1
|
Shao Y, Qi X, Wang H, Tang B, Cheng Y, Zhang Z, Zhang X, Zhu M. Aptamer-based tri-mode sensing for detecting oxytetracycline mediated by SYBR Green I and functionalized Au nanoparticles. Biosens Bioelectron 2025; 270:116930. [PMID: 39571486 DOI: 10.1016/j.bios.2024.116930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/30/2024] [Accepted: 11/09/2024] [Indexed: 12/08/2024]
Abstract
Exploiting multi-mode aptamer sensing approaches for target pollutants is urgently required to meet the multi-scene detection requirements and improve the accuracy of detection. Herein, we developed a novel aptamer-based tri-mode sensing for detecting oxytetracycline (OTC). First, OTC can induce the conformational changes of the aptamer, which can promote the formation of duplex structures of the aptamer. Then SYBR Green I (SGI) can embed into the duplex structures of the aptamer to enhance the fluorescence signal. Meanwhile, it can also induce the aggregation of functionalized Au nanoparticles (AuNPs-4MBA) based on the charge neutralization strategy, producing stable colorimetric and Raman signals. Furthermore, we evaluated for the first time the advantage of SGI over salt induced nanoparticles from the perspective of Raman detection. The detection limit for the fluorescence, colorimetric, and Raman mode was 0.074, 5.019, and 0.036 nM, respectively. Moreover, the tri-mode sensing could provide broad detection range with five orders of magnitude (0.1-10000 nM). It also exhibited excellent analytical performance for tap water and honey samples with recoveries of 90.11-119.75% (n = 3). The false-positive results could be effectively avoided through the cross-validation. We expect that aptamer-based tri-mode sensing will provide a potential application for the different application scenarios.
Collapse
Affiliation(s)
- Yifan Shao
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China
| | - Xiaoxiao Qi
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China
| | | | - Bo Tang
- Laoshan Laboratory, Qingdao, Shandong, China
| | - Yongqiang Cheng
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China; Laoshan Laboratory, Qingdao, Shandong, China.
| | - Ziwei Zhang
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China
| | - Xi Zhang
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China
| | - Meijia Zhu
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China
| |
Collapse
|
2
|
Li J, Wang Y, Fang Y, Lyu X, Zhu Z, Wu C, Xu Z, Li W, Liu N, Du C, Wang Y. Phycospheric Bacteria Alleviate the Stress of Erythromycin on Auxenochlorella pyrenoidosa by Regulating Nitrogen Metabolism. PLANTS (BASEL, SWITZERLAND) 2025; 14:121. [PMID: 39795382 PMCID: PMC11722778 DOI: 10.3390/plants14010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Macrolide pollution has attracted a great deal of attention because of its ecotoxic effects on microalgae, but the role of phycospheric bacteria under antibiotic stress remains unclear. This study explored the toxic effects of erythromycin (ERY) on the growth and nitrogen metabolism of Auxenochlorella pyrenoidosa; then, it analyzed and predicted the effects of the composition and ecological function of phycospheric bacteria on microalgae under ERY stress. We found that 0.1, 1.0, and 10 mg/L ERY inhibited the growth and chlorophyll of microalgae, but the microalgae gradually showed enhanced growth abilities over the course of 21 days. As the exposure time progressed, the nitrate reductase activities of the microalgae gradually increased, but remained significantly lower than that of the control group at 21 d. NO3- concentrations in all treatment groups decreased gradually and were consistent with microalgae growth. NO2- concentrations in the three treatment groups were lower than those in the control group during ERY exposure over 21 d. ERY changed the community composition and diversity of phycospheric bacteria. The relative abundance of bacteria, such as unclassified-f-Rhizobiaceae, Mesorhizobium, Sphingopyxis, Aquimonas, and Blastomonas, varied to different degrees. Metabolic functions, such ABC transporters, the microbial metabolism in diverse environments, and the biosynthesis of amino acids, were significantly upregulated in the treatments of higher concentrations (1.0 and 10 mg/L). Higher concentrations of ERY significantly inhibited nitrate denitrification, nitrous oxide denitrification, nitrite denitrification, and nitrite and nitrate respiration. The findings of this study suggest that phycospheric bacteria alleviate antibiotic stress and restore the growth of microalgae by regulating nitrogen metabolism in the exposure system.
Collapse
Affiliation(s)
- Jiping Li
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; (J.L.); (Y.W.); (Y.F.); (N.L.); (C.D.); (Y.W.)
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| | - Ying Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; (J.L.); (Y.W.); (Y.F.); (N.L.); (C.D.); (Y.W.)
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| | - Yuan Fang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; (J.L.); (Y.W.); (Y.F.); (N.L.); (C.D.); (Y.W.)
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| | - Xingsheng Lyu
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| | - Zixin Zhu
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| | - Chenyang Wu
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| | - Zijie Xu
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| | - Wei Li
- College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Naisen Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; (J.L.); (Y.W.); (Y.F.); (N.L.); (C.D.); (Y.W.)
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| | - Chenggong Du
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; (J.L.); (Y.W.); (Y.F.); (N.L.); (C.D.); (Y.W.)
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| | - Yan Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; (J.L.); (Y.W.); (Y.F.); (N.L.); (C.D.); (Y.W.)
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| |
Collapse
|
3
|
Sharma L, Kudłak B, Stoń-Egiert J, Siedlewicz G, Pazdro K. Impact of emerging pollutants mixtures on marine and brackish phytoplankton: diatom Phaeodactylum tricornutum and cyanobacterium Microcystis aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177080. [PMID: 39461521 DOI: 10.1016/j.scitotenv.2024.177080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Pharmaceuticals and ionic liquids (ILs) are emerging as significant micropollutants with environmental presence and potential ecological impacts. The possible simultaneous occurrence of these two groups of pollutants in aquatic environments raises complex challenges due to their diverse chemical properties and potential for interactive effects. Given the documented widespread presence of pharmaceuticals and the emerging concerns about ILs, the study aims to evaluate the adverse effects of binary mixtures of imidazolium ionic liquid IM1-8C(CN)3 and two representatives of pharmaceuticals: antibiotic oxytetracycline (OXTC) and metabolite carbamazepine 10,11 epoxide (CBZ-E) on the brackish cyanobacterium Microcystis aeruginosa and the marine diatom Phaeodactylum tricornutum during chronic exposure experiments. A comprehensive approach was employed, incorporating various endpoints including oxidative stress, chlorophyll a fluorescence, detailed photoprotective and photosynthetic pigment profiles of target microorganisms to assess modes of action and identify the mixture effects of the selected substances. The observed alterations in pigment production affecting carotenoids synthesis in both selected species may be attributed to the differential impacts of these substances on the photosynthetic pathways and metabolic processes in the cyanobacterial and diatom cells. Changes in chlorophyll a fluorescence-specific parameters suggest impairment of the photosynthetic activity, particularly affecting the efficiency of photosystem II. The application of Concentration Addition (CA) and Independent Action (IA) mathematical models, complemented by the evaluation of Model Deviation Ratios (MDR), revealed predominantly antagonistic interactions within the studied mixtures. The findings of this study provide important insights into the effects of mixtures of organic micropollutants and their potential impact on environment including brackish and marine waters.
Collapse
Affiliation(s)
- Lilianna Sharma
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland.
| | - Błażej Kudłak
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland
| | - Joanna Stoń-Egiert
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Grzegorz Siedlewicz
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Ksenia Pazdro
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
4
|
Kalugendo E, Nazir A, Agarwal R. Assessment of azithromycin-induced toxicity in Caenorhabditis elegans: Effects on morphology, behavior, and lipid metabolism. Toxicol Rep 2024; 13:101832. [PMID: 39717856 PMCID: PMC11664063 DOI: 10.1016/j.toxrep.2024.101832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/14/2024] [Accepted: 11/23/2024] [Indexed: 12/25/2024] Open
Abstract
Antibiotics are indispensable in modern healthcare, playing a critical role in mitigating bacterial infections. Azithromycin is used to fight upper respiratory tract infections, however has potential toxic effects that remain inadequately understood. In our present study, azithromycin exposure to Caenorhabditis elegans led to significant physiological and behavioral change, with pronounced effects observed at the studied concentration. The study employs an N2 wild-type strain to examine key physiological and behavioral parameters within the worm. C.elegans were exposed to two concentrations of azithromycin (0.0038 and 0.00038 mg/ml) from the embryonic stage to the L4 stage for 48 hours. The study assessed key endpoints including body length, thrashing behavior, brood size, embryonic viability, lipid accumulation via Nile red staining, pharyngeal pumping rate, and response to 1-Nonanol (which assesses neurotransmitter function). Results showed that at 0.0038 mg/ml, azithromycin significantly reduced body length, increased progeny production, altered lipid deposition, delayed response to 1-Nonanol, and decreased feeding rates. Even at the lowest concentration (0.00038 mg/ml), changes in body length and lipid accumulation were observed. These findings suggest that the toxicity of azithromycin in C.elegans is dose-dependent and varies with exposure duration and developmental stage. Further research is needed to elucidate the molecular mechanisms underlying these toxic effects, particularly at environmentally relevant concentrations of azithromycin.
Collapse
Affiliation(s)
- Elisa Kalugendo
- Laboratory of Forensic Chemistry and Toxicology, School of Forensic Sciences, National Forensic Sciences University, Delhi, India
| | - Aamir Nazir
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Rakhi Agarwal
- Laboratory of Forensic Chemistry and Toxicology, School of Forensic Sciences, National Forensic Sciences University, Delhi, India
| |
Collapse
|
5
|
Silva C, Figueira E, Matos D, Sá C, Vidal T, Gonçalves FJM, Abrantes N, Pereira JL. Assessment of extracellular polymeric substances production and antioxidant defences in periphytic communities exposed to effluent contaminants. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:2090-2102. [PMID: 39417561 DOI: 10.1039/d4em00446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Periphyton is frequently used in the evaluation of the ecological status of aquatic ecosystems using diatoms as a proxy. However, periphyton has a particularity, the production of extracellular polymeric substances (EPS), which might play a protective role against exposure to harmful environmental contaminants. Effluents originating in wastewater treatment plants (WWTPs) constitute some of the most complex mixtures of contaminants, to which aquatic ecosystems are frequently exposed, often containing tens to hundreds of different chemicals. In such challenging scenarios, a putative protective role of EPS may obscure the bioindicator value of diatoms. To address this problem, we sampled periphyton upstream and downstream of the effluent outfall from three different WWTPs, quantifying EPS production and simultaneously evaluating general stress responses in the community (protein and sugar content, photosynthetic pigments, antioxidant enzyme activity and oxidative damage). By combining these endpoints with a characterization of the sediments of the riverine systems receiving the effluents made in a previous study (metals, polycyclic aromatic hydrocarbons, pharmaceuticals and personal care products), we aimed to elucidate whether effluent contaminants trigger negative effects, which may be mitigated by EPS layers protecting the communities. Our results indicated that under a comparatively milder contamination burden, EPS production is enhanced in samples collected downstream of the effluent outfall; under a higher contamination burden, EPS production is hampered. Stress-coping mechanisms were activated by environmental contaminants, including the antioxidant defense, particularly through catalase and superoxide dismutase activity. The findings support the generally assumed protective effect of EPS, but also suggest that EPS production depends on the contamination burden and that protective effects should be in place under specific scenarios of, for example, relatively low contamination levels. Overall, the integrative approach used in this study contributes to a better understanding of the complex interplay of interactions between effluent-driven contamination and thriving periphytic communities inhabiting recipient waterways, including evolved protection mechanisms.
Collapse
Affiliation(s)
- Carlos Silva
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Portugal.
| | - Etelvina Figueira
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Portugal.
| | - Diana Matos
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Portugal.
| | - Carina Sá
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Portugal.
| | - Tânia Vidal
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Portugal.
| | | | - Nelson Abrantes
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Portugal.
| | - Joana Luísa Pereira
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Portugal.
| |
Collapse
|
6
|
Mo LY, Long ST, Xu XCL, Qin LT, Jiang F. QSAR models for predicting key hormesis parameters of quinolone antibiotic mixtures on Vibrio qinghaiensis sp.-Q67. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177425. [PMID: 39510275 DOI: 10.1016/j.scitotenv.2024.177425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Antibiotics, as emerging pollutants, are increasingly detected in various water bodies at low-doses. The hormesis effect observed at these low-doses presents a challenge for toxicity prediction. Accurately predicting the key parameters of the hormesis effect is crucial. However, current methods for predicting the key parameters of hormesis mixtures (ECmin and ZEP) are limited. This study introduces machine learning-based QSAR (quantitative structure-activity relationship) models designed to predict these parameters. We conducted a binary mixture toxicity experiment using 10 quinolone antibiotics, with Q67 as the indicator organism, to obtain experimental data. Molecular structure descriptors of the antibiotics were calculated, and the optimal descriptors were selected. Additionally, molecular docking was used to convert the relative 3D conformation of antibiotic-protein complexes into SMILES strings. QSAR models were developed using the GA-MLR (genetic algorithms multivariate linear regression) method and the Transformer-CNN (Transformer model and convolutional neural network) method with the mixture descriptors and SMILES strings as independent variables and the toxic effect values (EC50, ECmin, and ZEP) as dependent variables. The models were validated internally and externally, demonstrating reliable prediction of the toxic effect values of EC50, ECmin, and ZEP at three different exposure times (4 h, 12 h, and 24 h), model quality is better with longer exposure times. The QSAR model exhibited strong internal stability and external predictive ability. A comparison of the two modelling approaches showed that the Transformer-CNN method produced QSAR models with a coefficient of determination (R2) ranging from 0.8458 to 0.9853, and a root mean square error (RMSE) ranging from 0.0409 to 0.1496, indicating higher accuracy in predicting time-dependent toxicity. This study offers a novel approach to exploring and predicting the key parameters of the hormesis effect.
Collapse
Affiliation(s)
- Ling-Yun Mo
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Nanning 530028, China; Resources Ecological Restoration Center of Guangxi Zhuang Autonomous Region, Nanning 530028, China.
| | - Si-Tong Long
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Xia-Chang-Li Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Li-Tang Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Nanning 530028, China.
| | - Fan Jiang
- Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Nanning 530028, China; Resources Ecological Restoration Center of Guangxi Zhuang Autonomous Region, Nanning 530028, China.
| |
Collapse
|
7
|
Huang J, Wang Z, Zhao C, Yang H, Niu L. Performance of four different microalgae-based technologies in antibiotics removal under multiple concentrations of antibiotics and strigolactone analogue GR24 administration. Sci Rep 2024; 14:16004. [PMID: 38992288 PMCID: PMC11239813 DOI: 10.1038/s41598-024-67156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
The formation of symbionts by using different combinations of endophytic bacteria, microalgae, and fungi to purify antibiotics-containing wastewater is an effective and promising biomaterial technology. As it enhances the mixed antibiotics removal performance of the bio-system, this technology is currently extensively studied. Using exogenous supplementation of various low concentrations of the phytohormone strigolactone analogue GR24, the removal of various antibiotics from simulated wastewater was examined. The performances of Chlorella vulgaris monoculture, activated sludge-C. vulgaris-Clonostachys rosea, Bacillus licheniformis-C. vulgaris-C. rosea, and endophytic bacteria (S395-2)-C. vulgaris-C. rosea co-culture systems were systematically compared. Their removal capacities for tetracycline, oxytetracycline, and chlortetracycline antibiotics from simulated wastewater were assessed. Chlorella vulgaris-endophytic bacteria-C. rosea co-cultures achieved the best performance under 0.25 mg L-1 antibiotics, which could be further enhanced by GR24 supplementation. This result demonstrates that the combination of endophytic bacteria with microalgae and fungi is superior to activated sludge-B. licheniformis-microalgae-fungi systems. Exogenous supplementation of GR24 is an effective strategy to improve the performance of antibiotics removal from wastewater.
Collapse
Affiliation(s)
- Jing Huang
- School of Mathematics and Statistics, Donghua University, Shanghai, 201620, People's Republic of China
| | - Zhengfang Wang
- Suzhou Institute of Trade & Commerce, Suzhou, 215009, People's Republic of China
| | - Chunzhi Zhao
- School of Ecological Technology & Engineering, Shanghai Institute of Technology, Shanghai, 201400, People's Republic of China
| | - Huayun Yang
- School of Engineering, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Lei Niu
- School of Mathematics and Statistics, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
8
|
Pauletto M, De Liguoro M. A Review on Fluoroquinolones' Toxicity to Freshwater Organisms and a Risk Assessment. J Xenobiot 2024; 14:717-752. [PMID: 38921651 PMCID: PMC11205205 DOI: 10.3390/jox14020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Fluoroquinolones (FQs) have achieved significant success in both human and veterinary medicine. However, regulatory authorities have recommended limiting their use, firstly because they can have disabling side effects; secondly, because of the need to limit the spread of antibiotic resistance. This review addresses another concerning consequence of the excessive use of FQs: the freshwater environments contamination and the impact on non-target organisms. Here, an overview of the highest concentrations found in Europe, Asia, and the USA is provided, the sensitivity of various taxa is presented through a comparison of the lowest EC50s from about a hundred acute toxicity tests, and primary mechanisms of FQ toxicity are described. A risk assessment is conducted based on the estimation of the Predicted No Effect Concentration (PNEC). This is calculated traditionally and, in a more contemporary manner, by constructing a normalized Species Sensitivity Distribution curve. The lowest individual HC5 (6.52 µg L-1) was obtained for levofloxacin, followed by ciprofloxacin (7.51 µg L-1), sarafloxacin and clinafloxacin (12.23 µg L-1), and ofloxacin (17.12 µg L-1). By comparing the calculated PNEC with detected concentrations, it is evident that the risk cannot be denied: the potential impact of FQs on freshwater ecosystems is a further reason to minimize their use.
Collapse
Affiliation(s)
| | - Marco De Liguoro
- Department of Comparative Biomedicine & Food Science (BCA), University of Padova, Viale dell’Università 16, I-35020 Legnaro, Padova, Italy;
| |
Collapse
|
9
|
Masinga P, Simbanegavi TT, Makuvara Z, Marumure J, Chaukura N, Gwenzi W. Emerging organic contaminants in the soil-plant-receptor continuum: transport, fate, health risks, and removal mechanisms. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:367. [PMID: 38488937 DOI: 10.1007/s10661-023-12282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/29/2023] [Indexed: 03/17/2024]
Abstract
There is a lack of comprehensive reviews tracking emerging organic contaminants (EOCs) within the soil-plant continuum using the source-pathway-receptor-impact-mitigation (SPRIM) framework. Therefore, this review examines existing literature to gain insights into the occurrence, behaviour, fate, health hazards, and strategies for mitigating EOCs within the soil-plant system. EOCs identified in the soil-plant system encompass endocrine-disrupting chemicals, surfactants, pharmaceuticals, personal care products, plasticizers, gasoline additives, flame retardants, and per- and poly-fluoroalkyl substances (PFAS). Sources of EOCs in the soil-plant system include the land application of biosolids, wastewater, and solid wastes rich in EOCs. However, less-studied sources encompass plastics and atmospheric deposition. EOCs are transported from their sources to the soil-plant system and other receptors through human activities, wind-driven processes, and hydrological pathways. The behaviour, persistence, and fate of EOCs within the soil-plant system are discussed, including sorption, degradation, phase partitioning, (bio)transformation, biouptake, translocation, and bioaccumulation in plants. Factors governing the behaviour, persistence, and fate of EOCs in the soil-plant system include pH, redox potential, texture, temperature, and soil organic matter content. The review also discusses the environmental receptors of EOCs, including their exchange with other environmental compartments (aquatic and atmospheric), and interactions with soil organisms. The ecological health risks, human exposure via inhalation of particulate matter and consumption of contaminated food, and hazards associated with various EOCs in the soil-plant system are discussed. Various mitigation measures including removal technologies of EOCs in the soil are discussed. Finally, future research directions are presented.
Collapse
Affiliation(s)
- Privilege Masinga
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, Mount Pleasant, P. O. Box MP 167, Harare, Zimbabwe
| | - Tinoziva T Simbanegavi
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, Mount Pleasant, P. O. Box MP 167, Harare, Zimbabwe
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| | - Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley, 8301, South Africa
| | - Willis Gwenzi
- Biosystems and Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe.
- Biosystems and Environmental Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe.
| |
Collapse
|
10
|
Weber-Theen A, Dören L. Chronic toxicity of pharmaceuticals to the benthic green alga Closterium ehrenbergii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116025. [PMID: 38290309 DOI: 10.1016/j.ecoenv.2024.116025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/30/2023] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
Pharmaceuticals in the environment have emerged to a topic of global concern. Since these substances are designed to be biologically active, hazardous effects on non-target organisms are frequently reported. Here, the effects of five pharmaceuticals, one radiocontrast agent, and one degradation product on the freshwater green alga Closterium ehrenbergii were evaluated after chronic exposure of 168 h. Growth and maximum quantum yield (FV/FM) were used as endpoints and complemented by the assessment of morphology and chlorophyll fluorescence. We found that the tested antibiotics Ciprofloxacin and Ofloxacin impaired chloroplast integrity, resulting in a reduction of FV/FM from 0.1 mg/L. The disintegration of chloroplasts at higher concentrations (c = 0.3 and 0.8 mg/L, respectively) was visualized by brightfield and fluorescence microscopy. In contrast, Sulfamethoxazole interfered with cell division, leading to malformation of cells from 0.8 mg/L. Furthermore, the antibiotics exhibited a latency period of 72 h after which they started to reveal their true effects. Therefore, the importance of long-term toxicity testing is outlined in order to avoid underestimation of toxic effects of pharmaceuticals. Based on the EC10 values obtained, the antibiotics were considered to meet the criteria for classification as toxic to aquatic life with long lasting effects. The other test substances were found to exert no effects on C. ehrenbergii or only at very high concentrations and were classified as nontoxic.
Collapse
Affiliation(s)
- Andreas Weber-Theen
- Department of Environmental Engineering, Laboratories of Ecotoxicology and Analytical Chemistry, RheinMain University of Applied Sciences, P.O. Box 3251, 65022 Wiesbaden, Germany; Department of Experimental Phycology and Culture Collection of Algae, Georg-August-University, Göttingen, Germany.
| | - László Dören
- Department of Environmental Engineering, Laboratories of Ecotoxicology and Analytical Chemistry, RheinMain University of Applied Sciences, P.O. Box 3251, 65022 Wiesbaden, Germany
| |
Collapse
|
11
|
Castro GB, Alexandre DS, Bernegossi AC, Bezerra YAF, Fonsêca MC, Zaiat M, Corbi JJ. Long-term exposure of Allonais inaequalis to a mixture of antibiotics in freshwater and synthetic wastewater matrices: Reproduction, recovery, and swimming responses. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11007. [PMID: 38414105 DOI: 10.1002/wer.11007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/29/2024]
Abstract
Antibiotics from sulfonamide, fluoroquinolone, and diaminopyrimidine classes are widely used in human and veterinary medicine, and their combined occurrence in the aquatic environment is increasing around the world. In parallel, the understanding of how mixtures of these compounds affect non-target species from tropical freshwaters is scarce. Thus, this work aimed to study the long-term reproductive, recovery, and swimming effects of mixtures of 12 antibiotics from three different classes (up to 10 μg L-1 ) added to freshwater (FWM) and synthetic wastewater (SWM) matrices on freshwater worm Allonais inaequalis. Results revealed that at the reproduction level, the exposure to antibiotics in the SWM matrix does not cause a significant toxic effect on species after 10 days. On the other hand, exposures to initial dose mixtures (10 μg L-1 each) in FWM caused a significant reduction of offspring by 19.2%. In addition, recovery bioassays (10 days in an antibiotic-free environment) suggested that A. inaequalis has reduced offspring production due to previous exposure to antibiotic mixtures in both matrices. Furthermore, despite slight variation in swimming speed over treatments, no significant differences were pointed out. Regarding antibiotics in the water matrices after 10-day exposures, the highest concentrations were up to 2.7, 7.8, and 4.2 μg L-1 for antibiotics from sulfonamide, fluoroquinolone, and diaminopyrimidine classes, respectively. These findings suggest that a species positioned between primary producers and secondary consumers may experience late reproductive damage even in an antibiotic-free zone, after previous 10-day exposure to antibiotic mixtures. PRACTITIONER POINTS: A mixture of sulfonamide, fluoroquinolone, and diaminopyrimidine antibiotics in freshwater affects the offspring production of A. inaequalis after 10 days. After the 10-day antibiotic exposure, the reproduction of A. inaequalis remains affected in an antibiotic-free environment over the recovery period. The swimming speed of the worms does not change after 10 days of exposure to the antibiotic mixture. The concentration of dissolved solids can limit the natural degradation of sulfonamide, fluoroquinolone, and diaminopyrimidine antibiotics in the aquatic environment.
Collapse
Affiliation(s)
- Gleyson B Castro
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - David S Alexandre
- Nucleus of Ecotoxicology and Applied Ecology, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Aline C Bernegossi
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Yohanna A F Bezerra
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Mateus C Fonsêca
- Laboratory of Biological Processes, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Marcelo Zaiat
- Laboratory of Biological Processes, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Juliano J Corbi
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
12
|
Kidd KA, Backhaus T, Brodin T, Inostroza PA, McCallum ES. Environmental Risks of Pharmaceutical Mixtures in Aquatic Ecosystems: Reflections on a Decade of Research. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:549-558. [PMID: 37530415 DOI: 10.1002/etc.5726] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) occur as variable mixtures in surface waters receiving discharges of human and animal wastes. A key question identified a decade ago is how to assess the effects of long-term exposures of these PPCP mixtures on nontarget organisms. We review the recent progress made on assessing the aquatic ecotoxicity of PPCP mixtures-with a focus on active pharmaceutical ingredients-and the challenges and research needs that remain. New knowledge has arisen from the use of whole-mixture testing combined with component-based approaches, and these studies show that mixtures often result in responses that meet the concentration addition model. However, such studies have mainly been done on individual species over shorter time periods, and longer-term, multispecies assessments remain limited. The recent use of targeted and nontargeted gene analyses has improved our understanding of the diverse pathways that are impacted, and there are promising new "read-across" methods that use mammalian data to predict toxicity in wildlife. Risk assessments remain challenging given the paucity of ecotoxicological and exposure data on PPCP mixtures. As such, the assessment of PPCP mixtures in aquatic environments should remain a priority given the potential for additive-as well as nontarget-effects in nontarget organisms. In addition, we need to improve our understanding of which species, life stages, and relevant endpoints are most sensitive to which types of PPCP mixtures and to expand our knowledge of environmental PPCP levels in regions of the globe that have been poorly studied to date. We recommend an increased use of new approach methodologies, in particular "omics," to advance our understanding of the molecular mechanics of mixture effects. Finally, we call for systematic research on the role of PPCP mixtures in the development of antimicrobial resistance. Environ Toxicol Chem 2024;43:549-558. © 2023 SETAC.
Collapse
Affiliation(s)
- Karen A Kidd
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- School of Earth, Environment and Society, McMaster University, Hamilton, Ontario, Canada
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Tomas Brodin
- Department of Wildlife, Fish & Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Pedro A Inostroza
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Erin S McCallum
- Department of Wildlife, Fish & Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
13
|
Guo X, Chen H, Tong Y, Wu X, Tang C, Qin X, Guo J, Li P, Wang Z, Liu W, Mo J. A review on the antibiotic florfenicol: Occurrence, environmental fate, effects, and health risks. ENVIRONMENTAL RESEARCH 2024; 244:117934. [PMID: 38109957 DOI: 10.1016/j.envres.2023.117934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Florfenicol, as a replacement for chloramphenicol, can tightly bind to the A site of the 23S rRNA in the 50S subunit of the 70S ribosome, thereby inhibiting protein synthesis and bacterial proliferation. Due to the widespread use in aquaculture and veterinary medicine, florfenicol has been detected in the aquatic environment worldwide. Concerns over the effects and health risks of florfenicol on target and non-target organisms have been raised in recent years. Although the ecotoxicity of florfenicol has been widely reported in different species, no attempt has been made to review the current research progress of florfenicol toxicity, hormesis, and its health risks posed to biota. In this study, a comprehensive literature review was conducted to summarize the effects of florfenicol on various organisms including bacteria, algae, invertebrates, fishes, birds, and mammals. The generation of antibiotic resistant bacteria and spread antibiotic resistant genes, closely associated with hormesis, are pressing environmental health issues stemming from overuse or misuse of antibiotics including florfenicol. Exposure to florfenicol at μg/L-mg/L induced hormetic effects in several algal species, and chromoplasts might serve as a target for florfenicol-induced effects; however, the underlying molecular mechanisms are completely lacking. Exposure to high levels (mg/L) of florfenicol modified the xenobiotic metabolism, antioxidant systems, and energy metabolism, resulting in hepatotoxicity, renal toxicity, immunotoxicity, developmental toxicity, reproductive toxicity, obesogenic effects, and hormesis in different animal species. Mitochondria and the associated energy metabolism are suggested to be the primary targets for florfenicol toxicity in animals, albeit further in-depth investigations are warranted for revealing the long-term effects (e.g., whole-life-cycle impacts, multigenerational effects) of florfenicol, especially at environmental levels, and the underlying mechanisms. This will facilitate the evaluation of potential hormetic effects and construction of adverse outcome pathways for environmental risk assessment and regulation of florfenicol.
Collapse
Affiliation(s)
- Xingying Guo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Haibo Chen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Yongqi Tong
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Xintong Wu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Can Tang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Xian Qin
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Ping Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Zhen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China.
| |
Collapse
|
14
|
Wang L, Yang M, Guo C, Jiang Y, Zhu Z, Hu C, Zhang X. Toxicity of tigecycline on the freshwater microalga Scenedesmus obliquus: Photosynthetic and transcriptional responses. CHEMOSPHERE 2024; 349:140885. [PMID: 38061560 DOI: 10.1016/j.chemosphere.2023.140885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Tigecycline (TGC) is a new tetracycline antibiotic medication against multidrug-resistant bacteria. However, the toxicity of TGC to microalgae remains largely unknown. In this study, the toxicity of TGC on Scenedesmus obliquus was examined, focusing on changes in algal growth, photosynthetic activity, and transcriptome. According to an acute toxicity test, the IC10 and IC50 values were 0.72 mg/L and 4.15 mg/L, respectively. Analyses of photosynthetic efficiency and related parameters, such as light absorption, energy capture, and electron transport, identified a 35% perturbation in the IC50 group, while the IC10 group remained largely unaffected. Transcriptomic analysis showed that in the IC10 and IC50 treatment groups, there were 874 differentially expressed genes (DEGs) (220 upregulated and 654 downregulated) and 4289 DEGs (2660 upregulated and 1629 downregulated), respectively. Gene Ontology enrichment analysis showed that TGC treatment markedly affected photosynthesis, electron transport, and chloroplast functions. In the IC50 group, a clear upregulation of genes related to photosynthesis and chloroplast functions was observed, which could be an adaptive stress response. In the IC10 group, significant downregulation of DEGs involved in ribosomal pathways and peptide biosynthesis processes was observed. Kyoto Encyclopedia of Gene and Genomes enrichment analysis showed that treatment with TGC also disrupted energy production, protein synthesis, and metabolic processes in S. obliquus. Significant downregulation of key proteins related to Photosystem II was observed under the IC10 TGC treatment. Conversely, IC50 TGC treatment resulted in substantial upregulation across a broad array of photosystem-related proteins from both Photosystems II and I. IC10 and IC50 TGC treatments differentially influenced proteins involved in the photosynthetic electron transport process. This study emphasizes the potential risks of TGC pollution to microalgae, which contributes to a better understanding of the effects of antibiotic contamination in aquatic ecosystems.
Collapse
Affiliation(s)
- Liyan Wang
- Affiliated Hospital of Jiaxing University, Jiaxing 314001, China
| | - Maoxian Yang
- Affiliated Hospital of Jiaxing University, Jiaxing 314001, China
| | - Canyang Guo
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yeqiu Jiang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Zhihong Zhu
- Affiliated Hospital of Jiaxing University, Jiaxing 314001, China
| | - Changwei Hu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Xiaoping Zhang
- Affiliated Hospital of Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
15
|
Gangar T, Patra S. Antibiotic persistence and its impact on the environment. 3 Biotech 2023; 13:401. [PMID: 37982084 PMCID: PMC10654327 DOI: 10.1007/s13205-023-03806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023] Open
Abstract
From boon molecules to molecules contributing to rising concern has been the sojourn of antibiotics. The problem of antibiotic contamination has gotten worse due to antibiotics' pervasive use in every aspect of the environment. One such consequence of pollution is the increase in infections with antibiotic resistance. All known antimicrobials being used for human benefit lead to their repetitive and routine release into the environment. The misuse of antibiotics has aggravated the situation to a level that we are short of antibiotics to treat infections as organisms have developed resistance against them. Overconsumption is not just limited to human health care, but also occurs in other areas such as aquaculture, livestock, and veterinary applications for the purpose of improving feed and meat products. Due to their harmful effects on non-target species, the trace level of antibiotics in the aquatic ecosystem presents a significant problem. Since the introduction of antibiotics into the environment is more than their removal, they have been given the status of persistent pollutants. The buildup of antibiotics in the environment threatens aquatic life and may lead to bacterial strains developing resistance. As newer organisms are becoming resistant, there exists a shortage of antibiotics to treat infections. This has presented a very critical problem for the health-care community. Another rising concern is that the development of newer drug molecules as antibiotics is minimal. This review article critically explains the cause and nature of the pollution and the effects of this emerging trend. Also, in the latter sections, why we need newer antibiotics is questioned and discussed.
Collapse
Affiliation(s)
- Tarun Gangar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039 India
| | - Sanjukta Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039 India
| |
Collapse
|
16
|
Sharma L, Kudłak B, Siedlewicz G, Pazdro K. The effects of the IM1-12Br ionic liquid and the oxytetracycline mixture on selected marine and brackish microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165898. [PMID: 37527710 DOI: 10.1016/j.scitotenv.2023.165898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/03/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
The number of applications and commercialized processes utilizing ionic liquids has been increasing, and it is anticipated that this trend will persist and even intensify in the future. Ionic liquids possess desirable characteristics, such as low vapor pressure, good water solubility, amphiphilicity, and stability. Nevertheless, these properties can influence their environmental behavior, resulting in resistance to biotic and abiotic degradation and subsequent water contamination with more harmful derivatives. However, there is a notable scarcity of data regarding the impact of mixtures comprising ionic liquids and other micropollutants. Identifying potential potentiation of ionic liquids (Ils) toxicity in the presence of other xenobiotics is a proactive risk assessment measure. Therefore, the study aims to fill an important knowledge gap and identify possible interactions between imidazolium-based ionic liquid (IM1-12Br) and the common antibiotic oxytetracycline (OXTC). During 11-day experiments, selected marine, brackish and freshwater microorganisms (diatom Phaeodactylum tricornutum, cyanobacterium Microcystis aeruginosa and green algae Chlorella vulgaris) were exposed to binary mixtures of target substances. The assessed responses encompassed chlorophyll a kinetic parameters related to photosynthesis efficiency, as well as pigment concentrations, specifically phycobilin content. Additionally, the impact on the luminescent marine bacterium Aliivibrio fischeri has been evaluated. Significant effects on the growth, photosynthetic processes, and pigment content were observed in all the targeted microorganisms. The concentration addition (CA) and independent action (IA) mathematical models followed by the Model Deviation Ratio (MDR) evaluation enabled the identification of mainly synergistic interactions in the studied mixtures. The findings of present study offer valuable insights into the impacts of ionic liquids and other organic micropollutants.
Collapse
Affiliation(s)
- Lilianna Sharma
- Department of Marine Chemistry and Biochemistry, Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland.
| | - Błażej Kudłak
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Grzegorz Siedlewicz
- Department of Marine Chemistry and Biochemistry, Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland
| | - Ksenia Pazdro
- Department of Marine Chemistry and Biochemistry, Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland
| |
Collapse
|
17
|
Sobieraj J, Metelski D. Insights into Toxic Prymnesium parvum Blooms as a Cause of the Ecological Disaster on the Odra River. Toxins (Basel) 2023; 15:403. [PMID: 37368703 PMCID: PMC10302719 DOI: 10.3390/toxins15060403] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In 2022, Poland and Germany experienced a prolonged and extensive mass fish kill in the Odra River. During the period from the end of July to the beginning of September 2022, a high level of incidental disease and mortality was observed in various fish species (dozens of different species were found dead). The fish mortality affected five Polish provinces (Silesia, Opole, Lower Silesia, Lubuskie, and Western Pomerania) and involved reservoir systems covering most of the river (the Odra River is 854 km long, of which 742 km are in Poland). Fatal cases were investigated using toxicological, anatomopathological, and histopathological tests. Water samples were collected to determine nutrient status in the water column, phytoplankton biomass, and community composition. High nutrient concentrations indicated high phytoplankton productivity, with favorable conditions for golden algal blooms. The harmful toxins (prymnesins secreted by Prymnesium parvum habitats) had not been found in Poland before, but it was only a matter of time, especially in the Odra River, whose waters are permanently saline and still used for navigation. The observed fish mortality resulted in a 50% decrease in the fish population in the river and affected mainly cold-blooded species. Histopathological examinations of fish showed acute damage to the most perfused organs (gills, spleen, kidneys). The disruption to hematopoietic processes and damage to the gills were due to the action of hemolytic toxins (prymnesins). An evaluation of the collected hydrological, meteorological, biological, and physico-chemical data on the observed spatio-temporal course of the catastrophe, as well as the detection of three compounds from the group of B-type prymnesins in the analyzed material (the presence of prymnesins was confirmed using an analysis of the fragmentation spectrum and the accurate tandem mass spectrometry (MS/MS) measurement, in combination with high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS), allowed the formulation and subsequent testing of the hypothesis for a direct link between the observed fish mortality and the presence of prymnesins in the Odra River. This article systematizes what is known about the causes of the fish kill in the Odra River in 2022, based on official government reports (one Polish and one German) and the EU technical report by the Joint Research Centre. A review and critical analysis of government findings (Polish and German) on this disaster were conducted in the context of what is known to date about similar cases of mass fish kills.
Collapse
Affiliation(s)
- Janusz Sobieraj
- Department of Building Engineering, Warsaw University of Technology, 00-637 Warsaw, Poland;
| | - Dominik Metelski
- Research Group SEJ-609 “AMIKO”, Faculty of Economics and Management Sciences, Campus de Cartuja s/n, University of Granada, 18071 Granada, Spain
| |
Collapse
|
18
|
Wyatt L, Gichuki S, Yalcin YS, Sitther V. Impact of Ascorbic Acid on Zero-Valent Iron Nanoparticle and UV-B Mediated Stress in the Cyanobacterium, Fremyella diplosiphon. Microorganisms 2023; 11:1245. [PMID: 37317219 DOI: 10.3390/microorganisms11051245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 06/16/2023] Open
Abstract
Fremyella diplosiphon is an ideal third-generation biofuel source due to its ability to produce transesterified lipids. While nanofer 25s zero-valent iron nanoparticles (nZVIs) improve lipid production, an imbalance between reactive oxygen species (ROS) and cellular defense can be catastrophic to the organism. In the present study, the effect of ascorbic acid on nZVI and UV-induced stress in F. diplosiphon strain B481-SD was investigated, and lipid profiles in the combination regimen of nZVIs and ascorbic acid compared. Comparison of F. diplosiphon growth in BG11 media amended with 2, 4, 6, 8, and 10 mM ascorbic acid indicated 6 mM to be optimal for the growth of B481-SD. Further, growth in 6 mM ascorbic acid combined with 3.2 mg/L nZVIs was significantly higher when compared to the combination regimen of 12.8 and 51.2 mg/L of nZVIs and 6 mM ascorbic acid. The reversal effect of UV-B radiation for 30 min and 1 h indicated that ascorbic acid restored B481-SD growth. Transesterified lipids characterized by gas chromatography-mass spectrometry indicated C16 hexadecanoate to be the most abundant fatty acid methyl ester in the combination regimen of 6 mM ascorbic acid and 12.8 mg/L nZVI-treated F. diplosiphon. These findings were supported by microscopic observations in which cellular degradation was observed in B481-SD cells treated with 6 mM ascorbic acid and 12.8 mg/L nZVIs. Our results indicate that ascorbic acid counteracts the damaging effect of oxidative stress produced by nZVIs.
Collapse
Affiliation(s)
- LaDonna Wyatt
- Department of Biology, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, MD 21251, USA
| | - Samson Gichuki
- Department of Biology, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, MD 21251, USA
| | - Yavuz S Yalcin
- Department of Biology, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, MD 21251, USA
| | - Viji Sitther
- Department of Biology, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, MD 21251, USA
| |
Collapse
|
19
|
Seoane M, Conde-Pérez K, Esperanza M, Cid Á, Rioboo C. Unravelling joint cytotoxicity of ibuprofen and oxytetracycline on Chlamydomonas reinhardtii using a programmed cell death-related biomarkers panel. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106455. [PMID: 36841069 DOI: 10.1016/j.aquatox.2023.106455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Pharmaceutical active compounds (PhACs) are emerging contaminants that pose a growing concern due to their ubiquitous presence and harmful impact on aquatic ecosystems. Among PhACs, the anti-inflammatory ibuprofen (IBU) and the antibiotic oxytetracycline (OTC) are two of the most used compounds whose presence has been reported in different aquatic environments worldwide. However, there is still scarce information about the cellular and molecular alterations provoked by IBU and OTC on aquatic photosynthetic microorganisms as microalgae, even more if we refer to their potential combined toxicity. To test the cyto- and genotoxicity provoked by IBU, OTC and their binary combination on Chlamydomonas reinhardtii, a flow cytometric panel was performed after 24 h of single and co-exposure to both contaminants. Assayed parameters were cell vitality, metabolic activity, intracellular ROS levels, and other programmed cell death (PCD)-related biomarkers as cytoplasmic and mitochondrial membrane potentials and caspase-like and endonuclease activities. In addition, a nuclear DNA fragmentation analysis by comet assay was carried out. For most of the parameters analysed (vitality, metabolic activity, cytoplasmic and mitochondrial membrane potentials, and DNA fragmentation) the most severe damages were observed in the cultures exposed to the binary mixture (IBU+OTC), showing a joint cyto- and genotoxicity effect. Both PhACs and their mixture caused a remarkable decrease in cell proliferation and metabolic activity and markedly increased intracellular ROS levels, parallel to a noticeable depolarization of cytoplasmic and mitochondrial membranes. Moreover, a strong increase in both caspase and endonuclease activities as well as a PCD-related loss of nuclear DNA integrity was observed in all treatments. Results analysis showed that the PhACs caused cell death on this non-target organism, involving mitochondrial membrane depolarization, enhanced ROS production and activation of PCD process. Thus, PCD should be an applicable toxicological target for unraveling the harmful effects of co-exposure to PhACs in aquatic organisms as microalgae.
Collapse
Affiliation(s)
- Marta Seoane
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, A Coruña 15071, Spain
| | - Kelly Conde-Pérez
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, A Coruña 15071, Spain
| | - Marta Esperanza
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, A Coruña 15071, Spain
| | - Ángeles Cid
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, A Coruña 15071, Spain
| | - Carmen Rioboo
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, A Coruña 15071, Spain.
| |
Collapse
|
20
|
Yu C, Li C, Zhang Y, Du X, Wang JH, Chi ZY, Zhang Q. Effects of environment-relevant concentrations of antibiotics on seawater Chlorella sp. biofilm in artificial mariculture effluent. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
21
|
Chemtai C, Kengara FO, Ngigi AN. Levels and ecological risk of pharmaceuticals in River Sosiani, Kenya. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:431. [PMID: 36849593 DOI: 10.1007/s10661-023-11022-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The continued frequent detection of pharmaceuticals in the environment is of major concern due to potential human and ecological risks. This study evaluated 30 antibiotics from 8 classes: sulphonamides (SAs), penicillins (PNs), fluoroquinolones (FQs), macrolides (MLs), lincosamides (LINs), nitroimidazoles (NIs), diaminopyrimidines (DAPs), salfones and 4 anthelmintics benzimidazoles (BZs) in surface water and sediments from River Sosiani in Eldoret, Kenya. Samples were collected during the wet and dry seasons and subjected to solid phase extraction using HLB cartridges. A liquid chromatography tandem mass spectrometry (LC-MS/MS) method was used for the simultaneous quantification of the compounds. Chromatographic separation was on a reversed-phase Zorkax Eclipse Plus C18 column eluted in a gradient program and compounds detected by mass spectrometer operated in a positive electrospray ionization (+ ESI) mode. Twenty-eight antibiotics were detected in water where 22 had a 100% detection frequency and the remaining 4 showed detection frequencies ranging from 5 to 47%. Three BZs had a 100% detection frequency. Detectable concentrations of the pharmaceuticals in water ranged between 0.1 and 247 ng L-1 and 0.01 and 974 µg kg-1 in the sediments. The sulfonamide, sulfamethoxazole, had the highest concentration in water (247 ng L-1), whereas penicillin G showed the highest concentrations in sediments (414-974 µg kg-1). Quantified pharmaceuticals decreased in the order SAs > DAPs > FQs > ATs > PNs ≈ MCs ≈ LNs > NIs in water, and followed the order PNs > BZs > FQs > MLs > DAPs ≈ LNs > NIs > SAs in sediments. Risk quotients (RQw) showed that sulfamethoxazole and ciprofloxacin were of high ecological risk in the surface water (RQw values of 1.11 and 3.24, respectively), whereas penicillin V, ampicillin, penicillin G, norfloxacin, enrofloxacin, erythromycin, tylosin, and lincomycin were of medium ecological risk in the aquatic system. The findings show high prevalence of pharmaceuticals in surface water and sediments and are therefore potential ecological hazards. Such information is vital when devising mitigation strategies.
Collapse
Affiliation(s)
- Catherine Chemtai
- School of Sciences and Aerospace Studies, Department of Chemistry & Biochemistry, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - Fredrick O Kengara
- School of Pure and Applied Sciences, Bomet University College, P.O. Box 701-20400, Bomet, Kenya
| | - Anastasiah N Ngigi
- Faculty of Science and Technology, Department of Chemistry, Multimedia University of Kenya, P.O. Box, 15653-00503, Nairobi, Kenya.
| |
Collapse
|
22
|
Chang F, Yi M, Li H, Wang J, Zhao X, Hu X, Qi Q. Antibiotic Toxicity Isolated and as Binary Mixture to Freshwater Algae Raphidocelis subcapitata: Growth Inhibition, Prediction Model, and Environmental Risk Assessment. TOXICS 2022; 10:739. [PMID: 36548572 PMCID: PMC9785756 DOI: 10.3390/toxics10120739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Antibiotics in aqueous environments can have extremely adverse effects on non-targeted organisms. However, many research projects have only focused on the toxicological evaluation of individual antibiotics in various environments. In the present work, individual and binary mixture toxicity experiments have been conducted with the model organism Raphidocelis subcapitata (R. subcapitata), and a mixture concentration-response curve was established and contrasted with the estimated effects on the basis of both the concentration addition (CA) and the independent action (IA) models. In addition, different risk assessment methods were used and compared to evaluate the environmental risk of binary mixtures. The toxic ranking of the selected antibiotics to R. subcapitata was erythromycin (ERY) > sulfamethoxazole (SMX) > sulfamethazine (SMZ). In general, the conclusion of this study is that the adverse effects of binary mixtures are higher than the individual antibiotics. The CA model and RQSTU are more suitable for toxicity prediction and risk assessment of binary mixtures. This study reveals the potential ecological risks that antibiotics and their mixtures may pose to water ecosystems, thus providing scientific information for environmental quality regulation.
Collapse
Affiliation(s)
- Fang Chang
- Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, China
| | - Malan Yi
- Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, China
| | - Huiting Li
- Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, China
| | - Jiangnan Wang
- Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, China
| | - Xuefeng Zhao
- Hanjiang Bureau of Hydrology and Water Resources, Bureau of Hydrology, Changjiang Water Resources Commission, Xiangyang 441000, China
| | - Xiaoyue Hu
- Hanjiang Bureau of Hydrology and Water Resources, Bureau of Hydrology, Changjiang Water Resources Commission, Xiangyang 441000, China
| | - Qianju Qi
- Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, China
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
23
|
Zhang J, Xia A, Yao D, Guo X, Lam SS, Huang Y, Zhu X, Zhu X, Liao Q. Removal of oxytetracycline and ofloxacin in wastewater by microalgae-bacteria symbiosis for bioenergy production. BIORESOURCE TECHNOLOGY 2022; 363:127891. [PMID: 36089133 DOI: 10.1016/j.biortech.2022.127891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The development of microalgae-bacteria symbiosis for treating wastewater is flourishing owing to its high biomass productivity and exceptional ability to purify contaminants. A nature-selected microalgae-bacteria symbiosis, mainly consisting of Dictyosphaerium and Pseudomonas, was used to treat oxytetracycline (OTC), ofloxacin (OFLX), and antibiotic-containing swine wastewater. Increased antibiotic concentration gradually reduced biomass productivity and intricately changed symbiosis composition, while 1 mg/L OTC accelerated the growth of symbiosis. The symbiosis biomass productivity reached 3.4-3.5 g/L (5.7-15.3 % protein, 18.4-39.3 % carbohydrate, and 2.1-3.9 % chlorophyll) when cultured in antibiotic-containing swine wastewater. The symbiosis displayed an excellent capacity to remove 76.3-83.4 % chemical oxygen demand, 53.5-62.4 % total ammonia nitrogen, 97.5-100.0 % total phosphorus, 96.3-100.0 % OTC, and 32.8-60.1 % OFLX in swine wastewater. The microbial community analysis revealed that the existence of OTC/OFLX increased the richness and evenness of microalgae but reduced bacteria species in microalgae-bacteria, and the toxicity of OFLX to bacteria was stronger than that of OTC.
Collapse
Affiliation(s)
- Jingmiao Zhang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| | - Dunxue Yao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaobo Guo
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
24
|
Palumbo MT, Russo S, Polesello S, Guzzella L, Roscioli C, Marziali L, Valsecchi L, Cappelli F, Pascariello S, Tasselli S, Villa S, Peruzzo M, Culatina S, Bellotti G, Turolla A, Antonelli M, Malpei F, Valsecchi S. Integrated Exposure and Algal Ecotoxicological Assessments of Effluents from Secondary and Advanced-Tertiary Wastewater-Treatment Plants. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2404-2419. [PMID: 35781318 PMCID: PMC9804270 DOI: 10.1002/etc.5424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/16/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The great concern over the environmental impact of wastewaters has led to the designing of advanced treatment processes to upgrade conventional treatment plants and achieve a significant reduction of contaminants in receiving waters. In the present study we combined chemical and ecotoxicological analyses, aiming to evaluate the reduction of toxicity effects associated with the removal of micropollutants and to define the contribution of the detected compounds to the overall toxicity of the mixtures in a series of wastewater effluents collected from a secondary treatment (OUT 2) and from a tertiary activated carbon treatment (OUT 3) plant. The target compounds were selected after a screening procedure among pharmaceuticals, musk fragrances, and trace metals. The classical algal growth inhibition test was conducted on the original effluent samples and on different fractions obtained by solid-phase extraction (SPE) treatment. A good accordance was found between the removal of toxicity (30%-80%) and organic compounds (70%-80%) after the tertiary treatment, suggesting its high efficiency to improve the wastewater quality. The discrepancy between the contribution to the overall toxicity of the nonadsorbable compounds (i.e., inorganic or very polar organic compounds) as experimentally measured by the SPE bioassays (18%-76%) and calculated by the concentration addition approach (>97%) could be mitigated by including the bioavailability correction in metal-toxicity modeling of wastewater mixtures. For the organic compounds, the toxic equivalency method enabled us to quantify the portion of toxicity explained by the detected chemicals in both OUT 2 (82%-104%) and OUT 3 (5%-57%), validating the selection of the target molecules. The applied integrating approach could be implemented by the inclusion of both additional target chemicals and toxicity endpoints. Environ Toxicol Chem 2022;41:2404-2419. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | - Simona Russo
- Water Research Institute‐National Research Council (IRSA‐CNR)BrugherioItaly
- Department of Environmental SciencesUniversity of Milano BicoccaMilanItaly
| | - Stefano Polesello
- Water Research Institute‐National Research Council (IRSA‐CNR)BrugherioItaly
| | - Licia Guzzella
- Water Research Institute‐National Research Council (IRSA‐CNR)BrugherioItaly
| | - Claudio Roscioli
- Water Research Institute‐National Research Council (IRSA‐CNR)BrugherioItaly
| | - Laura Marziali
- Water Research Institute‐National Research Council (IRSA‐CNR)BrugherioItaly
| | - Lucia Valsecchi
- Water Research Institute‐National Research Council (IRSA‐CNR)BrugherioItaly
| | - Francesca Cappelli
- Water Research Institute‐National Research Council (IRSA‐CNR)BrugherioItaly
- Department of Science and High TechnologyUniversity of InsubriaComoItaly
| | - Simona Pascariello
- Water Research Institute‐National Research Council (IRSA‐CNR)BrugherioItaly
| | - Stefano Tasselli
- Water Research Institute‐National Research Council (IRSA‐CNR)BrugherioItaly
| | - Sara Villa
- Department of Environmental SciencesUniversity of Milano BicoccaMilanItaly
| | | | | | | | - Andrea Turolla
- Department of Civil and Environmental EngineeringPolitecnico di MilanoMilanItaly
| | - Manuela Antonelli
- Department of Civil and Environmental EngineeringPolitecnico di MilanoMilanItaly
| | - Francesca Malpei
- Department of Civil and Environmental EngineeringPolitecnico di MilanoMilanItaly
| | - Sara Valsecchi
- Water Research Institute‐National Research Council (IRSA‐CNR)BrugherioItaly
| |
Collapse
|
25
|
Wu K, Tizzani R, Zweers H, Rijnaarts H, Langenhoff A, Fernandes TV. Removal processes of individual and a mixture of organic micropollutants in the presence of Scenedesmus obliquus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156526. [PMID: 35679938 DOI: 10.1016/j.scitotenv.2022.156526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Organic micropollutants (OMPs) need to be removed from wastewater as they can negatively affect aquatic organisms. It has been demonstrated that microalgae-based technologies are efficient in removing OMPs from wastewater. In this study, the removal processes and kinetics of six persistent OMPs (diclofenac, clarithromycin, benzotriazole, metoprolol, carbamazepine and mecoprop) were studied during cultivation of Scenedesmus obliquus in batch mode. These OMPs were added as individual compounds and in a mixture. Short experiments (8 days) were performed to avoid masking of OMP removal processes by light and nutrient limitation. The results show that diclofenac, clarithromycin, and benzotriazole were mainly removed by photodegradation (diclofenac), biodegradation (benzotriazole), or a combination of these two processes (clarithromycin). Peroxidase was involved in intracellular and extracellular biodegradation when benzotriazole was present as individual compound. Carbamazepine, metoprolol and mecoprop showed no biodegradation or photodegradation, and neglectable removal (<5%) by bioadsorption and bioaccumulation. Using an OMP mixture had an adverse effect on the photodegradation of clarithromycin and diclofenac, with reduced first-order kinetic constants compared to the individual compounds. Benzotriazole biodegradation was inhibited by the presence of the OMP mixture. This indicates that the presence of OMPs inhibits the photodegradation and biodegradation of some individual OMPs. These results will improve our understanding of removal processes of individual and mixtures of OMPs by microalgae-based technologies for wastewater treatment.
Collapse
Affiliation(s)
- Kaiyi Wu
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands; Sub-department of Environmental Technology, Wageningen University, PO box 8129, 6700 EV Wageningen, the Netherlands
| | - Rosaria Tizzani
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands; Sub-department of Environmental Technology, Wageningen University, PO box 8129, 6700 EV Wageningen, the Netherlands
| | - Hans Zweers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands
| | - Huub Rijnaarts
- Sub-department of Environmental Technology, Wageningen University, PO box 8129, 6700 EV Wageningen, the Netherlands
| | - Alette Langenhoff
- Sub-department of Environmental Technology, Wageningen University, PO box 8129, 6700 EV Wageningen, the Netherlands
| | - Tânia V Fernandes
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands.
| |
Collapse
|
26
|
Xu S, Liu Y, Zhang J. Transcriptomic mechanisms for the promotion of cyanobacterial growth against eukaryotic microalgae by a ternary antibiotic mixture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58881-58891. [PMID: 35377122 DOI: 10.1007/s11356-022-20041-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
This study evaluated the responses of a mixed culture of two cyanobacterial species (Microcystis aeruginosa and Synechocystis sp.) and two eukaryotic microalgal species (Raphidocelis subcapitata and Tetradesmus obliquus) to a mixture of three frequently detected antibiotics (tetracycline, ciprofloxacin and sulfamethoxazole) at environmentally relevant exposure doses of 60-300 ng/L. Mixed antibiotics selectively stimulated (p < 0.05) the growth and photosynthetic activity as well as generated transcriptomic responses in cyanobacteria without disrupting co-existing eukaryotic microalgae. Mixed antibiotics stimulated the growth of M. aeruginosa through the regulation of genes related to ribosome, photosynthesis, redox homeostasis, quorum sensing and nutrient metabolism. The proportion of M. aeruginosa among the four phytoplankton species in the mixed-culture system was increased from 33% to 38-44% under antibiotic exposure, which promoted the dominance of M. aeruginosa. Up-regulation of carbon catabolism-related genes contributed to the increased growth of Synechocystis sp. under antibiotic exposure. Since the antibiotic-stimulated growth rate of Synechocystis sp. was still lower than that of M. aeruginosa, the proportion of Synechocystis sp. in the mixed-culture system remained stable. Synechocystis sp. was less adaptive to antibiotic exposure than M. aeruginosa, due to a lower number of up-regulated ribosomal genes and photosynthesis-related genes. Antibiotic exposure reduced the proportions of two eukaryotic microalgal species in the mixed-culture system through a selective promotion of cyanobacterial competitiveness against eukaryotic microalgae, which may facilitate the formation of cyanobacteria bloom.
Collapse
Affiliation(s)
- Sijia Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| | - Ying Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Jian Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| |
Collapse
|
27
|
Hu D, Zhang B, Suo Y, Li Z, Wan Z, Zhao W, Chen L, Yin Z, Ning H, Ge Y, Li W. Molecular Mechanisms Underlying the Inhibition of Proliferation and Differentiation by Florfenicol in P19 Stem Cells: Transcriptome Analysis. Front Pharmacol 2022; 13:779664. [PMID: 35422703 PMCID: PMC9002123 DOI: 10.3389/fphar.2022.779664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Florfenicol (FLO), which is widely used in veterinary clinics and aquaculture, can disrupt the protein synthesis of bacteria and mitochondria and, thus, lead to antibacterial and toxic effects in plants, insects, and mammals. FLO was found to repress chicken embryonic development and induce early embryonic death previously, but the underlying mechanism is not fully understood. Clarifying the mechanism of FLO-induced embryonic toxicity is important to the research and development of new drugs and the rational use of FLO to ensure human and animal health and ecological safety. In this study, the effects of FLO on pluripotency, proliferation, and differentiation were investigated in P19 stem cells (P19SCs). We also identified differentially expressed genes and performed bioinformatics analysis to obtain hub genes and conducted some functional analysis. FLO inhibited the proliferation and pluripotency of P19SCs and repressed the formation of embryoid bodies derived from P19SCs. A total of 2,396 DEGs were identified using RNA-Seq in FLO-treated P19SCs, and these genes were significantly enriched in biological processes, such as angiogenesis, embryonic organ development, and morphogenesis of organs. Kyoto encyclopedia of genes and genome-based pathway analysis also showed that five relevant pathways, especially the canonical Wnt pathway, were engaged in FLO-induced toxicity of pluripotent stem cells. We further analyzed modules and hub genes and found the involvement of ubiquitin-mediated proteolysis, DNA replication, and cell cycle machinery in regulating the pluripotency and proliferation of FLO-treated P19SCs. In summary, our data suggest that FLO disrupts the signaling transduction of pathways, especially the canonical Wnt pathway, and further inhibits the expression of target genes involved in regulating DNA replication, cell cycle, and pluripotency. This phenomenon leads to the inhibition of proliferation and differentiation in FLO-treated P19SCs. However, further experiments are required to validate our findings and elucidate the potential mechanisms underlying FLO-induced embryonic toxicity.
Collapse
Affiliation(s)
- Dongfang Hu
- Postdoctoral Research Station in Biological Sciences, Henan Normal University, Xinxiang, China.,College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China.,Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, China
| | - Bin Zhang
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Yu Suo
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhiyue Li
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhishuai Wan
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Weihua Zhao
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Lingli Chen
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhihong Yin
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Hongmei Ning
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Yaming Ge
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Weiguo Li
- Postdoctoral Research Station in Biological Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
28
|
Yu C, Pang H, Wang JH, Chi ZY, Zhang Q, Kong FT, Xu YP, Li SY, Che J. Occurrence of antibiotics in waters, removal by microalgae-based systems, and their toxicological effects: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151891. [PMID: 34826467 DOI: 10.1016/j.scitotenv.2021.151891] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 05/27/2023]
Abstract
Global antibiotics consumption has been on the rise, leading to increased antibiotics release into the environment, which threatens public health by selecting for antibiotic resistant bacteria and resistance genes, and may endanger the entire ecosystem by impairing primary production. Conventional bacteria-based treatment methods are only moderately effective in antibiotics removal, while abiotic approaches such as advanced oxidation and adsorption are costly and energy/chemical intensive, and may cause secondary pollution. Considered as a promising alternative, microalgae-based technology requires no extra chemical addition, and can realize tremendous CO2 mitigation accompanying growth related pollutants removal. Previous studies on microalgae-based antibiotics removal, however, focused more on the removal performances than on the removal mechanisms, and few studies have concerned the toxicity of antibiotics to microalgae during the treatment process. Yet understanding the removal mechanisms can be of great help for targeted microalgae-based antibiotics removal performances improvement. Moreover, most of the removal and toxicity studies were carried out using environment-irrelevant high concentrations of antibiotics, leading to reduced guidance for real-world situations. Integrating the two research fields can be helpful for both improving antibiotics removal and avoiding toxicological effects to primary producers by the residual pollutants. This study, therefore, aims to build a link connecting the occurrence of antibiotics in the aquatic environment, the removal of antibiotics by microalgae-based processes, and the toxicity of antibiotics to microalgae. Distribution of various categories of antibiotics in different water environments were summarized, together with the antibiotics removal mechanisms and performances in microalgae-based systems, and the toxicological mechanisms and toxicity of antibiotics to microalgae after either short-term or long-term exposure. Current research gaps and future prospects were also analyzed. The review could provide much valuable information to the related fields, and provoke interesting thoughts on integrating microalgae-based antibiotics removal research and toxicity research on the basis of environmentally relevant concentrations.
Collapse
Affiliation(s)
- Chong Yu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Hao Pang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Han Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China; Dalian SEM Bioengineer and Biotech Co. Ltd., Dalian 116620, PR China.
| | - Zhan-You Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Qian Zhang
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China
| | - Fan-Tao Kong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Yong-Ping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China; Dalian SEM Bioengineer and Biotech Co. Ltd., Dalian 116620, PR China
| | - Shu-Ying Li
- Dalian SEM Bioengineer and Biotech Co. Ltd., Dalian 116620, PR China
| | - Jian Che
- Dalian Xinyulong Marine Biological Seed Technology Co. Ltd., Dalian 116222, PR China
| |
Collapse
|