1
|
Akbarpour A, Rahimnejad M, Sadeghi-Aghbash M, Feizi F. Bioactive nanofibrous mats constructs: Separate efficacy of Lawsonia inermis and Scrophularia striata extracts in PVA/alginate matrices for enhanced wound healing. Int J Biol Macromol 2024; 277:134545. [PMID: 39116967 DOI: 10.1016/j.ijbiomac.2024.134545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The study explores the use of electrospinning technology to create advanced wound dressing materials by integrating natural extracts from Lawsonia inermis (LI) and Scrophularia striata (SS) into nanofibrous matrices composed of Polyvinyl Alcohol (PVA) and Alginate (ALG). These macromolecular complexes aim to leverage the unique properties of the botanical extracts for wound healing purposes. The research assesses the physical, chemical, and mechanical attributes of the nanofibrous constructs as well as their antimicrobial activities and ability to promote wound repair. Evaluation of Cellular Viability and Cytotoxicity (MTT) tests showed high biocompatibility of the nanofibrous mats, with cell viability percentages of 92 % for LI-loaded mats and 89 % for SS-loaded mats. The antibacterial rate of extract-containing mats was 70 % higher than non-extract-containing mats. In vivo assessments on rat models with burn injuries demonstrated that mats containing LI and SS extracts substantially accelerate tissue regeneration and overall healing. Nanofibrous mats containing LI extract showed a 45 % faster wound healing process than the control, while those containing SS extract showed a 40 % improvement. Overall, the study highlights the potential of PVA/ALG nanofibrous mats augmented with LI and SS extracts as effective platforms for wound management, offering enhanced properties for superior healing outcomes.
Collapse
Affiliation(s)
- Ali Akbarpour
- Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran.
| | - Mona Sadeghi-Aghbash
- Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
| | - Farideh Feizi
- Department of Anatomical Sciences, School of Medicine, Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Mazandaran, Iran
| |
Collapse
|
2
|
Cui W, Liu J, Bai Q, Wu L, Qi Z, Zhou W. Rapid Reduction of Phytotoxicity in Green Waste for Use as Peat Substitute: Optimization of Ammonium Incubation Process. PLANTS (BASEL, SWITZERLAND) 2024; 13:2360. [PMID: 39273844 PMCID: PMC11397023 DOI: 10.3390/plants13172360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
The rapid growth of the horticultural industry has increased demand for soilless cultivation substrates. Peat, valued for its physical and chemical properties, is widely used in soilless cultivation. However, peat is non-renewable, and over-extraction poses serious ecological risks. Therefore, sustainable alternatives are urgently needed. Ammonium incubation, a novel method to reduce phytotoxicity, offers the potential for green waste, a significant organic solid waste resource, to substitute peat. This study optimized the ammonium incubation process to reduce green waste phytotoxicity. It systematically examined different nitrogen salts (type and amount) and environmental conditions (temperature, aeration, duration) affecting detoxification efficiency. Results show a significant reduction in phytotoxicity with ammonium bicarbonate, carbonate, and sulfate, especially carbonate, at 1.5%. Optimal conditions were 30 °C for 5 days with regular aeration. Under these conditions, ammonium salt-treated green waste significantly reduced total phenolic content and stabilized germination index (GI) at a non-phytotoxic level (127%). Using treated green waste as a partial peat substitute in lettuce cultivation showed promising results. This low-cost, low-energy method effectively converts green waste into sustainable peat alternatives, promoting eco-friendly horticulture and environmental conservation.
Collapse
Affiliation(s)
- Wenzhong Cui
- School of Mechanical Engineering, Chengdu University, Chengdu 610100, China
- Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Juncheng Liu
- School of Mechanical Engineering, Chengdu University, Chengdu 610100, China
- Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Qi Bai
- School of Mechanical Engineering, Chengdu University, Chengdu 610100, China
- Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Lingyi Wu
- School of Mechanical Engineering, Chengdu University, Chengdu 610100, China
- Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Zhiyong Qi
- Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Wanlai Zhou
- Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| |
Collapse
|
3
|
Choopayak C, Aranyakanon K, Prompakdee N, Nangngam P, Kongbangkerd A, Ratanasut K. Effects of Piper betle L. Extract and Allelochemical Eugenol on Rice and Associated Weeds Germination and Seedling Growth. PLANTS (BASEL, SWITZERLAND) 2022; 11:3384. [PMID: 36501422 PMCID: PMC9738586 DOI: 10.3390/plants11233384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Natural herbicide is considered as a sustainable approach for weed management in agriculture. Here, allelopathic activities of Piper betle L. extract (BE) and known allelochemical eugenol (EU) were studied against rice and associated weeds in terms of germination and seedling growth. Five plant species including a rice crop (Oryza sativa L.); a dicot weed, false daisy (Eclipta prostrata (L.) L.); and three monocot weeds, barnyard grass (Echinochloa crus-galli (L.) P. Beauv.), swollen fingergrass (Chloris barbata Sw.), and weedy rice (Oryza sativa f. spontanea Roshev.) were studied. The paper-based results demonstrated that BE and EU had inhibitory effects on seed germination and seedling growth. The IC50 values of BE and EU for seed germination were ranked from swollen fingergrass, to false daisy, barnyard grass, rice, and weedy rice, respectively. The ratio of root to shoot length of the seedlings indicated that the roots were more affected by the treatments than the shoots. In addition, the gel-based results showed the reduction of the rice seedling root system, especially on lateral root length and the numbers upon the treatments. Taken together, BE had an allelopathic activity similar to that of EU. Interestingly, the major paddy weed, barnyard grass, was more sensitive to BE than rice, underlining BE as a natural herbicide in rice agriculture.
Collapse
Affiliation(s)
- Chonnanit Choopayak
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Research for Agricultural Biotechnology, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Kodchakorn Aranyakanon
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Nuttamon Prompakdee
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Pranee Nangngam
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Anupan Kongbangkerd
- Center of Excellence in Research for Agricultural Biotechnology, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Kumrop Ratanasut
- Center of Excellence in Research for Agricultural Biotechnology, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
4
|
Mousavi SS, Karami A, Saharkhiz MJ, Etemadi M, Zarshenas MM. Evaluation of metabolites in Iranian Licorice accessions under salinity stress and Azotobacter sp. inoculation. Sci Rep 2022; 12:15837. [PMID: 36151202 PMCID: PMC9508240 DOI: 10.1038/s41598-022-20366-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Licorice (Glycyrrhiza glabra L.) is an industrial medicinal plant that is potentially threatened by extinction. In this study, the effects of salinity (0 and 200 mM sodium chloride (NaCl)) and Azotobacter inoculation were evaluated on 16 licorice accessions. The results showed that salinity significantly reduced the fresh and dry biomass (FW and DW, respectively) of roots, compared to plants of the control group (a decrease of 15.92% and 17.26%, respectively). As a result of bacterial inoculation, the total sugar content of roots increased by 21.56% when salinity was applied, but increased by 14.01% without salinity. Salinity stress increased the content of glycyrrhizic acid (GA), phenols, and flavonoids in licorice roots by 104.6%, 117.2%, and 56.3%, respectively. Integrated bacterial inoculation and salt stress significantly increased the GA content in the accessions. Bajgah and Sepidan accessions had the highest GA contents (96.26 and 83.17 mg/g DW, respectively), while Eghlid accession had the lowest (41.98 mg/g DW). With the bacterial application, the maximum amounts of glabridin were obtained in Kashmar and Kermanshah accessions (2.04 and 1.98 mg/g DW, respectively). Bajgah and Kashmar accessions had higher amounts of rutin in their aerial parts (6.11 and 9.48 mg/g DW, respectively) when their roots were uninoculated. In conclusion, these results can assist in selecting promising licorice accessions for cultivation in harsh environments.
Collapse
Affiliation(s)
- Seyyed Sasan Mousavi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, 71441-13131, Iran
| | - Akbar Karami
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, 71441-13131, Iran.
| | - Mohammad Jamal Saharkhiz
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, 71441-13131, Iran.,Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Etemadi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, 71441-13131, Iran
| | - Mohammad Mehdi Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Traditional Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Wang C, Liu Z, Wang Z, Pang W, Zhang L, Wen Z, Zhao Y, Sun J, Wang ZY, Yang C. Effects of autotoxicity and allelopathy on seed germination and seedling growth in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2022; 13:908426. [PMID: 35909791 PMCID: PMC9335049 DOI: 10.3389/fpls.2022.908426] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/24/2022] [Indexed: 05/13/2023]
Abstract
Autotoxicity is a form of intraspecific allelopathy, in which a plant species inhibits the establishment or growth of the same species through the release of toxic chemical compounds into the environment. The phenomenon of autotoxicity in crops is best traced in alfalfa (Medicago sativa). A close relative of alfalfa, M. truncatula, has been developed into an excellent model species for leguminous plants. However, it is not known whether M. truncatula has autotoxicity. In this study, M. truncatula root exudates showed a negative impact on the growth of M. truncatula seedlings, indicating autotoxicity. Detailed analyses with plant extracts from M. truncatula and alfalfa revealed varying degrees of suppression effects in the two species. The extracts negatively affected seed germination potential, germination rate, radicle length, hypocotyl length, synthetic allelopathic effect index, plant height, root growth, fresh weight, dry weight, net photosynthetic rate, transpiration rate, and stomatal conductance in both M. truncatula and alfalfa. The results demonstrated that autotoxicity and allelopathic effects exist in M. truncatula. This opens up a new way to use M. truncatula as a model species to carry out in-depth studies of autotoxicity and allelopathy to elucidate biochemical pathways of allelochemicals and molecular networks controlling biosynthesis of the chemicals.
Collapse
|
6
|
Phytochemical Constituents and Allelopathic Potential of Parthenium hysterophorus L. in Comparison to Commercial Herbicides to Control Weeds. PLANTS 2021; 10:plants10071445. [PMID: 34371648 PMCID: PMC8309427 DOI: 10.3390/plants10071445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022]
Abstract
The allelopathic effect of various concentrations (0, 6.25, 12.5, 50 and 100 g L-1) of Parthenium hysterophorus methanol extract on Cyperus iria was investigated under laboratory and glasshouse conditions. No seed germination was recorded in the laboratory when P. hysterophorus extract was applied at 50 g L-1. In the glasshouse, C. iria was mostly injured by P. hysterophorus extract at 100 g L-1. The phytochemical constituents of the methanol extract of P. hysterophorus were analyzed by LC-ESI-QTOF-MS=MS. The results indicated the presence of phenolic compounds, terpenoids, alkaloids, amino acids, fatty acids, piperazines, benzofuran, indole, amines, azoles, sulfonic acid and other unknown compounds in P. hysterophorus methanol extract. A comparative study was also conducted between P. hysterophorus extract (20, 40 and 80 g L-1) with a synthetic herbicide (glyphosate and glufosinate ammonium at 2 L ha-1) as a positive control and no treatment (negative control) on Ageratumconyzoides, Oryzasativa and C. iria. The growth and biomass of test weeds were remarkably inhibited by P. hysterophorus extract. Nevertheless, no significant difference was obtained when P. hysterophorus extract (80 g L-1) and synthetic herbicides (glyphosate and glufosinate ammonium) were applied on A.conyzoides.
Collapse
|
7
|
Ávila-Román J, Soliz-Rueda JR, Bravo FI, Aragonès G, Suárez M, Arola-Arnal A, Mulero M, Salvadó MJ, Arola L, Torres-Fuentes C, Muguerza B. Phenolic compounds and biological rhythms: Who takes the lead? Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|