1
|
Hassan MU, Guoqin H, Ahmad N, Khan TA, Nawaz M, Shah AN, Rasheed A, Asseri TAY, Ercisli S. Multifaceted roles of zinc nanoparticles in alleviating heavy metal toxicity in plants: a comprehensive review and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61356-61376. [PMID: 39424645 DOI: 10.1007/s11356-024-35018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Heavy metal (HM) toxicity is a serious concern across the globe owing to their harmful impacts on plants, animals, and humans. Zinc oxide nanoparticles (ZnO-NPs) have gained appreciable attention in mitigating the adverse effects of abiotic stresses. The exogenous application of ZnO-NPs induces tolerance against HMs by improving plant physiological, metabolic, and molecular responses. They also interact with potential osmolytes and phyto-hormones to regulate the plant performance under HM stress. Moreover, ZnO-NPs also work synergistically with microbes and gene expression which helps to withstand HM toxicity. Additionally, ZnO-NPs also restrict the uptake and accumulation of HMs in plants which improves the plant performance. This review highlights the promising role of ZnO-NPs in mitigating the adverse impacts of HMs in plants. In this review, we explained the different mechanisms mediated by ZnO-NPs to counter the toxic effects of HMs. We also discussed the interactions of ZnO-NPs with osmolytes, phytohormones, and microbes in mitigating the toxic effects of HMs in plants. This review will help to learn more about the role of ZnO-NPs to mitigate HM toxicity in plants. Therefore, it will provide new insights to ensure sustainable and safer production with ZnO-NPs in HM-polluted soils.
Collapse
Affiliation(s)
- Muhammad Umair Hassan
- Research Center On Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huang Guoqin
- Research Center On Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Naeem Ahmad
- College of Agronomy, Key Laboratory of Crop Physi-Ecology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Tahir Abbas Khan
- Research Center On Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan.
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, China.
| | - Adnan Rasheed
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Tahani A Y Asseri
- College of Science, Department of Biology, King Khalid University, 61413, Abha, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture Ataturk University, 25240, Erzurum, Turkey
- HGF Agro, Ata Teknokent, TR-25240, Erzurum, Turkey
| |
Collapse
|
2
|
Alzate Zuluaga MY, Fattorini R, Cesco S, Pii Y. Plant-microbe interactions in the rhizosphere for smarter and more sustainable crop fertilization: the case of PGPR-based biofertilizers. Front Microbiol 2024; 15:1440978. [PMID: 39176279 PMCID: PMC11338843 DOI: 10.3389/fmicb.2024.1440978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Biofertilizers based on plant growth promoting rhizobacteria (PGPR) are nowadays gaining increasingly attention as a modern tool for a more sustainable agriculture due to their ability in ameliorating root nutrient acquisition. For many years, most research was focused on the screening and characterization of PGPR functioning as nitrogen (N) or phosphorus (P) biofertilizers. However, with the increasing demand for food using far fewer chemical inputs, new investigations have been carried out to explore the potential use of such bacteria also as potassium (K), sulfur (S), zinc (Zn), or iron (Fe) biofertilizers. In this review, we update the use of PGPR as biofertilizers for a smarter and more sustainable crop production and deliberate the prospects of using microbiome engineering-based methods as potential tools to shed new light on the improvement of plant mineral nutrition. The current era of omics revolution has enabled the design of synthetic microbial communities (named SynComs), which are emerging as a promising tool that can allow the formulation of biofertilizers based on PGPR strains displaying multifarious and synergistic traits, thus leading to an increasingly efficient root acquisition of more than a single essential nutrient at the same time. Additionally, host-mediated microbiome engineering (HMME) leverages advanced omics techniques to reintroduce alleles coding for beneficial compounds, reinforcing positive plant-microbiome interactions and creating plants capable of producing their own biofertilizers. We also discusses the current use of PGPR-based biofertilizers and point out possible avenues of research for the future development of more efficient biofertilizers for a smarter and more precise crop fertilization. Furthermore, concerns have been raised about the effectiveness of PGPR-based biofertilizers in real field conditions, as their success in controlled experiments often contrasts with inconsistent field results. This discrepancy highlights the need for standardized protocols to ensure consistent application and reliable outcomes.
Collapse
|
3
|
Mishra S, Spaccarotella K, Gido J, Samanta I, Chowdhary G. Effects of Heat Stress on Plant-Nutrient Relations: An Update on Nutrient Uptake, Transport, and Assimilation. Int J Mol Sci 2023; 24:15670. [PMID: 37958654 PMCID: PMC10649217 DOI: 10.3390/ijms242115670] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
As a consequence of global climate change, the frequency, severity, and duration of heat stress are increasing, impacting plant growth, development, and reproduction. While several studies have focused on the physiological and molecular aspects of heat stress, there is growing concern that crop quality, particularly nutritional content and phytochemicals important for human health, is also negatively impacted. This comprehensive review aims to provide profound insights into the multifaceted effects of heat stress on plant-nutrient relationships, with a particular emphasis on tissue nutrient concentration, the pivotal nutrient-uptake proteins unique to both macro- and micronutrients, and the effects on dietary phytochemicals. Finally, we propose a new approach to investigate the response of plants to heat stress by exploring the possible role of plant peroxisomes in the context of heat stress and nutrient mobilization. Understanding these complex mechanisms is crucial for developing strategies to improve plant nutrition and resilience during heat stress.
Collapse
Affiliation(s)
- Sasmita Mishra
- Department of Biology, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA
| | - Kim Spaccarotella
- Department of Biology, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA
| | - Jaclyn Gido
- Department of Biology, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA
| | - Ishita Samanta
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT—Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India (G.C.)
| | - Gopal Chowdhary
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT—Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India (G.C.)
| |
Collapse
|
4
|
Seregin IV, Kozhevnikova AD. Nicotianamine: A Key Player in Metal Homeostasis and Hyperaccumulation in Plants. Int J Mol Sci 2023; 24:10822. [PMID: 37446000 DOI: 10.3390/ijms241310822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Nicotianamine (NA) is a low-molecular-weight N-containing metal-binding ligand, whose accumulation in plant organs changes under metal deficiency or excess. Although NA biosynthesis can be induced in vivo by various metals, this non-proteinogenic amino acid is mainly involved in the detoxification and transport of iron, zinc, nickel, copper and manganese. This review summarizes the current knowledge on NA biosynthesis and its regulation, considers the mechanisms of NA secretion by plant roots, as well as the mechanisms of intracellular transport of NA and its complexes with metals, and its role in radial and long-distance metal transport. Its role in metal tolerance is also discussed. The NA contents in excluders, storing metals primarily in roots, and in hyperaccumulators, accumulating metals mainly in shoots, are compared. The available data suggest that NA plays an important role in maintaining metal homeostasis and hyperaccumulation mechanisms. The study of metal-binding compounds is of interdisciplinary significance, not only regarding their effects on metal toxicity in plants, but also in connection with the development of biofortification approaches to increase the metal contents, primarily of iron and zinc, in agricultural plants, since the deficiency of these elements in food crops seriously affects human health.
Collapse
Affiliation(s)
- Ilya V Seregin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St., 35, 127276 Moscow, Russia
| | - Anna D Kozhevnikova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St., 35, 127276 Moscow, Russia
| |
Collapse
|
5
|
Ren Y, Li X, Liang J, Wang S, Wang Z, Chen H, Tang M. Brassinosteroids and gibberellic acid actively regulate the zinc detoxification mechanism of Medicago sativa L. seedlings. BMC PLANT BIOLOGY 2023; 23:75. [PMID: 36737680 PMCID: PMC9898925 DOI: 10.1186/s12870-023-04091-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/27/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Zinc is one of the essential trace elements in plants. There are few studies on the phytohormone to rescue the toxicity of excessive zinc to plants. The aim of this research was to evaluate the alleviating effects of brassinosteroids (BR) and gibberellic acid (GA) on the toxicity of Medicago sativa L. (M. sativa) induced by excessive zinc. RESULTS After zinc, BR and GA were applied to M. sativa seedlings for 7 weeks, their physiological and biochemical properties and gene expression patterns were evaluated. BR and GA significantly weakened the inhibition effect of zinc stress on growth and biomass of M. sativa. Under zinc stress, the zinc accumulation in M. sativa roots was over 5 times that in shoots. Application of BR and GA reduced zinc accumulation in roots. The content of lipid peroxides in M. sativa decreased and the activity of antioxidant enzymes increased under BR and GA treatments. In addition, BR and GA treatment down-regulated the transcription level of MsZIP1/3/5, the transporters of zinc uptake in root cells. And BR and GA up-regulated the expressions of zinc efflux, chelation, vacuolar storage and long-distance transport related genes: MsZIP7, MsHMA1, MsZIF1, MsMTP1, MsYSL1 and MsNAS1. CONCLUSIONS Our findings further showed that BR and GA application to M. sativa under zinc stress can reduce zinc accumulation, promote the response of the antioxidant defense system, and actively regulate the mechanism of heavy metal detoxification. Notably, 100 nM BR performed slightly better than 100 nM GA in all aspects of the detoxification of M. sativa by excessive zinc.
Collapse
Affiliation(s)
- Ying Ren
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Xue Li
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Jingwei Liang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Sijia Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Zhihao Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
6
|
Noda Y, Furukawa J, Suzui N, Yin YG, Matsuoka K, Kawachi N, Satoh S. Characterization of zinc uptake and translocation visualized with positron-emitting 65Zn tracer and analysis of transport-related gene expression in two Lotus japonicus accessions. ANNALS OF BOTANY 2022; 130:799-810. [PMID: 35948001 PMCID: PMC9758300 DOI: 10.1093/aob/mcac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Zinc (Zn) is an essential element for humans and plants. However, Zn deficiency is widespread and 25 % of the world's population is at risk of Zn deficiency. To overcome the deficiency of Zn intake, crops with high Zn content are required. However, most crop-producing areas have Zn-deficient soils, therefore crops with excellent Zn uptake/transport characteristics (i.e. high Zn efficiency) are needed. Our objective was to identify the crucial factors responsible for high Zn efficiency in the legume Lotus japonicus. METHODS We evaluated Zn efficiency by static and real-time visualization of radioactive Zn (65Zn) uptake/transport in two L. japonicus accessions, MG-20 and B-129, that differ in Zn efficiency. The combination of visualization methods verified the dynamics of Zn accumulation and transport within the plant. We compared gene expression under a normal Zn concentration (control) and Zn deficiency to evaluate genetic factors that may determine the differential Zn efficiency of the accessions. KEY RESULTS The accession B-129 accumulated almost twice the amount of Zn as MG-20. In the static 65Zn images, 65Zn accumulated in meristematic tissues, such as root tips and the shoot apex, in both accessions. The positron-emitting tracer imaging system (PETIS), which follows the transport process in real time, revealed that 65Zn transport to the shoot was more rapid in B-129 than in MG-20. Many genes associated with Zn uptake and transport were more highly expressed in B-129 than in MG-20 under the control condition. These gene expression patterns under Zn deficiency differed from those under the control Zn condition. CONCLUSIONS PETIS confirmed that the real-time transport of 65Zn to the shoot was faster in B-129 than in MG-20. The high Zn efficiency of B-129 may be due to the elevated expression of a suite of Zn uptake- and transport-related genes.
Collapse
Affiliation(s)
- Yusaku Noda
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology (QST), Gunma, 370-1292Japan
| | - Jun Furukawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572Japan
| | - Nobuo Suzui
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology (QST), Gunma, 370-1292Japan
| | - Yong-Gen Yin
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology (QST), Gunma, 370-1292Japan
| | - Keita Matsuoka
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572Japan
| | - Naoki Kawachi
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology (QST), Gunma, 370-1292Japan
| | - Shinobu Satoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572Japan
| |
Collapse
|
7
|
Han LN, Wang SJ, Chen H, Ren Y, Xie XA, Wang XY, Hu WT, Tang M. Arbuscular mycorrhiza mitigates zinc stress on Eucalyptus grandis through regulating metal tolerance protein gene expression and ionome uptake. FRONTIERS IN PLANT SCIENCE 2022; 13:1022696. [PMID: 36420037 PMCID: PMC9676645 DOI: 10.3389/fpls.2022.1022696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi are symbionts of most terrestrial plants and enhance their adaptability in metal-contaminated soils. In this study, mycorrhized and non-mycorrhized Eucalyptus grandis were grown under different Zn treatments. After 6 weeks of treatment, the growing status and ionome content of plants as well as the expression patterns of metal tolerance proteins and auxin biosynthesis-related genes were measured. In this study, mycorrhized E. grandis showed higher biomass and height at a high level of Zn compared with non-mycorrhized plants. In addition, AM plants accumulated P, Mg, and Mn in roots and P, Fe, and Cu in shoots, which indicate that AM fungi facilitate the uptake of ionome nutrients to promote plant growth. In addition, mycorrhiza upregulated the expression of EgMTP1 and EgMTP7, whose encoding proteins were predicted to be located at the vacuolar membrane. Meanwhile, Golgi membrane transporter EgMTP5 was also induced in AM shoot. Our results suggest that AM likely mitigates Zn toxicity through sequestrating excess Zn into vacuolar and Golgi. Furthermore, the expression of auxin biosynthesis-related genes was facilitated by AM, and this is probably another approach for Zn tolerance.
Collapse
|
8
|
Malka M, Du Laing G, Li J, Bohn T. Separate foliar sodium selenate and zinc oxide application enhances Se but not Zn accumulation in pea ( Pisum sativum L.) seeds. FRONTIERS IN PLANT SCIENCE 2022; 13:968324. [PMID: 36466269 PMCID: PMC9714566 DOI: 10.3389/fpls.2022.968324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/03/2022] [Indexed: 06/17/2023]
Abstract
Up to 15% and 17% of the world population is selenium (Se) and zinc (Zn) deficient, respectively. Pea (Pisum sativum L.) is an important staple legume with a high potential for Se and Zn biofortification in seeds. A 2-year pot experiment investigated two pea varieties (Ambassador and Premium) following foliar-applied sodium selenate (0/50/100 g of Se/ha) and zinc oxide (0/375/750 g of Zn/ha) at the flowering stage. Selenate and zinc oxide had minimal overall effects on growth parameters. Zinc oxide did not improve Zn accumulation in both seed varieties, while selenate improved Se accumulation in both seed varieties dose-dependently. Premium accumulated greater amounts of Se in seeds than Ambassador (p < 0.001). Selenium concentrations were highest in seeds of Premium treated with 100 g of Se/ha [7.84 mg/kg DW vs. the control (0.16 mg/kg DW), p < 0.001]. The predominant Se species in Se-enriched seeds was selenomethionine (40%-76% of total Se). Furthermore, a significant (p < 0.01) positive correlation was found between Zn and S concentrations in Ambassador (r 2 = 0.446) and Premium (r 2 = 0.498) seeds, but not between Se and S. Consuming as little as 55 g/day of pea biofortified by 50 g of Se/ha would cover 100% of the adult RDA (55 µg) for Se. Findings are important for improving foliar biofortification of pea with Se and Zn.
Collapse
Affiliation(s)
- Maksymilian Malka
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Gijs Du Laing
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jun Li
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| |
Collapse
|
9
|
Some new antimicrobial/antioxidant nanostructure zinc complexes: Synthesis, crystal structure, Hirshfeld surface analyses and thermal behavior. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
10
|
Li G, Wang Y, Liu H, Qin S, Sui F, Fu H, Duan R, Li C, Zhao P. A comparison study of physiological response and TaZIPs expression in seedlings of two wheat (Triticum aestivum L.) cultivars with contrasting grain zinc accumulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111237. [PMID: 35351309 DOI: 10.1016/j.plantsci.2022.111237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Screening and breeding of high-Zn-accumulating wheat cultivars have received increasing attention in recent years. However, the exact mechanism of Zn uptake and accumulation in wheat is not fully understood. Here, we investigated the physiological responses and TaZIPs gene expression in a low (Zhengmai0856, ZM0856) and a high (Aikang58, AK58) grain-Zn-accumulating wheat cultivars under hydroponic conditions with different levels of Zn supply. Results showed that AK58 was a Zn sensitive cultivar with better growth advantage, while ZM0856 was a Zn tolerant cultivar with higher capacity of Zn uptake. In addition, gene expression analysis showed that, the expression levels of the TaZIP3, TaZIP5, and TaZIP7 in roots were increased in both cultivars under Zn deficiency. In shoots, TaZIP3 and TaZIP6 transcript accumulation was lower in AK58 than ZM0856, whereas TaZIP7 showed the opposite effect. Moreover, multivariate statistical analysis (Pearson's correlation and PCA) showed that the mechanisms involved in Zn uptake and translocation was closely related to subcellular biosynthesis and ZIP gene expression regulation, whereas adequate Zn supply improved the Zn uptake and root-to-shoot translocation. These novel findings might be helpful for the molecular-assisted selecting and breeding of Zn-rich wheat cultivars.
Collapse
Affiliation(s)
- Guangxin Li
- College of Resources and Environmental, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou 450002, China
| | - Yun Wang
- College of Resources and Environmental, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou 450002, China
| | - Hongen Liu
- College of Resources and Environmental, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou 450002, China
| | - Shiyu Qin
- College of Resources and Environmental, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou 450002, China
| | - Fuqing Sui
- College of Resources and Environmental, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou 450002, China
| | - Haichao Fu
- College of Resources and Environmental, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou 450002, China
| | - Ran Duan
- College of Resources and Environmental, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou 450002, China
| | - Chang Li
- College of Resources and Environmental, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou 450002, China.
| | - Peng Zhao
- College of Resources and Environmental, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou 450002, China.
| |
Collapse
|
11
|
Al Jabri H, Saleem MH, Rizwan M, Hussain I, Usman K, Alsafran M. Zinc Oxide Nanoparticles and Their Biosynthesis: Overview. Life (Basel) 2022; 12:life12040594. [PMID: 35455085 PMCID: PMC9026433 DOI: 10.3390/life12040594] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 01/09/2023] Open
Abstract
Zinc (Zn) is plant micronutrient, which is involved in many physiological functions, and an inadequate supply will reduce crop yields. Its deficiency is the widest spread micronutrient deficiency problem; almost all crops and calcareous, sandy soils, as well as peat soils and soils with high phosphorus and silicon content are expected to be deficient. In addition, Zn is essential for growth in animals, human beings, and plants; it is vital to crop nutrition as it is required in various enzymatic reactions, metabolic processes, and oxidation reduction reactions. Finally, there is a lot of attention on the Zn nanoparticles (NPs) due to our understanding of different forms of Zn, as well as its uptake and integration in the plants, which could be the primary step toward the larger use of NPs of Zn in agriculture. Nanotechnology application in agriculture has been increasing over recent years and constitutes a valuable tool in reaching the goal of sustainable food production worldwide. A wide array of nanomaterials has been used to develop strategies of delivery of bioactive compounds aimed at boosting the production and protection of crops. ZnO-NPs, a multifunctional material with distinct properties and their doped counterparts, were widely being studied in different fields of science. However, its application in environmental waste treatment and many other managements, such as remediation, is starting to gain attention due to its low cost and high productivity. Nano-agrochemicals are a combination of nanotechnology with agrochemicals that have resulted in nano-fertilizers, nano-herbicides, nano-fungicides, nano-pesticides, and nano-insecticides being developed. They have anti-bacterial, anti-fungal, anti-inflammatory, antioxidant, and optical capabilities. Green approaches using plants, fungi, bacteria, and algae have been implemented due to the high rate of harmful chemicals and severe situations used in the manufacturing of the NPs. This review summarizes the data on Zn interaction with plants and contributes towards the knowledge of Zn NPs and its impact on plants.
Collapse
Affiliation(s)
- Hareb Al Jabri
- Center for Sustainable Development (CSD), College of Arts and Sciences, Qatar University, Doha 2713, Qatar;
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar; (M.H.S.); (M.R.)
| | - Muhammad Rizwan
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar; (M.H.S.); (M.R.)
| | - Iqbal Hussain
- Department of Botany, Government College University, Faisalabad 38000, Pakistan;
| | - Kamal Usman
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar
- Correspondence: (K.U.); (M.A.)
| | - Mohammed Alsafran
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar
- Central Laboratories Unit (CLU), Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar
- Correspondence: (K.U.); (M.A.)
| |
Collapse
|
12
|
Chen L, Beiyuan J, Hu W, Zhang Z, Duan C, Cui Q, Zhu X, He H, Huang X, Fang L. Phytoremediation of potentially toxic elements (PTEs) contaminated soils using alfalfa (Medicago sativa L.): A comprehensive review. CHEMOSPHERE 2022; 293:133577. [PMID: 35016965 DOI: 10.1016/j.chemosphere.2022.133577] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Soil contamination with potentially toxic elements (PTEs) is an increasing environmental problem, posing serious threats to the living organisms. Phytoremediation is a sustainable and highly accepted technology for remediation of PTE-contaminated soils. Alfalfa has been widely adopted for the phytoremediation of PTE-contaminated soils due to its large biomass productivity, high PTE tolerance, and strong capacity to take up PTEs. However, there are still no literature reviews systematically summarized the potential of alfalfa in the phytoremediation. Therefore, we review the available literatures that present its PTE uptake, phytotoxicity, tolerance mechanisms, and aided techniques improving the phytoremediation efficiency. In this review, alfalfa shows high amounts of PTEs accumulation, especially in their root tissue. Meanwhile, the inner mechanisms of PTE tolerance and accumulation in alfalfa are discussed including: (i) the activation of antioxidant enzyme system, (ii) subcellular localization, (iii) production of glutathione, phytochelatins, and proline, and (iv) regulation of gene expression. Indeed, excessive PTE can overcome the defense system, which causes oxidative damage in alfalfa plants, thereby inhibiting growth and physiological processes and weakening the ability of PTE uptake. Till now, several approaches have been developed to improve the tolerance and/or accumulation of PTE in alfalfa plants as follows: (i) selection of PTE tolerant cultivars, (ii) applying plant growth regulators, (iii) addition of chelating agents, fertilizer, and biochar materials, and (iv) inoculation of soil microbes. Finally, we indicate that the selection of PTE-tolerant cultivars along with inoculation of soil microbes may be an efficient and eco-friendly strategy of the soil PTE phytoremediation.
Collapse
Affiliation(s)
- Li Chen
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Weifang Hu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China
| | - Zhiqing Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Chenjiao Duan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Xiaozhen Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xuguang Huang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Linchuan Fang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| |
Collapse
|
13
|
Hacisalihoglu G. Unraveling the Mechanisms of Zinc Efficiency in Crop Plants: From Lab to Field Applications. PLANTS (BASEL, SWITZERLAND) 2022; 11:177. [PMID: 35050065 PMCID: PMC8779913 DOI: 10.3390/plants11020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 11/16/2022]
Abstract
Global food security and sustainability in the time of pandemics (COVID-19) and a growing world population are important challenges that will require optimized crop productivity under the anticipated effects of climate change [...].
Collapse
Affiliation(s)
- Gokhan Hacisalihoglu
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
14
|
Koç E, Karayiğit B. Assessment of Biofortification Approaches Used to Improve Micronutrient-Dense Plants That Are a Sustainable Solution to Combat Hidden Hunger. JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION 2022; 22:475-500. [PMID: 34754134 PMCID: PMC8567986 DOI: 10.1007/s42729-021-00663-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/18/2021] [Indexed: 05/05/2023]
Abstract
Malnutrition causes diseases, immune system disorders, deterioration in physical growth, mental development, and learning capacity worldwide. Micronutrient deficiency, known as hidden hunger, is a serious global problem. Biofortification is a cost-effective and sustainable agricultural strategy for increasing the concentrations or bioavailability of essential elements in the edible parts of plants, minimizing the risks of toxic metals, and thus reducing malnutrition. It has the advantage of delivering micronutrient-dense food crops to a large part of the global population, especially poor populations. Agronomic biofortification and biofertilization, traditional plant breeding, and optimized fertilizer applications are more globally accepted methods today; however, genetic biofortification based on genetic engineering such as increasing or manipulating (such as CRISPR-Cas9) the expression of genes that affect the regulation of metal homeostasis and carrier proteins that serve to increase the micronutrient content for higher nutrient concentration and greater productivity or that affect bioavailability is also seen as a promising high-potential strategy in solving this micronutrient deficiency problem. Data that micronutrients can help strengthen the immune system against the COVID-19 pandemic and other diseases has highlighted the importance of tackling micronutrient deficiencies. In this study, biofortification approaches such as plant breeding, agronomic techniques, microbial fertilization, and some genetic and nanotechnological methods used in the fight against micronutrient deficiency worldwide were compiled.
Collapse
Affiliation(s)
- Esra Koç
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| | - Belgizar Karayiğit
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| |
Collapse
|
15
|
Abstract
This review highlights the most recent updated information available about Zn phytotoxicity at physiological, biochemical and molecular levels, uptake mechanisms as well as excess Zn homeostasis in plants. Zinc (Zn) is a natural component of soil in terrestrial environments and is a vital element for plant growth, as it performs imperative functions in numerous metabolic pathways. However, potentially noxious levels of Zn in soils can result in various alterations in plants like reduced growth, photosynthetic and respiratory rate, imbalanced mineral nutrition and enhanced generation of reactive oxygen species. Zn enters into soils through various sources, such as weathering of rocks, forest fires, volcanoes, mining and smelting activities, manure, sewage sludge and phosphatic fertilizers. The rising alarm in environmental facet, as well as, the narrow gap between Zn essentiality and toxicity in plants has drawn the attention of the scientific community to its effects on plants and crucial role in agricultural sustainability. Hence, this review focuses on the most recent updates about various physiological and biochemical functions perturbed by high levels of Zn, its mechanisms of uptake and transport as well as molecular aspects of surplus Zn homeostasis in plants. Moreover, this review attempts to understand the mechanisms of Zn toxicity in plants and to present novel perspectives intended to drive future investigations on the topic. The findings will further throw light on various mechanisms adopted by plants to cope with Zn stress which will be of great significance to breeders for enhancing tolerance to Zn contamination.
Collapse
Affiliation(s)
- Harmanjit Kaur
- Department of Botany, Akal University, Bathinda, 151302, Punjab, India
| | - Neera Garg
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|