry Institute, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (A.G.)
| | - Enikő Csapó
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (G.F.); (Á.H.); (E.C.); (K.B.); (G.V.); (D.N.); (I.B.); (P.F.)
| | - Krisztina Bodnár
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (G.F.); (Á.H.); (E.C.); (K.B.); (G.V.); (D.N.); (I.B.); (P.F.)
| | - Gábor Vasvári
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (G.F.); (Á.H.); (E.C.); (K.B.); (G.V.); (D.N.); (I.B.); (P.F.)
- Healthcare Industry Institute, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (A.G.)
| | - Dániel Nemes
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (G.F.); (Á.H.); (E.C.); (K.B.); (G.V.); (D.N.); (I.B.); (P.F.)
- Healthcare Industry Institute, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (A.G.)
| | - István Lekli
- Healthcare Industry Institute, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (A.G.)
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Alexandra Gyöngyösi
- Healthcare Industry Institute, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (A.G.)
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (G.F.); (Á.H.); (E.C.); (K.B.); (G.V.); (D.N.); (I.B.); (P.F.)
- Healthcare Industry Institute, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (A.G.)
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (G.F.); (Á.H.); (E.C.); (K.B.); (G.V.); (D.N.); (I.B.); (P.F.)
| | - Liza Józsa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (G.F.); (Á.H.); (E.C.); (K.B.); (G.V.); (D.N.); (I.B.); (P.F.)
- Healthcare Industry Institute, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (A.G.)
| |
Collapse
|
34
|
Muhammed SA, Al-Kinani KK. Formulation and in vitro evaluation of meloxicam as a self-microemulsifying drug delivery system. F1000Res 2023; 12:315. [PMID: 37359788 PMCID: PMC10285354 DOI: 10.12688/f1000research.130749.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Background: The nonsteroidal anti-inflammatory medication meloxicam (MLX) belongs to the oxicam family and is used to reduce inflammation and pain. The aim of this study was to improve MLX's dispersibility and stability by producing it as a liquid self-microemulsifying drug delivery system since it is practically insoluble in water. Methods: Five different formulations were made by adjusting the amounts of propylene glycol, Transcutol P, Tween 80, and oleic acid oil and establishing a pseudo-ternary diagram in ratios of 1:1, 1:2, 1:3, 1:4, and 3:4, respectively. All of the prepared formulations were tested for a variety of properties, including thermodynamic stability, polydispersity index, particle size distributions, dilution resistance, drug contents, dispersibility, in vitro solubility of the drug, and emulsification time. Results: F5 was chosen as the optimal MLX liquid self-microemulsion due to its higher drug content (99.8%), greater in vitro release (100% at 40 min), smaller droplet size (63 nm), lower polydispersity index (PDI) value (0.3), and higher stability (a zeta potential of -81 mV). Conclusions: According to the data provided here, the self-microemulsifying drug delivery system is the most practical method for improving the dispersibility and stability of MLX.
Collapse
Affiliation(s)
- Saja Abdulkareem Muhammed
- Department of Pharmaceutics, College of Pharmacy, University of Baghdad, Baghdad, Baghdad Governorate, Iraq
| | - Khalid Kadhem Al-Kinani
- Department of Pharmaceutics, College of Pharmacy, University of Baghdad, Baghdad, Baghdad Governorate, Iraq
| |
Collapse
|
35
|
Nazlı H, Mesut B, Akbal-Dağıstan Ö, Özsoy Y. A Novel Semi-Solid Self-Emulsifying Formulation of Aprepitant for Oral Delivery: An In Vitro Evaluation. Pharmaceutics 2023; 15:pharmaceutics15051509. [PMID: 37242751 DOI: 10.3390/pharmaceutics15051509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Aprepitant is the first member of a relatively new antiemetic drug class called NK1 receptor antagonists. It is commonly prescribed to prevent chemotherapy-induced nausea and vomiting. Although it is included in many treatment guidelines, its poor solubility causes bioavailability issues. A particle size reduction technique was used in the commercial formulation to overcome low bioavailability. Production with this method consists of many successive steps that cause the cost of the drug to increase. This study aims to develop an alternative, cost-effective formulation to the existing nanocrystal form. We designed a self-emulsifying formulation that can be filled into capsules in a melted state and then solidified at room temperature. Solidification was achieved by using surfactants with a melting temperature above room temperature. Various polymers have also been tested to maintain the supersaturated state of the drug. The optimized formulation consists of CapryolTM 90, Kolliphor® CS20, Transcutol® P, and Soluplus®; it was characterized by DLS, FTIR, DSC, and XRPD techniques. A lipolysis test was conducted to predict the digestion performance of formulations in the gastrointestinal system. Dissolution studies showed an increased dissolution rate of the drug. Finally, the cytotoxicity of the formulation was tested in the Caco-2 cell line. According to the results, a formulation with improved solubility and low toxicity was obtained.
Collapse
Affiliation(s)
- Hakan Nazlı
- Department of Pharmaceutical Technology, Trakya University, 22030 Edirne, Turkey
| | - Burcu Mesut
- Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Turkey
| | - Özlem Akbal-Dağıstan
- Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Turkey
| | - Yıldız Özsoy
- Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Turkey
| |
Collapse
|
36
|
Ahmad J, Garg A, Mustafa G, Mohammed AA, Ahmad MZ. 3D Printing Technology as a Promising Tool to Design Nanomedicine-Based Solid Dosage Forms: Contemporary Research and Future Scope. Pharmaceutics 2023; 15:1448. [PMID: 37242690 PMCID: PMC10220923 DOI: 10.3390/pharmaceutics15051448] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
3D printing technology in medicine is gaining great attention from researchers since the FDA approved the first 3D-printed tablet (Spritam®) on the market. This technique permits the fabrication of various types of dosage forms with different geometries and designs. Its feasibility in the design of different types of pharmaceutical dosage forms is very promising for making quick prototypes because it is flexible and does not require expensive equipment or molds. However, the development of multi-functional drug delivery systems, specifically as solid dosage forms loaded with nanopharmaceuticals, has received attention in recent years, although it is challenging for formulators to convert them into a successful solid dosage form. The combination of nanotechnology with the 3D printing technique in the field of medicine has provided a platform to overcome the challenges associated with the fabrication of nanomedicine-based solid dosage forms. Therefore, the major focus of the present manuscript is to review the recent research developments that involved the formulation design of nanomedicine-based solid dosage forms utilizing 3D printing technology. Utilization of 3D printing techniques in the field of nanopharmaceuticals achieved the successful transformation of liquid polymeric nanocapsules and liquid self-nanoemulsifying drug delivery systems (SNEDDS) to solid dosage forms such as tablets and suppositories easily with customized doses as per the needs of the individual patient (personalized medicine). Furthermore, the present review also highlights the utility of extrusion-based 3D printing techniques (Pressure-Assisted Microsyringe-PAM; Fused Deposition Modeling-FDM) to produce tablets and suppositories containing polymeric nanocapsule systems and SNEDDS for oral and rectal administration. The manuscript critically analyzes contemporary research related to the impact of various process parameters on the performance of 3D-printed solid dosage forms.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Anuj Garg
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Gulam Mustafa
- Department of Pharmaceutical Sciences, College of Pharmacy, Al-Dawadmi Campus, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| |
Collapse
|
37
|
Lim C, Lee D, Kim M, Lee S, Shin Y, Ramsey JD, Choi HG, Lee ES, Youn YS, Oh KT. Development of a sorafenib-loaded solid self-nanoemulsifying drug delivery system: Formulation optimization and characterization of enhanced properties. J Drug Deliv Sci Technol 2023; 82:104374. [PMID: 37124157 PMCID: PMC10139733 DOI: 10.1016/j.jddst.2023.104374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Sorafenib, marketed under the brand name Nexavar®, is a multiple tyrosine kinase inhibitor drug that has been actively used in the clinical setting for the treatment of several cancers. However, the low solubility and bioavailability of sorafenib constitute a significant barrier to achieving a good therapeutic outcome. We developed a sorafenib-loaded self-nanoemulsifying drug delivery system (SNEDDS) formulation composed of capmul MCM, tween 80, and tetraglycol, and demonstrated that the SNEDDS formulation could improve drug solubility with excellent self-emulsification ability. Moreover, the sorafenib-loaded SNEDDS exhibited anticancer activity against Hep3B and KB cells, which are the most commonly used hepatocellular carcinoma and oral cancer cell lines, respectively. Subsequently, to improve the storage stability and to increase the possibility of commercialization, a solid SNEDDS for sorafenib was further developed through the spray drying method using Aerosil® 200 and PVP K 30. X-ray diffraction and differential scanning calorimeter data showed that the crystallinity of the drug was markedly reduced, and the dissolution rate of the drug was further improved in formulation in simulated gastric and intestinal fluid conditions. In vivo study, the bioavailability of the orally administered formulation increases dramatically compared to the free drug. Our results highlight the use of the solid-SNEDDS formulation to enhance sorafenib's bioavailability and outlines potential translational directions for oral drug development.
Collapse
Affiliation(s)
- Chaemin Lim
- College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
| | - Dayoon Lee
- College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
| | - Mikyung Kim
- College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
| | - Subin Lee
- College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
| | - Yuseon Shin
- College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
| | - Jacob D. Ramsey
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Eun Seong Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
| |
Collapse
|
38
|
Solanki P, Ansari MD, Alam MI, Aqil M, Ahmad FJ, Sultana Y. Precision engineering designed phospholipid-tagged pamidronate complex functionalized SNEDDS for the treatment of postmenopausal osteoporosis. Drug Deliv Transl Res 2023; 13:883-913. [PMID: 36414929 DOI: 10.1007/s13346-022-01259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 11/24/2022]
Abstract
Disodium pamidronate, a second-generation bisphosphonate is a potent drug for the treatment of osteoporosis, which has been very well established by previous literature. It has very low oral permeability, leading to its low oral bioavailability, which restrict this drug to being administered orally. Therefore, the present research work includes the development of an orally effective nanoformulation of pamidronate. In this work, disodium pamidronate was complexed with phospholipon 90G for the enhancement of permeability and to investigate the phospholipon 90G-tagged pamidronate complex-loaded SNEDDS for oral delivery with promises of enhanced bioavailability and anti-osteoporotic activity. The rational design and optimization was employed using Central Composite Design (Design Expert® 12, software) to optimize nanoformulation parameters. In this work, a commercially potential self nano-emulsifying drug delivery system (SNEDDS) has been developed and evaluated for improved oral bioavailability and better clinical acceptance. The hot micro-emulsification and ultracentrifugation method with vortex mixing was utilized for effective tagging of phospholipon 90G with pamidronate and then loading into the SNEDDS nanocarrier. The optimized Pam-PLc SNEDDS formulation was characterized for particle size, PDI, and zeta potential and found to be 56.38 ± 1.37 nm, 0.218 ± 0.113, and 22.41 ± 1.14 respectively. Also, a 37.9% improved bioavailability of pamidronate compared to marketed tablet was observed. Similarly, in vivo pharmacokinetic studies suggest a 31.77% increased bone density and significant enhanced bone biomarkers compared to marketed tablets. The developed formulation is safe and effectively overcomes anti-osteoporosis promises with improved therapeutic potential. This work provides very significant achievements in postmenopausal osteoporosis treatment and may lead to possible use of nanotherapeutic-driven emerging biodegradable carriers-based drug delivery.
Collapse
Affiliation(s)
- Pavitra Solanki
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohd Danish Ansari
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohd Iqbal Alam
- Department of Physiology, Hamdard Institute of Medical Sciences & Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Farhan J Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Yasmin Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India.
| |
Collapse
|
39
|
Vikash B, Shashi, Pandey NK, Kumar B, Wadhwa S, Goutam U, Alam A, Al-Otaibi F, Chaubey P, Mustafa G, Gupta G, Dua K, Singh SK. Formulation and evaluation of ocular self-nanoemulsifying drug delivery system of brimonidine tartrate. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
40
|
Ahmad S, Hafeez A. Formulation and Development of Curcumin-Piperine-Loaded S-SNEDDS for the Treatment of Alzheimer's Disease. Mol Neurobiol 2023; 60:1067-1082. [PMID: 36414909 DOI: 10.1007/s12035-022-03089-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022]
Abstract
Curcumin (CUR) and piperine (PIP) are very well-known phytochemicals that claimed to have many health benefits and have been widely used in foods and traditional medicines. This study investigated the therapeutic efficacy of these compounds to treat Alzheimer's disease (AD). However, poor oral bioavailability and permeability of curcumin are a major challenge for formulation scientists. In this research study, the researcher tried to enhance the bioavailability and permeability of curcumin by a nanotechnological approach. In this research study, we developed a CUR-PIP-loaded SNEDDS in various oils. Optimised formulation NF3 was subjected to evaluate its therapeutic effectiveness on AD animal model in comparison with untreated AD model and treated group (by market formulation donepezil). On the basis of characterisation results, it is confirmed that NF3 formulation is the best formulation. The optimised formulation shows a significant dose-dependent manner therapeutic effect on AD-induced model. Novel formulation CUR-PIP solid-SNEDDS was successfully developed and optimised. It is expected that the developed S-SNEDDS can be a potential, safe and effective carrier for the oral delivery of curcumin to the brain. To date, this article is the only study of CUR-PIP-loaded S-SNEDDS for the treatment of AD.
Collapse
Affiliation(s)
- Shmmon Ahmad
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India.
| |
Collapse
|
41
|
Patel VD, Rathod V, Haware RV, Stagner WC. Optimized L-SNEDDS and spray-dried S-SNEDDS using a linked QbD-DM 3 rational design for model compound ketoprofen. Int J Pharm 2023; 631:122494. [PMID: 36528191 DOI: 10.1016/j.ijpharm.2022.122494] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/21/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
A QbD-DM3 strategy was used to design ketoprofen (KTF) optimized liquid (L-SNEDDS) and solid self-nanoemulsifying drug delivery systems (S-SNEDDS). Principal component analysis was used to identify the optimized L-SNEDDS containing Capmul® MCM NF, 10 % w/w; Kolliphor® ELP, 60 % w/w; and propylene glycol, 30 % w/w. The S-SNEDDS was manufactured by spray-drying a feed dispersion prepared by dissolving the optimized KTF-loaded L-SNEDDS in an ethanol-Aerosil® 200 dispersion. A Box Behnken design was employed to evaluate the effect of drug concentration (DC), Aerosil® 200 concentration (AC) and feed rate (FR) on maximizing percent yield (PY) and loading efficiency (LE). The optimal levels of DC, AC, and FR were 19.9 % w/w, 30.0 % w/w, and 15.0 %, respectively. The optimized S-SNEDDS was amorphous, and its dissolution showed a 2.37-fold increase in drug release compared to KTF in 0.1 HCl. An optimized independent spray-dried S-SNEDDS verification batch showed that the predicted and observed PY and LE were 70.49 % and 92.49 %, and 70.02 % and 91.27 %, respectively. The optimized L-SNEDDS and S-SNEDDS also met their quality target product profile criteria for globule size <100 nm, polydispersity index < 0.400, emulsification time < 30 s, and KTF L-SNEDDS solubility 100-fold greater than its water solubility.
Collapse
Affiliation(s)
- Vivek D Patel
- Division of Pharmaceutics Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, The Long Island University, Brooklyn, NY 11201, United States
| | - Vishal Rathod
- Division of Pharmaceutics Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, The Long Island University, Brooklyn, NY 11201, United States
| | - Rahul V Haware
- Division of Pharmaceutics Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, The Long Island University, Brooklyn, NY 11201, United States.
| | - William C Stagner
- Campbell University College of Pharmacy & Health Sciences, Buies Creek, NC 27506, United States.
| |
Collapse
|
42
|
Self-nanoemulsifying drug delivery system (SNEDDS) mediated improved oral bioavailability of thymoquinone: optimization, characterization, pharmacokinetic, and hepatotoxicity studies. Drug Deliv Transl Res 2023; 13:292-307. [PMID: 35831776 PMCID: PMC9726673 DOI: 10.1007/s13346-022-01193-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 02/07/2023]
Abstract
Thymoquinone (TQ) is an antioxidant, anti-inflammatory, and hepatoprotective compound obtained from the black seed oil of Nigella sativa. However, high hydrophobicity, instability at higher pH levels, photosensitivity, and low oral bioavailability hinder its delivery to the target tissues. A self-nanoemulsifying drug delivery system (SNEDDS) was fabricated using the microemulsification technique to address these issues. Its physicochemical properties, thermodynamic stability studies, drug release kinetics, in vivo pharmacokinetics, and hepatoprotective activity were evaluated. The droplet size was in the nano-range (< 90 nm). Zeta potential was measured to be -11.35 mV, signifying the high stability of the oil droplets. In vivo pharmacokinetic evaluation showed a fourfold increase in the bioavailability of TQ-SNEDDS over pure TQ. Furthermore, in a PCM-induced animal model, TQ-SNEDDS demonstrated significant (p < 0.05) hepatoprotective activity compared to pure TQ and silymarin. Reduction in liver biomarker enzymes and histopathological examinations of liver sections further supported the results. In this study, SNEDDS was demonstrated to be an improved oral delivery method for TQ, since it potentiates hepatotoxicity and enhances bioavailability.
Collapse
|
43
|
Kharat P, Chary PS, Bhavana V, Rajana N, Devabattula G, Godugu C, Singh SB, Mehra NK. Thymoquinone-Loaded Essential Oil-Based Emulgel as an Armament for Anti-psoriatic Activity. AAPS PharmSciTech 2022; 24:26. [PMID: 36550259 DOI: 10.1208/s12249-022-02482-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Essential oils consist of oxygenated structures of secondary metabolites of aromatic plants with anti-psoriatic activities. Tea tree oil (TTO) is an essential oil with good anti-microbial and anti-inflammatory properties, exhibiting reduced levels of IL-1, IL-8, and PGE 2. Thymoquinone (TMQ) is popular herb in traditional medicine with known therapeutic benefits in several diseases and ailments. The ternary phase diagram was prepared with the weight ratio of Smix (Tween® 80:Labrasol®): oil:water ratio for o/w emulsion preparation. The globule size was 16.54 ± 0.13 nm, and PDI around 0.22 ± 0.01 of the TTO-TMQ emulsion and found thermodynamically stable. The percentage drug content was found in the range of 98.97 ± 0.62 to 99.45 ± 0.17% with uniformity of the ThymoGel using Carbopol®. The extensive physicochemical properties were studied using different analytical techniques, and in vitro drug release was performed using Franz-diffusion apparatus. Anti-psoriatic activity of the formulations was studied using Imiquimod-induced psoriasis-like inflammation model in male Balb/c mice and parameters like PASI score, ear thickness, and spleen to body weight index were determined as well as histological staining, ELISA, skin compliance, and safety evaluation of TTO were performed. The combination of essential oils with TMQ shows synergistic activity and efficiently reduces the psoriasis disease condition.
Collapse
Affiliation(s)
- Pratik Kharat
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India, 500037
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India, 500037
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India, 500037
| | - Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India, 500037
| | - Geetanjali Devabattula
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India, 500037
| | - Chandraiah Godugu
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India, 500037
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India, 500037
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India, 500037.
| |
Collapse
|
44
|
Ali HSM, Ahmed SA, Alqurshi AA, Alalawi AM, Shehata AM, Alahmadi YM. Boosting Tadalafil Bioavailability via Sono-Assisted Nano-Emulsion-Based Oral Jellies: Box-Behnken Optimization and Assessment. Pharmaceutics 2022; 14:pharmaceutics14122592. [PMID: 36559086 PMCID: PMC9781150 DOI: 10.3390/pharmaceutics14122592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
Tadalafil (TAD) is a poorly soluble, phosphodiesterase inhibitor used to treat erectile dysfunction. The primary goal of this project was to prepare nano-emulsions using ultrasonic technology to address TAD bioavailability concerns. The Box−Behnken design was employed to find prominent correlations between factors impacting the sono-emulsification process. The emulsifier concentration, amplitude level, and ultrasonication time were the independent factors, whereas the average droplet size (ADS) and polydispersity index (PDI) were designated as the response variables. TAD-loaded nano-emulsions (93−289 nm) were generated and the emulsifier concentration showed a crucial role in directing emulsion droplet size. The model desirability function was utilized to optimize a nano-emulsion with a small ADS (99.67 ± 7.55 nm) and PDI (0.45 ± 0.04) by adjusting the emulsifiers concentration, amplitude level, and ultrasonication time at 9.85%, 33%, 49 s, respectively. The optimized nano-emulsions did not demonstrate any precipitation or phase separation after stability stress tests. TAD jellies were formulated based on the optimized nano-emulsion and subjected to in vitro evaluation for physical characteristics; TAD content, pH, spreadability, viscosity, syneresis, and taste-masking ability. An optimized nano-emulsion-based jelly (NEJ) formulation showed more than 96% drug dissolution in 30 min relative to 14% for the unprocessed TAD. In vivo assessment of NEJ in experimental rats demonstrated a significant enhancement (p < 0.05) of TAD bioavailability with an AUC0−24h of 2045 ± 70.2 vs. 259.9 ± 17.7 ng·h·mL−1 for the unprocessed TAD. Storage stability results revealed that NEJ remained stable with unremarkable changes in properties for 3 months. Overall, NEJ can be regarded as a successful therapeutic option for TAD administration with immediate-release properties and improved bioavailability.
Collapse
Affiliation(s)
- Hany S. M. Ali
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Correspondence: ; Tel.: +966-50-286-4018; Fax: +966-4-847-5027
| | - Sameh A. Ahmed
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Abdulmalik A. Alqurshi
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
| | - Ali M. Alalawi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
| | - Ahmed M. Shehata
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Yaser M. Alahmadi
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
| |
Collapse
|
45
|
Reddy MR, Gubbiyappa KS. Formulation development, optimization and characterization of Pemigatinib-loaded supersaturable self-nanoemulsifying drug delivery systems. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
Pemigatinib is a small molecule tyrosine kinase inhibitor of fibroblast growth factor receptor inhibitors. The oral bioavailability of Pemigatinib is constricted due to its limited solubility at physiological pH. It is essential to develop a novel formulation of Pemigatinib to improve the intrinsic solubility and to reduce the pharmacokinetic variability. Self-nanoemulsifying drug delivery system is an effective, smart and more adequate formulation approach for poorly soluble drugs. Different from conventional self-nanoemulsifying drug delivery system, a supersaturable self-nanoemulsifying drug delivery system of Pemigatinib was prepared by using a supersaturation promoter.
Results
Among all the oils, Captex® 300 have shown maximum solubility of Pemigatinib. Considering the solubilization potential and emulsification ability Kolliphor®RH 40 was selected as surfactant. Transcutol®HP was selected as co-surfactant. The composition of oil, surfactant and co-surfactant was identified using phase diagrams and further adjusted by simplex-lattice design. HPMC K4M as precipitation inhibitor at 5% concentration resulted in effective supersaturating with increased self-emulsification time. The droplet of sSNEDDS ranges from 166.78 ± 3.14 to 178.86 ± 1.24 nm with PDI 0.212 – 0.256, which is significantly smaller than that observed with plain SNEDDS. TEM images revealed the spherical shape of the nanodroplets. The final optimized formulation formed spontaneous nanoemulsion within 15 secs when added to physiological fluids. The percent transmittance of the diluted formulation was found to be 99.12 ± 0.46. The viscosity was found to be 574 ± 26 centipoises indicating the good flow ability. FTIR and DSC studies indicated the amorphization of the drug. The dissolution profile of sSNEDDS indicated the faster release of drug compared to both pure drug suspension and SNEDDS formulation. The drug release rate is directly proportional to the concentration of the drug. The drug release from the insoluble matrix is a square root of time-dependent Fickian diffusion process. The formulation was found to be stable and transparent at all pH values and the percent transmittance was more than 95%. Any kind of separation or precipitation was not observed at different temperatures cycles. No significant difference was observed with all the samples exposed at different storage conditions.
Conclusions
This study demonstrated the feasibility of stabilizing and improving the in-vitro performance of self-nanoemulsifying drug delivery systems of Pemigatinib by incorporating HPMC K4M as precipitation inhibitor.
Collapse
|
46
|
Hanmantrao M, Chaterjee S, Kumar R, Vishwas S, Harish V, Porwal O, Alrouji M, Alomeir O, Alhajlah S, Gulati M, Gupta G, Dua K, Singh SK. Development of Guar Gum-Pectin-Based Colon Targeted Solid Self-Nanoemulsifying Drug Delivery System of Xanthohumol. Pharmaceutics 2022; 14:2384. [PMID: 36365203 PMCID: PMC9693267 DOI: 10.3390/pharmaceutics14112384] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 09/19/2023] Open
Abstract
Present study deciphers development of oral polysaccharide-based colon targeted solid self-nanoemulsifying drug delivery system (S-SNEDDS) of xanthohumol (XH). Several studies have shown that XH has anti-inflammatory and antioxidant properties, suggesting that it could be a good candidate for the treatment of colorectal diseases (CRD). Despite its potential, XH has a low aqueous solubility. As a result, its bioavailability is constrained by the dissolution rate. The liquid (L)-SNEDDS was constituted using Labrafac PG as oil, Tween 80 as surfactant and Transcutol P as co-surfactant. The L-SNEDDS was then adsorbed onto the surface of guar gum and pectin and developed into S-SNEDDS powder. Ternary phase diagram was used to optimize the process of developing L-SNEDDS. The formulation showed mean droplet size of 118.96 ± 5.94 nm and zeta potential of -19.08 ± 0.95 mV and drug loading of 94.20 ± 4.71%. Dissolution studies carried out in medium containing rat caecal contents (RCC) represented the targeted release of S-SNEDDS powder. It was observed that S-SNEDDS showed less than 10% release XH in initial 5 h and rapid release occurred between the 5th and 10th hour. Results of cytotoxicity studies revealed good cytotoxicity of XH loaded S-SNEDDS for Caco2 cells as compared to raw-XH.
Collapse
Affiliation(s)
- Mahesh Hanmantrao
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Sourabh Chaterjee
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Omji Porwal
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil 4401, Iraq
| | - Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Othman Alomeir
- Department of Pharmacy Practice, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur 302017, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
47
|
Józsa L, Vasvári G, Sinka D, Nemes D, Ujhelyi Z, Vecsernyés M, Váradi J, Fenyvesi F, Lekli I, Gyöngyösi A, Bácskay I, Fehér P. Enhanced Antioxidant and Anti-Inflammatory Effects of Self-Nano and Microemulsifying Drug Delivery Systems Containing Curcumin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196652. [PMID: 36235189 PMCID: PMC9572020 DOI: 10.3390/molecules27196652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
Turmeric has been used for decades for its antioxidant and anti-inflammatory effect, which is due to an active ingredient isolated from the plant, called curcumin. However, the extremely poor water-solubility of curcumin often limits the bioavailability of the drug. The aim of our experimental work was to improve the solubility and thus bioavailability of curcumin by developing self-nano/microemulsifying drug delivery systems (SN/MEDDS). Labrasol and Cremophor RH 40 as nonionic surfactants, Transcutol P as co-surfactant and isopropyl myristate as the oily phase were used during the formulation. The average droplet size of SN/MEDDS containing curcumin was between 32 and 405 nm. It was found that the higher oil content resulted in larger particle size. The drug loading efficiency was between 93.11% and 99.12% and all formulations were thermodynamically stable. The curcumin release was studied at pH 6.8, and the release efficiency ranged between 57.3% and 80.9% after 180 min. The results of the MTT cytotoxicity assay on human keratinocyte cells (HaCaT) and colorectal adenocarcinoma cells (Caco-2) showed that the curcumin-containing preparations were non-cytotoxic at 5 w/v%. According to the results of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide dismutase (SOD) assays, SNEDDS showed significantly higher antioxidant activity. The anti-inflammatory effect of the SN/MEDDS was screened by enzyme-linked immunosorbent assay (ELISA). SNEDDS formulated with Labrasol as surfactant, reduced tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) levels below 60% at a concentration of 10 w/w%. Our results verified the promising use of SN/MEDDS for the delivery of curcumin. This study demonstrates that the SN/MEDDS could be promising alternatives for the formulation of poorly soluble lipophilic compounds with low bioavailability.
Collapse
Affiliation(s)
- Liza Józsa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Gábor Vasvári
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Dávid Sinka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Dániel Nemes
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Zoltan Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - István Lekli
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Alexandra Gyöngyösi
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Correspondence:
| |
Collapse
|
48
|
Wang N, Shi H, Yang S. 3D printed oral solid dosage form: Modified release and improved solubility. J Control Release 2022; 351:407-431. [PMID: 36122897 DOI: 10.1016/j.jconrel.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
Oral solid dosage form is currently the most common used form of drug. 3D Printing, also known as additive manufacturing (AM), can quickly print customized and individualized oral solid dosage form on demand. Compared with the traditional tablet manufacturing process, 3D Printing has many advantages. By rationally selecting the formulation composition and cleverly designing the printing structure, 3D printing can improve the solubility of the drug and achieve precise modify of the drug release. 3D printed oral solid dosage form, however, still has problems such as limitations in formulation selection. And the selection process of the formulation lacks scientificity and standardization. Structural design of some 3D printing approaches is relatively scarce. This article reviews the formulation selection and structure design of 3D printed oral solid dosage form, providing more ideas for achieving modified drug release and solubility improvement of 3D printed oral solid dosage form through more scientific and extensive formulation selection and more sophisticated structural design.
Collapse
Affiliation(s)
- Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China
| | - Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China; Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology and Department of Oral Pathology, School of Stomatology, China Medical University, 110001 Shenyang, Liaoning Province, PR China.
| |
Collapse
|
49
|
Ali HSM, Ahmed SA, Alqurshi AA, Alalawi AM, Shehata AM, Alahmadi YM. Tadalafil-Loaded Self-Nanoemulsifying Chewable Tablets for Improved Bioavailability: Design, In Vitro, and In Vivo Testing. Pharmaceutics 2022; 14:1927. [PMID: 36145675 PMCID: PMC9504296 DOI: 10.3390/pharmaceutics14091927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
This research aimed to develop innovative self-nanoemulsifying chewable tablets (SNECT) to increase oral bioavailability of tadalafil (TDL), a nearly insoluble phosphodiesterase-5 inhibitor. Cinnamon essential oil, PEG 40 hydrogenated castor oil (Cremophor® RH 40), and polyethylene glycol 400 served as the oil, surfactant, and cosurfactant in the nanoemulsifying system, respectively. Primary liquid self-nanoemulsifying delivery systems (L-SNEDDS) were designed using phase diagrams and tested for dispersibility, droplet size, self-emulsifying capability, and thermodynamic stability. Adsorption on a carrier mix of silicon dioxide and microcrystalline cellulose was exploited to solidify the optimum L-SNEDDS formulation as self-nanoemulsifying granules (SNEG). Lack of crystalline TDL within the granules was verified by DSC and XRPD. SNEG were able to create a nanoemulsion instantaneously (165 nm), a little larger than the original nanoemulsion (159 nm). SNECT were fabricated by compressing SNEG with appropriate excipients. The obtained SNECT retained their quick dispersibility dissolving 84% of TDL within 30 min compared to only 18% dissolution from tablets of unprocessed TDL. A pharmacokinetic study in Sprague−Dawley rats showed a significant increase in Cmax (2.3-fold) and AUC0−24 h (5.33-fold) of SNECT relative to the unprocessed TDL-tablet (p < 0.05). The stability of TDL-SNECT was checked against dilutions with simulated GI fluids. In addition, accelerated stability tests were performed for three months at 40 ± 2 °C and 75% relative humidity. Results revealed the absence of obvious changes in size, PDI, or other tablet parameters before and after testing. In conclusion, current findings illustrated effectiveness of SNECT to enhance TDL dissolution and bioavailability in addition to facilitating dose administration.
Collapse
Affiliation(s)
- Hany S. M. Ali
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Sameh A. Ahmed
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Abdulmalik A. Alqurshi
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
| | - Ali M. Alalawi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
| | - Ahmed M. Shehata
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Yaser M. Alahmadi
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
| |
Collapse
|
50
|
Timur B, Usta DY, Teksin ZS. Investigation of the effect of colloidal structures formed during lipolysis of lipid-based formulation on exemestane permeability using the in vitro lipolysis-permeation model. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|