1
|
Shi Y, Lu T, Lai S, Li S, Zhang L, Liu R, Ouyang L, Zhao X, Jiang Y, Yan Z, Zhang J, Miao B. Rosa rugosa R2R3-MYB transcription factors RrMYB12 and RrMYB111 regulate the accumulation of flavonols and anthocyanins. FRONTIERS IN PLANT SCIENCE 2024; 15:1477278. [PMID: 39741671 PMCID: PMC11685124 DOI: 10.3389/fpls.2024.1477278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025]
Abstract
Roses (Rosa rugosa) are a famous flower with high ornamental and economic value. But the petals of roses are usually pink and purple, which restricted its application in garden settings. Flavonols and anthocyanins are crucial secondary metabolites related to flower pigmentation in plants. While MYB transcription factors involved in the biosynthesis pathway of anthocyanins have been identified in roses, the functional characterization of the MYB transcription factor regulating flavonol synthesis in R. rugosa remains unexplored. In this study, we isolated and characterized the R2R3-MYB transcription factors RrMYB12 and RrMYB111 involved in regulation of the flavonol biosynthetic pathway from R. rugosa. The bioinformatics analysis indicated that both the RrMYB12 and RrMYB111 belong to the R2R3-MYB subgroup 7 family. qRT-PCR analysis showed that RrMYB12 and RrMYB111 were expressed at low levels in roots and flowers. And transactivation activity assay indicated that RrMYB12 and RrMYB111 were transcriptional activators. The overexpression of RrMYB12 and RrMYB111 in tobacco resulted in an elevation of flavonol levels and a reduction in anthocyanin levels in flowers due to the upregulation of structural genes involved in flavonol synthesis, while the biosynthesis genes for the anthocyanin pathway were significantly downregulated. The transient reporter assay demonstrated that RrMYB12 exhibited strong activation of the promoters of RrCHS and RrFLS in Nicotiana benthamiana leaves following transient transformation. Furthermore, it was observed that RrMYBs displayed binding specificity to the promoter region of CsFLS.The functional characterization of the flavonol synthesis regulatory factors RrMYB12 and RrMYB111 offers a deeper understanding of the regulatory mechanism governing flavonol biosynthesis in roses, while also presenting an effective tool for genetic manipulation aimed at creating new varieties.
Collapse
Affiliation(s)
- Yufeng Shi
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Taoran Lu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Sanyan Lai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Song Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Ling Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Rong Liu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Lin Ouyang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Xinxin Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Yuqin Jiang
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Zhen Yan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Ju Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Baohe Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| |
Collapse
|
2
|
Meng G, Rasmussen SK, Christensen CSL, Fan W, Torp AM. Molecular breeding of barley for quality traits and resilience to climate change. Front Genet 2023; 13:1039996. [PMID: 36685930 PMCID: PMC9851277 DOI: 10.3389/fgene.2022.1039996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Barley grains are a rich source of compounds, such as resistant starch, beta-glucans and anthocyanins, that can be explored in order to develop various products to support human health, while lignocellulose in straw can be optimised for feed in husbandry, bioconversion into bioethanol or as a starting material for new compounds. Existing natural variations of these compounds can be used to breed improved cultivars or integrated with a large number of mutant lines. The technical demands can be in opposition depending on barley's end use as feed or food or as a source of biofuel. For example beta-glucans are beneficial in human diets but can lead to issues in brewing and poultry feed. Barley breeders have taken action to integrate new technologies, such as induced mutations, transgenics, marker-assisted selection, genomic selection, site-directed mutagenesis and lastly machine learning, in order to improve quality traits. Although only a limited number of cultivars with new quality traits have so far reached the market, research has provided valuable knowledge and inspiration for future design and a combination of methodologies to achieve the desired traits. The changes in climate is expected to affect the quality of the harvested grain and it is already a challenge to mitigate the unpredictable seasonal and annual variations in temperature and precipitation under elevated [CO2] by breeding. This paper presents the mutants and encoded proteins, with a particular focus on anthocyanins and lignocellulose, that have been identified and characterised in detail and can provide inspiration for continued breeding to achieve desired grain and straw qualities.
Collapse
Affiliation(s)
- Geng Meng
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Søren K. Rasmussen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | - Weiyao Fan
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Anna Maria Torp
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
3
|
Dong W, Tang L, Peng Y, Qin Y, Lin Y, Xiong X, Hu X. Comparative transcriptome analysis of purple-fleshed sweet potato and its yellow-fleshed mutant provides insight into the transcription factors involved in anthocyanin biosynthesis in tuberous root. FRONTIERS IN PLANT SCIENCE 2022; 13:924379. [PMID: 36003808 PMCID: PMC9393619 DOI: 10.3389/fpls.2022.924379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
In various plant species, many transcription factors (TFs), such as MYB, bHLH, and WD40, have been identified as regulators of anthocyanin biosynthesis in underground organs. However, the regulatory elements of anthocyanin biosynthesis in the tuberous roots of sweet potato have not been elucidated yet. Here, we selected the purple-fleshed sweet potato cultivar "Zhezi1" (ZZ P ) and its spontaneous yellow-fleshed mutant "Xinli" (XL Y ) to investigate the regulatory mechanism of the anthocyanin biosynthesis in the tuberous roots of sweet potato. By analyzing the IbMYB1 genotype in ZZ P and XL Y , we found that the IbMYB1-2, a MYB TF involved in anthocyanin biosynthesis, was missing in the XL Y genome, which might lead to an extreme decrease in anthocyanins in XL Y . A comparative transcriptome analysis of ZZ P and XL Y was conducted to find the TFs involved in anthocyanin biosynthesis in ZZ P and XL Y . The anthocyanin structural genes were significantly enriched among the differentially expressed genes. Moreover, one MYB activator (IbMYB1), one bHLH (IbbHLH2), three WRKY activator candidates (IbWRKY21, IbWRKY24, and IbWRKY44), and two MYB repressors (IbMYB27 and IbMYBx-ZZ) were highly expressed in ZZ P accompanied with anthocyanin structural genes. We also tested the expression of these TFs in six purple- and two orange-fleshed sweet potato cultivars. Interestingly, most of these TFs were significantly positively correlated with anthocyanin contents in these cultivars. The function of the anthocyanin biosynthesis repression of IbMYB27 and IbMYBx-ZZ was verified through transient co-transformation with IbMYB1 into tobacco leaves. Further functional verification of the above TFs was conducted by Y2H, BiFC, and dual-luciferase assays. These tests showed that the MYB-bHLH-WD40/MYB-bHLH-WD40-WRKY complex activated the promoter of anthocyanin structural gene IbDFR and promoters for IbWRKY44, IbMYB27, and IbMYBx-ZZ, indicating reinforcement and feedback regulation to maintain the level of anthocyanin accumulation in the tuberous roots of purple-fleshed sweet potato. These results may provide new insights into the regulatory mechanism of anthocyanin biosynthesis and accumulation in underground organs of sweet potatoes.
Collapse
Affiliation(s)
- Wen Dong
- Hunan Provincial Engineering Research Center for Potatoes, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Linfei Tang
- Hunan Provincial Engineering Research Center for Potatoes, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Yali Peng
- Hunan Provincial Engineering Research Center for Potatoes, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Yuzhi Qin
- Hunan Provincial Engineering Research Center for Potatoes, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Yuan Lin
- Hunan Provincial Engineering Research Center for Potatoes, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Xingyao Xiong
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xinxi Hu
- Hunan Provincial Engineering Research Center for Potatoes, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| |
Collapse
|
4
|
Wang G, Lu M, Zhang S, Ji J, Li B, Li J, Zhang L, Yang D, Wang W, Guan C. Anthocyanin release and absorption properties of boiling pigmented rice using an in vitro digestion model. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Duan K, Zhao YJ, Li ZY, Zou XH, Yang J, Guo CL, Chen SY, Yang XR, Gao QH. A Strategy for the Production and Molecular Validation of Agrobacterium-Mediated Intragenic Octoploid Strawberry. PLANTS 2021; 10:plants10112229. [PMID: 34834592 PMCID: PMC8622968 DOI: 10.3390/plants10112229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 11/16/2022]
Abstract
Intragenesis is an all-native engineering technology for crop improvement. Using an intragenic strategy to bring genes from wild species to cultivated strawberry could expand the genetic variability. A robust regeneration protocol was developed for the strawberry cv. ‘Shanghai Angel’ by optimizing the dose of Thidiazuron and identifying the most suitable explants. The expression cassette was assembled with all DNA fragments from F. vesca, harboring a sugar transporter gene FvSTP8 driven by a fruit-specific FvKnox promoter. Transformed strawberry was developed through an Agrobacterium-mediated strategy without any selectable markers. Other than PCR selection, probe-based duplex droplet digital PCR (ddPCR) was performed to determine the T-DNA insert. Four independent transformed shoots were obtained with a maximum of 5.3% efficiency. Two lines were confirmed to be chimeras, while the other two were complete transformants with six and 11 copies of the intragene, respectively. The presence of a vector backbone beyond the T-DNA in these transformants indicated that intragenic strawberries were not obtained. The current work optimized the procedures for producing transformed strawberry without antibiotic selection, and accurately determined the insertion copies by ddPCR in the strawberry genome for the first time. These strategies might be promising for the engineering of ‘Shanghai Angel’ and other cultivars to improve agronomic traits.
Collapse
Affiliation(s)
- Ke Duan
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China; (X.-H.Z.); (J.Y.); (X.-R.Y.)
- Correspondence: (K.D.); (Q.-H.G.)
| | - Ying-Jie Zhao
- Lanzhou New Area Academy of Modern Agricultural Sciences, Lanzhou 730300, China;
| | - Zi-Yi Li
- Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai 201418, China;
| | - Xiao-Hua Zou
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China; (X.-H.Z.); (J.Y.); (X.-R.Y.)
| | - Jing Yang
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China; (X.-H.Z.); (J.Y.); (X.-R.Y.)
| | - Cheng-Lin Guo
- Hangzhou Woosen Biotechnology Co., Ltd., Hangzhou 310012, China;
| | - Si-Yu Chen
- College of Food Science, Shanghai Ocean University, Shanghai 201306, China;
| | - Xiu-Rong Yang
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China; (X.-H.Z.); (J.Y.); (X.-R.Y.)
| | - Qing-Hua Gao
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China; (X.-H.Z.); (J.Y.); (X.-R.Y.)
- Correspondence: (K.D.); (Q.-H.G.)
| |
Collapse
|
6
|
Genetic Differentiation in Anthocyanin Content among Berry Fruits. Curr Issues Mol Biol 2021; 43:36-51. [PMID: 33946926 PMCID: PMC8929022 DOI: 10.3390/cimb43010004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Anthocyanins are widely distributed secondary metabolites that play an essential role in skin pigmentation of many plant organs and microorganisms. Anthocyanins have been associated with a wide range of biological and pharmacological properties. They are also effective agents in the prevention and treatment of many chronic diseases. Berries are particularly abundant in these compounds; therefore, their dietary intake has health-promoting effects. The aim of this study was to identify and determine the anthocyanin content in selected species and cultivars of berry fruits, such as raspberry, blackberry, red currant, blackcurrant, and highbush blueberry, widely consumed by Europeans. The concentrations of anthocyanins were determined by HPLC, identifying individual compounds: cyanidin-3-O-glucoside, pelargonidin-3-O-glucoside, delphinidin-3-O-glucoside, delphinidin-3-O-rutinoside, cyanidin-3-O-rutinoside, delphinidin-3-O-galactoside, cyanidin-3-O-galactoside, and malvidin-3-O-galactoside. The experimental data showed that the selected species and cultivars of berry fruits differ significantly in the contents of anthocyanins. Among all species tested, blackberry and blackcurrant were characterized significantly by the highest content of anthocyanins (sum), while the lowest content was found in red currant fruits. Additionally, the content of individual anthocyanin compounds in particular species and cultivars was also different. Considering the high content of anthocyanins and their potential positive impact on human health and protection against disease, berries should be part of healthy nutrition.
Collapse
|
7
|
Bioactive Compounds and Antioxidant Capacity in Anthocyanin-Rich Carrots: A Comparison between the Black Carrot and the Apulian Landrace "Polignano" Carrot. PLANTS 2021; 10:plants10030564. [PMID: 33802658 PMCID: PMC8002536 DOI: 10.3390/plants10030564] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022]
Abstract
The carrot is one of the most cultivated vegetables in the world. Black or purple carrots contain acylated anthocyanins which are of special interest to the food industry for their stability and nutraceutical characteristics. Anthocyanin-rich fruits and vegetables have gained popularity in the last ten years, due to the health benefits they provide. In this paper, the characterizations of the bioactive compounds and antioxidant capacities of different anthocyanin-containing carrots (a black carrot—BC, and a local purple carrot, the “Polignano” carrot—PC), compared to the commercial orange carrot (OC) (lacking of anthocyanins), are reported. The anthocyanin profiles of the polyphenolic extracts of BC and PC were similar, but differences were observed at quantitative levels. The total anthocyanin content in BC was more than twice that in PC (13.84 ± 0.61 vs. 5.64 ± 0.48 mg K Eq. g−1 DW). Phenolic acids (mostly chlorogenic acid) were also present at high level in anthocyanin-rich carrots compared to OC. High polyphenol content accounted also for a high reducing capacity (evaluated by Folin–Ciocalteu reagent, FCR), and antioxidant capacity (evaluated by TEAC and ORAC assays) which were the highest for BC (FCR value: 16.6 ± 1.1 mg GAE. g−1 DW; TEAC: 76.6 ± 10.6 µmol TE. g−1 DW; ORAC: 159.9 ± 3.3 µmol TE. g−1 DW). All carrot genotypes (mostly OC) were rich in carotenoids (BC 0.14 ± 0.024; PC 0.33 ± 0.038; OC 1.29 ± 0.09 mg. g−1 DW), with predominance of α and β-carotene, in OC, and lutein in BC. PC showed the highest malic acid and sugar (glucose plus fructose) content. In conclusion, while BC is remarkable for nutraceutical features, the local genotype (“Polignano” carrot) is worth considering in genetic biodiversity conservation programme.
Collapse
|