1
|
Gupta M, Kumar S, Dwivedi V, Gupta DG, Ali D, Alarifi S, Patel A, Yadav VK. Selective synergistic effects of oxalic acid and salicylic acid in enhancing amino acid levels and alleviating lead stress in Zea mays L. PLANT SIGNALING & BEHAVIOR 2024; 19:2400451. [PMID: 39235999 PMCID: PMC11382712 DOI: 10.1080/15592324.2024.2400451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Lead is one of the major environmental pollutants which is highly toxic to plants and living beings. The current investigation thoroughly evaluated the synergistic effects of oxalic acid (OA) and salicylic acid (SA) on Zea mays L. plants subjected to varying durations (15, 30, 30, and 45 days) of lead (Pb) stress. Besides, the effects of oxalic acid (OA) combined with salicylic acid (SA) for different amino acids at various periods of Pb stress were also investigated on Zea mays L. The soil was treated with lead nitrate Pb (NO3)2 (0.5 mM) to induce Pb stress while the stressed plants were further treated using oxalic acid (25 mg/L), salicylic acid (25 mg/L), and their combination OA + SA (25 mg/L each). Measurements of protein content, malondialdehyde (MDA) levels, guaiacol peroxidase (GPOX) activity, catalase (CAT) activity, GSH content, and Pb concentration in maize leaves were done during this study. MDA levels increased by 71% under Pb stress, while protein content decreased by 56%, GSH content by 35%, and CAT activity by 46%. After treatment with SA, OA, and OA+SA, there was a significant reversal of these damages, with the OA+SA combination showing the highest improvement. Specifically, OA+SA treatment led to a 45% increase in protein content and a 39% reduction in MDA levels compared to Pb treatment alone. Moreover, amino acid concentrations increased by 68% under the Pb+OA+SA treatment, reflecting the most significant recovery (p < 0.0001).
Collapse
Affiliation(s)
- Minoti Gupta
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Chandigarh, India
| | - Swatantar Kumar
- Department of Biotechnology Engineering & Food Technology, University Institute of Engineering, Chandigarh University, Chandigarh, India
| | - Vinay Dwivedi
- Amity Institute of Biotechnology, Amity University, Gwalior, India
| | - Dikshat Gopal Gupta
- Department of Urology & Pathology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Virendra Kumar Yadav
- Department of Microbiology, Faculty of Sciences, Marwadi University Research Center, Marwadi University, Rajkot, India
| |
Collapse
|
2
|
Bąba W, Kompała-Bąba A, Sierka E, Bierza W. Photosynthetic response of Solidago gigantea Aition and Calamagrostis epigejos L. (Roth) to complex environmental stress on heavy metal contaminated sites. Sci Rep 2024; 14:31481. [PMID: 39733143 DOI: 10.1038/s41598-024-82952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Studies of in situ plant response and adaptation to complex environmental stresses, are crucial for understanding the mechanisms of formation and functioning of ecosystems of anthropogenically transformed habitats. We study short- and long-term responses of photosynthetic apparatus (PSA) and anti-oxidant capacity to complex abiotic stresses of common plants Calamagrostis epigejos and Solidago gigantea in semi-natural (C) and heavy metal contaminated habitats (LZ). We found significant differences in leaf pigment content between both plant species growing on LZ plots and their respective C populations. The average values of leaf chlorophyll indexes were 27% lower in the LZ populations of both species and significantly lower in Sg plants in comparison to Ce ones. The average values of the anthocyanin index in CeLZ and SgLZ populations were significantly higher (by 18%) than in their respective controls. In both Ce and Sg plants occurring on LZ plots, the average leaf flavonol indexes were higher than on their controls by 31% and 15% and this index was significantly higher in SgLZ population than CeLZ and CeC plants (by 34% and 54%, respectively). Both Ce and Sg populations growing on LZ plots showed significantly lower photosynthetic rate (A), transpiration rate (E) and stomatal conductance (gs) in comparison to controls. On the other hand, a significantly higher photosynthetic rate was detected in SgLZ than in CeLZ populations. The catalase activities were significantly higher than recorded in Sg than in Ce tissues, irrespective of the plot type. They were also higher in LZ populations than those in controls for both species. Moreover, the H2O2 content in Sg tissues was significantly higher than those in Ce. Hydrogen peroxide content in CeLZ and SgLZ were respectively 39% (non-significant) and 57% higher, compared to their controls. The reverse pattern was found in the case of MDA, whose concentration was significantly higher in the leaves of Ce population compared to the control population. The average MDA concentration in CeLZ populations was 17% higher than in the CeC. In the case of Sg no significant differences were found. Mechanisms of plant species adaptation to industrial areas are crucial for species selection and planning effective reclamation of them. The analysis of chlorophyll fluorescence induction curves as well as well as the results of JIP test revealed the decreased of Fj value despite positive ΔK-band in SgLZ and CeLZ plants suggesting the increased rate of electron transfer from QA to QB at the acceptor side of PSII, thus a high quantity of P680+ and/or effective quenching by exogenous molecules. The increase in the I-P part of the induction curve typically attributed to the reduction of electron transporters (ferredoxin, intermediary acceptors, and NADP) of the PSI acceptor side was observed in both SgC and SgLZ but not in CeLZ populations. These changes demonstrate species-specific effects on electron transport during the light phase of photosynthesis under complex environmental stress. Our results show that Sg and Ce individuals developed a range of structural and functional adaptations to protect PSA against complex environmental stresses (possible combination of heavy metals, water deficiency, temperature, nutrient deficiency and salinity). Both species from LZ plots could tolerate high levels of Cd, Zn and Pb in leaf tissues. Therefore they can be potential candidates for use in phytoremediation of HM contaminated areas. However, further long-term field and experimental research on plant traits response and adaptation to complex environmental stresses on industrial habitats are needed.
Collapse
Affiliation(s)
- Wojciech Bąba
- Institute of Technology and Life Sciences - National Research Institute, Falenty, Al. Hrabska 3, 05-090, Raszyn, Poland.
| | - Agnieszka Kompała-Bąba
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| | - Edyta Sierka
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Wojciech Bierza
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| |
Collapse
|
3
|
Ivanov YV, Ivanova AI, Kartashov AV, Kuznetsov VV. Recovery of Scots Pine Seedlings from Long-Term Zinc Toxicity. PLANTS (BASEL, SWITZERLAND) 2024; 13:2227. [PMID: 39204663 PMCID: PMC11359686 DOI: 10.3390/plants13162227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
We studied the recovery of the growth and physiological parameters of Scots pine seedlings after long-term zinc toxicity. The removal of excess zinc from the nutrient solution resulted in the rapid recovery of primary root growth but did not promote the initiation and growth of lateral roots. The recovery of root growth was accompanied by the rapid uptake of manganese, magnesium, and copper. Despite the maximum rate of manganese uptake by the roots, the manganese content in the needles of the recovering plants did not reach control values during the 28 days of the experiment, unlike magnesium, iron, and copper. In general, the recovery of ion homeostasis eliminated all of the negative effects on the photosynthetic pigment content in the needles. However, these changes, along with recovery of the water content in the needles, were not accompanied by an increase in the weight gain of the recovering seedlings compared with that of the Zn-stressed seedlings. The increased accumulation of phenolic compounds in the needles persisted for a long period after excess zinc was removed from the nutrient solution. The decreased lignin content in the roots and needles is a characteristic feature of Zn-stressed plants. Moreover, the removal of excess zinc from the nutrient solution did not lead to an increase in the lignin content in the organs.
Collapse
Affiliation(s)
- Yury V. Ivanov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia; (A.I.I.); (A.V.K.)
| | | | | | - Vladimir V. Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia; (A.I.I.); (A.V.K.)
| |
Collapse
|
4
|
Dogan M, Ugur K. Enhancing the phytoremediation efficiency of Bacopa monnieri (L.) Wettst. using LED lights: a sustainable approach for heavy metal pollution control. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53270-53290. [PMID: 39183254 DOI: 10.1007/s11356-024-34748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
In this study, the impacts of LEDs on the phytoremediation of arsenic (As) and mercury (Hg) by Bacopa monnieri (L.) Wettst. were investigated, along with the examination of the biochemical characteristics of plants exposed to metal-induced toxicity. In vitro multiple and rapid plant propagations were successfully achieved by adding 1.0 mg/L 6-Benzyl amino purine (BAP) to the Murashige and Skoog (MS) basal salt and vitamin culture medium. For plant-based remediation experiments, different concentrations of As (0-1.0 mg/L) and Hg (0-0.2 mg/L) were added to the water environment, and trials were conducted for four different application periods (1-21 days). White, red, and blue LEDs, as well as white fluorescent light, were preferred as the light environment. The results revealed that LED lights were more effective for heavy metal accumulation, with red LED light significantly enhancing the plant's phytoremediation capacity compared to other LED applications. Moreover, when examining biochemical stress parameters such as levels of photosynthetic pigments, protein concentrations, and lipid peroxidation, plants under red LED light showed better results. Generally, the lowest results were obtained under white fluorescent light. These findings contribute to phytoremediation studies by highlighting the integration of LED lights, thereby enabling the development of a more effective, cost-efficient, and environmentally sustainable remediation system compared to other treatment methods.
Collapse
Affiliation(s)
- Muhammet Dogan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karamanoğlu Mehmetbey University, Karaman, Turkey.
| | - Kubra Ugur
- Department of Biology, Kamil Ozdag Faculty of Science, Karamanoglu Mehmetbey University, Yunus Emre Campus, 70200, Karaman, Turkey
| |
Collapse
|
5
|
Lainé CMS, AbdElgawad H, Beemster GTS. Cellular dynamics in the maize leaf growth zone during recovery from chilling depends on the leaf developmental stage. PLANT CELL REPORTS 2024; 43:38. [PMID: 38200224 DOI: 10.1007/s00299-023-03116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/16/2023] [Indexed: 01/12/2024]
Abstract
KEY MESSAGE A novel non-steady-state kinematic analysis shows differences in cell division and expansion determining a better recovery from a 3-day cold spell in emerged compared to non-emerged maize leaves. Zea mays is highly sensitive to chilling which frequently occurs during its seedling stage. Although the direct effect of chilling is well studied, the mechanisms determining the subsequent recovery are still unknown. Our goal is to determine the cellular basis of the leaf growth response to chilling and during recovery of leaves exposed before or after their emergence. We first studied the effect of a 3-day cold spell on leaf growth at the plant level. Then, we performed a kinematic analysis to analyse the dynamics of cell division and elongation during recovery of the 4th leaf after exposure to cold before or after emergence. Our results demonstrated cold more strongly reduced the final length of non-emerged than emerged leaves (- 13 vs. - 18%). This was not related to growth differences during cold, but a faster and more complete recovery of the growth of emerged leaves. This difference was due to a higher cell division rate on the 1st and a higher cell elongation rate on the 2nd day of recovery, respectively. The dynamics of cell division and expansion during recovery determines developmental stage-specific differences in cold tolerance of maize leaves.
Collapse
Affiliation(s)
- Cindy M S Lainé
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, Antwerp University, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Hamada AbdElgawad
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, Antwerp University, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Gerrit T S Beemster
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, Antwerp University, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
6
|
Sanhueza T, Hernández I, Sagredo-Sáez C, Villanueva-Guerrero A, Alvarado R, Mujica MI, Fuentes-Quiroz A, Menendez E, Jorquera-Fontena E, Valadares RBDS, Herrera H. Juvenile Plant-Microbe Interactions Modulate the Adaptation and Response of Forest Seedlings to Rapid Climate Change. PLANTS (BASEL, SWITZERLAND) 2024; 13:175. [PMID: 38256729 PMCID: PMC10819047 DOI: 10.3390/plants13020175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 01/24/2024]
Abstract
The negative impacts of climate change on native forest ecosystems have created challenging conditions for the sustainability of natural forest regeneration. These challenges arise primarily from abiotic stresses that affect the early stages of forest tree development. While there is extensive evidence on the diversity of juvenile microbial symbioses in agricultural and fruit crops, there is a notable lack of reports on native forest plants. This review aims to summarize the critical studies conducted on the diversity of juvenile plant-microbe interactions in forest plants and to highlight the main benefits of beneficial microorganisms in overcoming environmental stresses such as drought, high and low temperatures, metal(loid) toxicity, nutrient deficiency, and salinity. The reviewed studies have consistently demonstrated the positive effects of juvenile plant-microbiota interactions and have highlighted the potential beneficial attributes to improve plantlet development. In addition, this review discusses the beneficial attributes of managing juvenile plant-microbiota symbiosis in the context of native forest restoration, including its impact on plant responses to phytopathogens, promotion of nutrient uptake, facilitation of seedling adaptation, resource exchange through shared hyphal networks, stimulation of native soil microbial communities, and modulation of gene and protein expression to enhance adaptation to adverse environmental conditions.
Collapse
Affiliation(s)
- Tedy Sanhueza
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (T.S.); (C.S.-S.); (A.V.-G.); (R.A.); (A.F.-Q.)
| | - Ionel Hernández
- Plant Physiology and Biochemistry Department, National Institute of Agricultural Science, Carretera a Tapaste Km 3 y ½, San José de las Lajas 32700, Mayabeque, Cuba;
| | - Cristiane Sagredo-Sáez
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (T.S.); (C.S.-S.); (A.V.-G.); (R.A.); (A.F.-Q.)
| | - Angela Villanueva-Guerrero
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (T.S.); (C.S.-S.); (A.V.-G.); (R.A.); (A.F.-Q.)
| | - Roxana Alvarado
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (T.S.); (C.S.-S.); (A.V.-G.); (R.A.); (A.F.-Q.)
| | - Maria Isabel Mujica
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia 5110566, Chile;
| | - Alejandra Fuentes-Quiroz
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (T.S.); (C.S.-S.); (A.V.-G.); (R.A.); (A.F.-Q.)
| | - Esther Menendez
- Departamento de Microbiología y Genética, Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, 37008 Salamanca, Spain;
| | - Emilio Jorquera-Fontena
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Catolica de Temuco, Temuco P.O. Box 15-D, Chile;
| | | | - Héctor Herrera
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (T.S.); (C.S.-S.); (A.V.-G.); (R.A.); (A.F.-Q.)
- Laboratorio de Ecosistemas y Bosques, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
7
|
Makuch-Pietraś I, Grabek-Lejko D, Górka A, Kasprzyk I. Antioxidant activities in relation to the transport of heavy metals from the soil to different parts of Betula pendula (Roth.). J Biol Eng 2023; 17:19. [PMID: 36879267 PMCID: PMC9987087 DOI: 10.1186/s13036-022-00322-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/29/2022] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Birch is a tree with a common occurrence in the environment and its organs are used in the form of herbal material. An important aspect of this study is birch pollen, which is a problem for allergy sufferers, and due to a variety of environmental conditions, its allergenicity may increase. Among the organs studied, inflorescences deserve attention, which, as seen from an overview of the literature, are analysed for the content of heavy metals for the first time in this study. RESULTS This paper investigated the relationship between antioxidant properties and the content of heavy metals (Cu, Zn, Cd, Pb, Ni and Cr) as the plant's response to stress, taking into account both the vegetative and generative organs of the tree Betula pendula. While studying the accumulation of elements in individual organs, the research was extended to include the aspect of different environmental conditions, reflected in two soil types of differing physicochemical properties: sandy and silty soils. In order to thoroughly analyse the transport of the studied heavy metals from the soil to individual organs (leaves, inflorescences and pollen), ecotoxicological indicators were used. A modified translocation factor (TF) index into sTF (sap translocation factor) was presented as a novelty in research, calculated based on the content of selected heavy metals in the sap flowing to individual birch organs. This allowed for a more complete description of the transport of elements in the aerial parts of plants, indicating the accumulation of zinc and cadmium, especially in leaves. Among the studied environmental conditions which may affect the accumulation of heavy metals, sandy soil is of particular significance, conditioning lower pH values, among other things. However, analysis of the reaction of birch to the conditions of the soil environment and the content of heavy metals, based on antioxidant properties, demonstrated an evident reaction to stress, but without an unambiguous response among the studied vegetative and generative organs. CONCLUSIONS As birch is a plant with wide utility values, monitoring studies are advisable to exclude the risk of accumulation of heavy metals in its organs, and for this purpose it may be useful to use the sTF indicator and assess the antioxidant potential.
Collapse
Affiliation(s)
- Iwona Makuch-Pietraś
- Department of Nature Conservation and Landscape Ecology, Institute of Agricultural Science, Land Management and Environmental Protection, College of Natural Sciences, University of Rzeszów, Zelwerowicza 4, 35-601, Rzeszów, Poland.
| | - Dorota Grabek-Lejko
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, Zelwerowicza 4, 35-601, Rzeszów, Poland
| | - Anna Górka
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310, Rzeszów, Poland
| | - Idalia Kasprzyk
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310, Rzeszów, Poland
| |
Collapse
|
8
|
Khan A, Khan AA, Irfan M, Sayeed Akhtar M, Hasan SA. Lead-induced modification of growth and yield of Linum usitatissimum L. and its soil remediation potential. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:1067-1076. [PMID: 36178175 DOI: 10.1080/15226514.2022.2128040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study was designed to evaluate the pre-reproductive and reproductive responses of Linum usitatissimum L. (flax, linseed plant) to different levels of Pb in the soil. Flax seeds were sown in garden soil-filled earthen pots and treated with three different levels of lead as lead chloride (150, 450, and 750 mg Pb kg-1 soil) except control, and each treatment was replicated three times. Growth and reproductive parameters and photosynthetic pigments were significantly reduced (p ≤ 0.05) for all treatments. Quantitatively, Chlorophyll b content decreased more than chlorophyll a and the amount of proline content in the leaves increased in lockstep with the increase of Pb levels in the soil. Pb was found in substantial amounts in the roots, shoots, and seeds. The pattern of Pb accumulation in different organs was root > shoot > seeds. Pb levels in seeds obtained from 750 mg Pb kg-1 soil-treated plants exceeded the permissible limits. Biological concentration factor (BCF), biological accumulation coefficient (BAC) and translocation factor (TF) values showed that roots of L. usitatissimum absorbed and accumulated a substantial quantity of Pb but translocated only a fraction of that to the shoots. Therefore, L. usitatissimum L. can be used in phytostabilization rather than phytoextraction of Pb.
Collapse
Affiliation(s)
- Adnan Khan
- Environmental Botany Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Athar Ali Khan
- Environmental Botany Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Mohd Irfan
- Department of Botany, Sanskriti University, Mathura, India
| | | | - Syed Aiman Hasan
- Department of Biology, College of Science, Jazan University, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Li T, Yang H, Yang X, Guo Z, Fu D, Liu C, Li S, Pan Y, Zhao Y, Xu F, Gao Y, Duan C. Community assembly during vegetation succession after metal mining is driven by multiple processes with temporal variation. Ecol Evol 2022; 12:e8882. [PMID: 35509610 PMCID: PMC9055294 DOI: 10.1002/ece3.8882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/02/2023] Open
Abstract
The mechanisms governing community assembly is fundamental to ecological restoration and clarification of the assembly processes associated with severe disturbances (characterized by no biological legacy and serious environmental problems) is essential. However, a systematic understanding of community assembly in the context of severe anthropogenic disturbance remains lacking. Here, we explored community assembly processes after metal mining, which is considered to be a highly destructive activity to provide insight into the assembly rules associated with severe anthropogenic disturbance. Using a chronosequence approach, we selected vegetation patches representing different successional stages and collected data on eight plant functional traits from each stage. The traits were classified as establishment and regenerative traits. Based on these traits, null models were constructed to identify the processes driving assembly at various successional stages. Comparison of our observations with the null models indicated that establishment and regenerative traits converged in the primary stage of succession. As succession progressed, establishment traits shifted to neutral assembly, whereas regeneration traits alternately converged and diverged. The observed establishment traits were equal to expected values, whereas regenerative traits diverged significantly after more than 20 years of succession. Furthermore, the available Cr content was linked strongly to species' ecological strategies. In the initial stages of vegetation succession in an abandoned metal mine, the plant community was mainly affected by the available metal content and dispersal limitation. It was probably further affected by strong interspecific interaction after the environmental conditions had improved, and stochastic processes became dominant during the stage with a successional age of more than 20 years.
Collapse
Affiliation(s)
- Ting Li
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| | - Huaju Yang
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| | - Xinting Yang
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| | - Zhaolai Guo
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| | - Denggao Fu
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| | - Chang’e Liu
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| | - Shiyu Li
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| | - Ying Pan
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| | - Yonggui Zhao
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| | - Fang Xu
- YICI Municipal Garden Engineering Co. Ltd Kunming China
| | - Yang Gao
- YICI Municipal Garden Engineering Co. Ltd Kunming China
| | - Changqun Duan
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| |
Collapse
|
10
|
Gajewska J, Floryszak-Wieczorek J, Sobieszczuk-Nowicka E, Mattoo A, Arasimowicz-Jelonek M. Fungal and oomycete pathogens and heavy metals: an inglorious couple in the environment. IMA Fungus 2022; 13:6. [PMID: 35468869 PMCID: PMC9036806 DOI: 10.1186/s43008-022-00092-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/07/2022] [Indexed: 01/30/2023] Open
Abstract
Heavy metal (HM) contamination of the environment is a major problem worldwide. The rate of global deposition of HMs in soil has dramatically increased over the past two centuries and there of facilitated their rapid accumulation also in living systems. Although the effects of HMs on plants, animals and humans have been extensively studied, yet little is known about their effects on the (patho)biology of the microorganisms belonging to a unique group of filamentous eukaryotic pathogens, i.e., fungi and oomycetes. Much of the literature concerning mainly model species has revealed that HM stress affects their hyphal growth, morphology, and sporulation. Toxicity at cellular level leads to disturbance of redox homeostasis manifested by the formation of nitro-oxidative intermediates and to the induction of antioxidant machinery. Despite such adverse effects, published data is indicative of the fact that fungal and oomycete pathogens have a relatively high tolerance to HMs in comparison to other groups of microbes such as bacteria. Likely, these pathogens may harbor a network of detoxification mechanisms that ensure their survival in a highly HM-polluted (micro)habitat. Such a network may include extracellular HMs immobilization, biosorption to cell wall, and/or their intracellular sequestration to proteins or other ligands. HMs may also induce a hormesis-like phenomenon allowing the pathogens to maintain or even increase fitness against chemical challenges. Different scenarios linking HMs stress and modification of the microorganisms pathogenicity are disscused in this review.
Collapse
|
11
|
Piracha MA, Ashraf M, Shahzad SM, Imtiaz M, Arif MS, Rizwan MS, Aziz A, Tu S, Albasher G, Alkahtani S, Shakoor A. Alteration in soil arsenic dynamics and toxicity to sunflower (Helianthus annuus L.) in response to phosphorus in different textured soils. CHEMOSPHERE 2022; 287:132406. [PMID: 34597649 DOI: 10.1016/j.chemosphere.2021.132406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Being analogue to arsenic (As), phosphorus (P) may affect As dynamics in soil and toxicity to plants depending upon many soil and plant factors. Two sets of experiments were conducted to determine the effect of P on As fractionation in soils, its accumulation by plants and subsequent impact on growth, yield and physiological characteristics of sunflower (Helianthus annuus L.). Experimental plan comprised of two As levels (60 and 120 mg As kg-1 soil), four P (0-5-10-20 g phosphate rock kg-1 soil) and three textural types (sandy, loamy and clayey) with three replications. Among different As fractions determined, labile, calcium-bound, organic matter-bound and residual As increased while iron-bound and aluminum-bound As decreased with increasing P in all the three textural types. Labile-As percentage increased in the presence of P by 16.9-48.0% at As60 while 36.0-68.1% at As120 in sandy, 19.1-64.0% at As60 while 11.5-52.3% at As120 in loamy, and 21.8-58.2% at As60 while 22.3-70.0% at As120 in clayey soil compared to respective As treatment without P. Arsenic accumulation in plant tissues at both contamination levels declined with P addition as evidenced by lower bioconcentration factor. Phosphorus mitigated the As-induced oxidative stress expressed in term of reduced hydrogen peroxide, malondialdehyde while increased glutathione, and consequently improved the achene yield. Although, P increased As solubility in soil but restricted its translocation to plant, leading to reversal of oxidative damage, and improved sunflower growth and yield in all the three soil textural types, more profound effect at highest P level and in sandy texture.
Collapse
Affiliation(s)
- Muhammad Awais Piracha
- Department of Soil & Environmental Sciences, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Ashraf
- Department of Soil Science, Bahauddin Zakariya University, Multan, Pakistan.
| | - Sher Muhammad Shahzad
- Department of Soil & Environmental Sciences, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Imtiaz
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Muhammad Saleem Arif
- Department of Environmental Sciences & Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Shahid Rizwan
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Ahsan Aziz
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Shuxin Tu
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, Avinguda Alcalde Rovira Roure 191, 25198, Lleida, Spain.
| |
Collapse
|
12
|
Hachani C, Lamhamedi MS, Zine El Abidine A, Abassi M, Khasa DP, Béjaoui Z. Water Relations, Gas Exchange, Chlorophyll Fluorescence and Electrolyte Leakage of Ectomycorrhizal Pinus halepensis Seedlings in Response to Multi-Heavy Metal Stresses (Pb, Zn, Cd). Microorganisms 2021; 10:microorganisms10010057. [PMID: 35056506 PMCID: PMC8779289 DOI: 10.3390/microorganisms10010057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/20/2022] Open
Abstract
The success of mine site restoration programs in arid and semi-arid areas poses a significant challenge and requires the use of high-quality seedlings capable of tolerating heavy metal stresses. The effect of ectomycorrhizal fungi on different physiological traits was investigated in Pinus halepensis seedlings grown in soil contaminated with heavy metals (Pb-Zn-Cd). Ectomycorrhizal (M) and non-ectomycorrhizal (NM) seedlings were subjected to heavy metals stress (C: contaminated, NC: control or non-contaminated) soils conditions for 12 months. Gas exchange, chlorophyll fluorescence, water relations parameters derived from pressure–volume curves and electrolyte leakage were evaluated at 4, 8 and 12 months. Ectomycorrhizal symbiosis promoted stronger resistance to heavy metals and improved gas exchange parameters and water-use efficiency compared to the non-ectomycorrhizal seedlings. The decrease in leaf osmotic potentials (Ψπ100: osmotic potential at saturation and Ψπ0: osmotic potential with loss of turgor) was higher for M-C seedling than NM-C ones, indicating that the ectomycorrhizal symbiosis promotes cellular osmotic adjustment and protects leaf membrane cell against leakage induced by Pb, Zn and Cd. Our results suggest that the use of ectomycorrhizal symbiosis is among the promising practices to improve the morphophysiological quality of seedlings produced in forest nurseries, their performance and their tolerance to multi-heavy metal stresses.
Collapse
Affiliation(s)
- Chadlia Hachani
- Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Tunisia;
- Laboratory of Forest Ecology (LR11INRGREF03), National Institute of Research in Rural Engineering, Water and Forests (INRGREF), University of Carthage, Hédi Elkarray Street, Elmenzah IV, BP 10, Ariana 2080, Tunisia;
| | - Mohammed S. Lamhamedi
- Centre for Forest Studies, Faculty of Forestry, Geography and Geomatics, Abitibi Price Building, Laval University, Quebec, QC G1V 0A6, Canada;
| | | | - Mejda Abassi
- Laboratory of Forest Ecology (LR11INRGREF03), National Institute of Research in Rural Engineering, Water and Forests (INRGREF), University of Carthage, Hédi Elkarray Street, Elmenzah IV, BP 10, Ariana 2080, Tunisia;
| | - Damase P. Khasa
- Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, 1030 Avenue de la Médecine, Quebec, QC G1V 0A6, Canada;
| | - Zoubeir Béjaoui
- Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Tunisia;
- Laboratory of Forest Ecology (LR11INRGREF03), National Institute of Research in Rural Engineering, Water and Forests (INRGREF), University of Carthage, Hédi Elkarray Street, Elmenzah IV, BP 10, Ariana 2080, Tunisia;
- Correspondence:
| |
Collapse
|
13
|
Xiao Y, Dai MX, Zhang GQ, Yang ZX, He YM, Zhan FD. Effects of the Dark Septate Endophyte (DSE) Exophiala pisciphila on the Growth of Root Cell Wall Polysaccharides and the Cadmium Content of Zea mays L. under Cadmium Stress. J Fungi (Basel) 2021; 7:jof7121035. [PMID: 34947018 PMCID: PMC8708371 DOI: 10.3390/jof7121035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
This paper aims to investigate the mechanism by which dark septate endophytes (DSEs) enhance cadmium (Cd) tolerance in there host plants. Maize (Zea mays L.) was inoculated with a DSE, Exophiala pisciphila, under Cd stress at different concentrations (0, 5, 10, and 20 mg·kg−1). The results show that, under 20 mg/kg Cd stress, DSE significantly increased maize biomass and plant height, indicating that DSE colonization can be utilized to increase the Cd tolerance of host plants. More Cd was retained in DSE-inoculated roots, especially that fixed in the root cell wall (RCW). The capability of DSE to induce a higher Cd holding capacity in the RCW is caused by modulation of the total sugar and uronic acid of DSE-colonized RCW, mainly the pectin and hemicellulose fractions. The fourier-transform spectroscopy analysis results show that carboxyl, hydroxyl, and acidic groups are involved in Cd retention in the DSE-inoculated RCW. The promotion of the growth of maize and improvement in its tolerance to Cd due to DSEs are related to restriction of the translocation of Cd from roots to shoots; resistance of Cd uptake Cd inside cells; and the increase in RCW-integrated Cd through modulating RCW polysaccharide components.
Collapse
|
14
|
Hassan SSU, Muhammad I, Abbas SQ, Hassan M, Majid M, Jin HZ, Bungau S. Stress Driven Discovery of Natural Products From Actinobacteria with Anti-Oxidant and Cytotoxic Activities Including Docking and ADMET Properties. Int J Mol Sci 2021; 22:ijms222111432. [PMID: 34768863 PMCID: PMC8584265 DOI: 10.3390/ijms222111432] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Elicitation through abiotic stress, including chemical elicitors like heavy metals, is a new technique for drug discovery. In this research, the effect of heavy metals on actinobacteria Streptomyces sp. SH-1312 for secondary metabolite production, with strong pharmacological activity, along with pharmacokinetics profile, was firstly investigated. The optimum metal stress conditions consisted of actinobacteria strain Streptomyces sp. SH-1312 with addition of mix metals (Co2+ + Zn2+) ions at 0.5 mM in Gause’s medium. Under these conditions, the stress metabolite anhydromevalonolactone (MVL) was produced, which was absent in the normal culture of strain and other metals combinations. Furthermore, the stress metabolite was also evaluated for its anti-oxidant and cytotoxic activities. The compound exhibited remarkable anti-oxidant activities, recording the IC50 value of 19.65 ± 5.7 µg/mL in DPPH, IC50 of 15.49 ± 4.8 against NO free radicals, the IC50 value of 19.65 ± 5.22 µg/mL against scavenging ability, and IC50 value of 19.38 ± 7.11 µg/mL for iron chelation capacity and the cytotoxic activities against PC3 cell lines were recorded with IC50 values of 35.81 ± 4.2 µg/mL after 24 h, 23.29 ± 3.8 µg/mL at 48 h, and 16.25 ± 6.5 µg/mL after 72 h. Further mechanistic studies have revealed that the compound MVL has shown its pharmacological efficacy by upregulation of P53 and BAX while downregulation of BCL-2 expression, indicating that MVL is following apoptosis in varying degrees. To better understand the pharmacological properties of MVL, in this work, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) were also evaluated. During ADMET predictions, MVL has displayed a safer profile in case of hepatotoxicity, cytochrome inhibition and also displayed as non-cardiotoxic. The compound MVL showed good binding energy in the molecular docking studies, and the results revealed that MVL bind in the active region of the target protein of P53 and BAX. This work triumphantly announced a prodigious effect of heavy metals on actinobacteria with fringe benefits as a key tool of MVL production with a strong pharmacological and pharmacokinetic profile.
Collapse
Affiliation(s)
- Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (S.S.u.H.); (I.M.)
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ishaq Muhammad
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (S.S.u.H.); (I.M.)
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Syed Qamar Abbas
- Department of Pharmacy, Sarhad University of Science and Technology, Peshawar 25000, Pakistan;
| | - Mubashir Hassan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan;
| | - Muhammad Majid
- Department of Pharmacy, Capital University of Science and Technology, Islamabad 44000, Pakistan
- Correspondence: (M.M.); (H.-Z.J.); Tel./Fax: +86-021-34205989 (H.-Z.J.)
| | - Hui-Zi Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (S.S.u.H.); (I.M.)
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (M.M.); (H.-Z.J.); Tel./Fax: +86-021-34205989 (H.-Z.J.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| |
Collapse
|
15
|
Tissue Distribution and Biochemical Changes in Response to Copper Accumulation in Erica australis L. PLANTS 2021; 10:plants10071428. [PMID: 34371631 PMCID: PMC8309342 DOI: 10.3390/plants10071428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
Copper uptake, accumulation in different tissues and organs and biochemical and physiological parameters were studied in Erica australis treated with different Cu concentrations (1, 50, 100 and 200 µM) under hydroponic culture. Copper treatments led to a significant reduction in growth rate, biomass production and water content in shoots, while photosynthetic pigments did not change. Copper treatments led to an increase in catalase and peroxidase activities. Copper accumulation followed the pattern roots > stems ≥ leaves, being roots the prevalent Cu sink. Analysis by scanning electron microscopy coupled with elemental X-ray analysis (SEM–EDX) showed a uniform Cu distribution in root tissues. On the contrary, in leaf tissues, Cu showed preferential storage in abaxial trichomes, suggesting a mechanism of compartmentation to restrict accumulation in mesophyll cells. The results show that the studied species act as a Cu-excluder, and Cu toxicity was avoided to a certain extent by root immobilization, leaf tissue compartmentation and induction of antioxidant enzymes to prevent cell damage.
Collapse
|
16
|
Angulo-Bejarano PI, Puente-Rivera J, Cruz-Ortega R. Metal and Metalloid Toxicity in Plants: An Overview on Molecular Aspects. PLANTS (BASEL, SWITZERLAND) 2021; 10:635. [PMID: 33801570 PMCID: PMC8066251 DOI: 10.3390/plants10040635] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Worldwide, the effects of metal and metalloid toxicity are increasing, mainly due to anthropogenic causes. Soil contamination ranks among the most important factors, since it affects crop yield, and the metals/metalloids can enter the food chain and undergo biomagnification, having concomitant effects on human health and alterations to the environment. Plants have developed complex mechanisms to overcome these biotic and abiotic stresses during evolution. Metals and metalloids exert several effects on plants generated by elements such as Zn, Cu, Al, Pb, Cd, and As, among others. The main strategies involve hyperaccumulation, tolerance, exclusion, and chelation with organic molecules. Recent studies in the omics era have increased knowledge on the plant genome and transcriptome plasticity to defend against these stimuli. The aim of the present review is to summarize relevant findings on the mechanisms by which plants take up, accumulate, transport, tolerate, and respond to this metal/metalloid stress. We also address some of the potential applications of biotechnology to improve plant tolerance or increase accumulation.
Collapse
Affiliation(s)
- Paola I. Angulo-Bejarano
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
- School of Engineering and Sciences, Centre of Bioengineering, Tecnologico de Monterrey, Queretaro 21620, Mexico
| | - Jonathan Puente-Rivera
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
| | - Rocío Cruz-Ortega
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
| |
Collapse
|