1
|
Ariefta NR, Sofian FF, Aboshi T, Kuncoro H, Dinata DI, Shiono Y, Nishikawa Y. Evaluation of the antiplasmodial and anti-Toxoplasma activities of several Indonesian medicinal plant extracts. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118269. [PMID: 38697409 DOI: 10.1016/j.jep.2024.118269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Malaria, caused by Plasmodium parasites, remains a significant global health challenge, particularly in tropical and subtropical regions. At the same time, the prevalence of toxoplasmosis has been reported to be 30% worldwide. Traditional medicines have long played a vital role in discovering and developing novel drugs, and this approach is essential in the face of increasing resistance to current antimalarial and anti-Toxoplasma drugs. In Indonesian traditional medicine, various plants are used for their therapeutic properties. This study focuses on eleven medicinal plants from which nineteen extracts were obtained and screened for their potential medicinal benefits against malaria and toxoplasmosis. AIMS OF THE STUDY The aim of this study was to evaluate the efficacy of extracts from Indonesian medicinal plants to inhibit Plasmodium falciparum, a parasite responsible for malaria, and Toxoplasma gondii, an opportunistic parasite responsible for toxoplasmosis. METHODS Nineteen extracts from eleven plants were subjected to in vitro screening against P. falciparum 3D7 (a chloroquine-sensitive strain) and the T. gondii RH strain. In vitro treatments were conducted on P. falciparum 3D7 and K1 (multidrug-resistant strains) using the potent extracts, and in vivo assessments were carried out with mice infected with P. yoelii 17XNL. LCMS analysis was also conducted to identify the main components of the most effective extract. RESULTS Seven extracts showed significant antiplasmodial activity (>80% inhibition) at a concentration of 100 μg/ml. These extracts were obtained from Dysoxylum parasiticum (Osbeck) Kosterm., Elaeocarpus glaber (Bl.) Bijdr., Eleutherine americana Merr., Kleinhovia hospita L., Peronema canescens Jack, and Plectranthus scutellarioides (L.) R.Br. Notably, the D. parasiticum ethyl acetate extract exhibited high selectivity and efficacy both in vitro and in vivo. Herein, the key active compounds oleamide and erucamide were identified, which had IC50 values (P. falciparum 3D7/K1) of 17.49/23.63 μM and 32.49/51.59 μM, respectively. CONCLUSIONS The results of this study highlight the antimalarial potential of plant extracts collected from Indonesia. Particularly, extracts from D. parasiticum EtOH and EtOAc stood out for their low toxicity and strong antiplasmodial properties, with the EtOAc extract emerging as a notably promising antimalarial candidate. Key compounds identified within this extract demonstrate the complexity of extracts' action against malaria, potentially targeting both the parasite and the host. This suggests a promising approach for developing new antimalarial strategies that tackle the multifaceted challenges of drug resistance and disease management. Future investigations are necessary to unlock the full therapeutic potential of these extracts.
Collapse
Affiliation(s)
- Nanang Rudianto Ariefta
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| | - Ferry Ferdiansyah Sofian
- Department of Life, Food, and Environmental Sciences, Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata, 997-8555, Japan; Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Sumedang, West Java, 45363, Indonesia.
| | - Takako Aboshi
- Department of Life, Food, and Environmental Sciences, Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata, 997-8555, Japan.
| | - Hadi Kuncoro
- Pharmaceutical Research and Development Laboratory of Farmaka Tropis, Faculty of Pharmacy, Universitas Mulawarman, Samarinda, East Kalimantan, 75119, Indonesia.
| | - Deden Indra Dinata
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Bhakti Kencana University, Soekarno-Hatta 754, Bandung, West Java, 40286, Indonesia.
| | - Yoshihito Shiono
- Department of Life, Food, and Environmental Sciences, Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata, 997-8555, Japan.
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
2
|
Zhang Y, Wang M, Li P, Lv G, Yao J, Zhao L. Hypoglycemic Effect of Polysaccharides from Physalis alkekengi L. in Type 2 Diabetes Mellitus Mice. BIOLOGY 2024; 13:496. [PMID: 39056690 PMCID: PMC11274298 DOI: 10.3390/biology13070496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a common metabolic disease that adversely impacts patient health. In this study, a T2DM model was established in ICR mice through the administration of a high-sugar and high-fat diet combined with the intraperitoneal injection of streptozotocin to explore the hypoglycemic effect of polysaccharides from Physalis alkekengi L. After six weeks of treatment, the mice in the high-dosage group (800 mg/kg bw) displayed significant improvements in terms of fasting blood glucose concentration, glucose tolerance, serum insulin level, insulin resistance, and weight loss (p < 0.05). The polysaccharides also significantly regulated blood lipid levels by reducing the serum contents of total triglycerides, total cholesterol, and low-density lipoproteins and increasing the serum content of high-density lipoproteins (p < 0.05). Furthermore, they significantly enhanced the hepatic and pancreatic antioxidant capacities, as determined by measuring the catalase and superoxide dismutase activities and the total antioxidant capacity (p < 0.05). The results of immunohistochemistry showed that the P. alkekengi polysaccharides can increase the expression of GPR43 in mice colon epithelial cells, thereby promoting the secretion of glucagon-like peptide-1. In summary, P. alkekengi polysaccharides can help to regulate blood glucose levels in T2DM mice and alleviate the decline in the antioxidant capacities of the liver and pancreas, thus protecting these organs from damage.
Collapse
Affiliation(s)
- Yun Zhang
- College of Food Engineering, Heilongjiang East University, Harbin 150066, China; (M.W.); (P.L.); (G.L.); (J.Y.)
| | - Minghao Wang
- College of Food Engineering, Heilongjiang East University, Harbin 150066, China; (M.W.); (P.L.); (G.L.); (J.Y.)
| | - Peng Li
- College of Food Engineering, Heilongjiang East University, Harbin 150066, China; (M.W.); (P.L.); (G.L.); (J.Y.)
| | - Ge Lv
- College of Food Engineering, Heilongjiang East University, Harbin 150066, China; (M.W.); (P.L.); (G.L.); (J.Y.)
| | - Jing Yao
- College of Food Engineering, Heilongjiang East University, Harbin 150066, China; (M.W.); (P.L.); (G.L.); (J.Y.)
| | - Lin Zhao
- Quality & Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| |
Collapse
|
3
|
Sunil Kumaran Nair S, Bibi A, Al-Mahrami N, Mahesh Satam P, Al Farsi A, Al Mawali A, Sivakumar N. PlantMedOman: an online database for Oman's medicinal plants. Bioinformation 2024; 20:314-318. [PMID: 38854754 PMCID: PMC11161888 DOI: 10.6026/973206300200314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 06/11/2024] Open
Abstract
The Sultanate of Oman has a rich biodiversity, particularly in medicinal plants, and plays a crucial role in traditional healthcare practices. However, the wealth of knowledge about these plants is scattered across various literature, making it challenging for researchers, practitioners, and the public to access comprehensive information. Therefore, the availability of a centralized, user-friendly online database to catalog Oman's medicinal plants is of great importance. PlantMedOman presented here, which currently holds 186 records helps to enhance academic research, support drug discovery studies, promote the conservation of medicinal plants, and foster greater awareness of Oman's ethnomedicinal heritage.
Collapse
Affiliation(s)
| | - Aqsa Bibi
- Department of Computing and Electronics Engineering, Middle East College, Sultanate of Oman
| | | | - Piyusha Mahesh Satam
- Department of Computing and Electronics Engineering, Middle East College, Sultanate of Oman
| | - Alya Al Farsi
- Dean's Office, Middle East College, Sultanate of Oman
| | - Adhra Al Mawali
- Quality Assurance and Planning, German University of Technology (GUtech), Sultanate of Oman
| | | |
Collapse
|
4
|
Taher MA, Laboni AA, Islam MA, Hasnat H, Hasan MM, Ferdous J, Shompa SA, Khan M. Isolation, characterization and pharmacological potentials of methanol extract of Cassia fistula leaves: Evidenced from mice model along with molecular docking analysis. Heliyon 2024; 10:e28460. [PMID: 38590868 PMCID: PMC10999937 DOI: 10.1016/j.heliyon.2024.e28460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024] Open
Abstract
The purpose of the current investigation was to conduct a detailed analysis of the chemical components and medicinal properties of the methanolic crude extract derived from the leaves of Cassia fistula. This analysis was carried out using both experimental (in vivo) and computational (in silico) methods. Eleven chemicals were chromatographically isolated using GC-MS/MS, which utilizes a library of NIST and Wiley 2020 versions. FTIR analysis of the extract was performed to identify the functional group of the compounds. The glucose-lowering capacity, analgesic, and anti-diarrheal activities of methanolic crude extract were analyzed utilizing a well-known oral glucose tolerance test, tail immersion method, writhing assay, and castor oil-induced diarrheal mice methods, respectively. After 60 min, 120 min, and 180 min of loading the drugs, a significant reduction of blood glucose levels was examined (p < 0.05) in all the extracts of this plant (200 mg/kg, 400 mg/kg and 600 mg/kg) utilized in this research at a time-dependent manner. Similarly, all the crude extracts showed significant (p < 0.05) effects against pain centrally and peripherally compared to the standard drug morphine (2 mg/kg bw) and diclofenac sodium (50 mg/kg bw). Moreover, the methanol extract (400 mg/kg bw) manifested anti-diarrheal efficacy by inhibiting 72.0 % of the diarrheal episode in mice compared to the standard drug loperamide (inhibition = 80.0%). The results of the computational investigations corroborated existing in-vivo findings. Greater or close to equivalent binding affinity to the active binding sites of kappa opioid receptor, glucose transporter 3 (GLUT 3), and cyclooxygenase 2 was indicative of the potential anti-diarrheal, hypoglycemic, and analgesic characteristics of the isolated compounds (COX-2). Moreover, anticancer and antimicrobial potentiality was also found impressive through evaluation of binding affinity with epidermal growth factor receptor (EGFR) and dihydrofolate reductase (DHFR) receptors. Results from this study indicated that C. fistula might be a beneficial natural resource for treating diarrhea, hyperglycemia, and pain. However, additional research is required to conduct a comprehensive phytochemical screening and establish precise action mechanisms of the crude extract or the plant-derived compounds.
Collapse
Affiliation(s)
- Mohammad Abdullah Taher
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Laboratory Road, Dhaka, 1205, Bangladesh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Bangladesh
| | - Aysha Akter Laboni
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Laboratory Road, Dhaka, 1205, Bangladesh
| | - Md Ashraful Islam
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | - Hasin Hasnat
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | | | | | | | - Mala Khan
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Laboratory Road, Dhaka, 1205, Bangladesh
| |
Collapse
|
5
|
Mostofa MG, Reza AA, Khan Z, Munira MS, Khatoon MM, Kabir SR, Sadik MG, Ağagündüz D, Capasso R, Kazi M, Alam AHMK. Apoptosis-inducing anti-proliferative and quantitative phytochemical profiling with in silico study of antioxidant-rich Leea aequata L. leaves. Heliyon 2024; 10:e23400. [PMID: 38170014 PMCID: PMC10759211 DOI: 10.1016/j.heliyon.2023.e23400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/24/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
Natural products have been important parts of traditional medicine since ancient times, with various promising health effects. Leea aequata (L. aequata), a natural product, has been widely used for treating several diseases due to its promising pharmacological activities. Therefore, the present study aimed to explore the phytochemical profiling and molecular docking of the antioxidant-rich part of L. aequata leaves and its antiproliferative activity. L. aequata leaves were extracted with methanol, followed by fractionation with the respective solvents to obtain the petroleum ether, chloroform, ethyl acetate, and aqueous fractions. The antioxidant activity was evaluated by spectrophotometric methods. The cytotoxic and antiproliferative activities were detected using MTT colorimetric and confocal microscopy methods, respectively. Phytochemical compositions were analyzed using gas chromatography‒mass spectrometry analysis. Computer aided (molecular docking SwissADME, AdmetSAR and pass prediction) analyses were undertaken to sort out the best-fit phytochemicals present in the plant responsible for antioxidant and anticancer effects. Among the fractions, the ethyl acetate fraction was the most abundant polyphenol-rich fraction and showed the highest antioxidant, reducing power, and free radical scavenging activities. Compared to untreated MCF-7 cells, ethyl acetate fraction-treated MCF-7 cells showed an increase in apoptotic characteristics, such as membrane blebbing, chromatin condensation, and nuclear fragmentation, causing apoptosis and decreased proliferation of HeLa and MCF-7 cells. Furthermore, gas chromatography mass spectrometry data revealed that the ethyl acetate fraction contained 16 compounds, including methyl esters of long-chain fatty acids, which are the major chemical constituents. Moreover, hexadecanoic acid, methyl ester; 9-octadecenoic acid (Z)-, methyl ester; 9,12-octadecadienoic acid, methyl ester (Z, Z) and phenol, 2,4-bis(1,1-dimethylethyl) are known to have antioxidant and cytotoxic activity, as confirmed by computer-aided models. A strong correlation was observed between the antioxidant and polyphenolic contents and the anticancer activity. In conclusion, we explored the possibility that L. aequata could be a promising source of antioxidants and anticancer agents with a high phytochemical profile.
Collapse
Affiliation(s)
- Md Golam Mostofa
- Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh
- Department of Pharmacy, Gono Bishwabidyalay (University), Mirzanagar, Savar, Dhaka 1344, Bangladesh
| | - A.S.M. Ali Reza
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | | | - Mst Mahfuza Khatoon
- Department of Pharmacy, Gono Bishwabidyalay (University), Mirzanagar, Savar, Dhaka 1344, Bangladesh
| | - Syed Rashel Kabir
- Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi, 6205, Bangladesh
| | - Md Golam Sadik
- Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Emek, Ankara 06490, Turkey
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - AHM Khurshid Alam
- Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
6
|
Reza AA, Sakib MA, Nasrin MS, Khan J, Khan MF, Hossen MA, Ali MH, Haque MA. Lasia spinosa (L.) thw. attenuates chemically induced behavioral disorders in experimental and computational models. Heliyon 2023; 9:e16754. [PMID: 37313137 PMCID: PMC10258414 DOI: 10.1016/j.heliyon.2023.e16754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
Lasia spinosa (L.) Thw. (L. spinosa) is widely used as a folk remedy for different physical ailments, and its neurological effects have yet to be assessed. Phytochemicals status of L. spinosa was evaluated by GC-MS analysis. Membrane stabilization test, elevated plus maze (EPM) tests and hole board tests (HBT), tail suspension tests (TST) and thiopental sodium-induced sleeping tests (TISTT) were used to assess anti-inflammatory, anxiolytic and anti-depressant activity. Fourteen compounds have been recorded from GC-MS analysis. The LSCTF showed 68.66 ± 2.46% hemolysis protections (p < 0.05) at 500 μg/mL, whereas LSCHF and LSNHF demonstrated efficiency rates of 68.6 ± 1.46% and 52.46 ± 5.28%, respectively. During EPM tests, LSNHF and LSCTF significantly (p < 0.001) increased the time spent in the open arm (59.88 ± 0.65 s and 50.77 ± 0.67 s, respectively) at the dosages of 400 mg/kg. In HBT, samples exhibited dose-dependent anxiolytic activity. LSNHF and LSCTF showed a significant (p < 0.001) hole poking tendency and a high number of head dips (78.66 ± 1.05 and 65.17 ± 0.96, respectively) at the higher dose. In TST, at 400 mg/kg dose demonstrated significantly (p < 0.001) smaller amounts of time immobile, at 81.33 ± 1.67 s and 83.50 ± 1.90 s, respectively, compared to the control group. A consistent finding was also observed in TISTT. The computer-assisted studies on the identified compounds strongly support the aforementioned biological activities, indicating that L. spinosa has potential as a source of medication for treating neuropsychiatric and inflammatory diseases.
Collapse
Affiliation(s)
- A.S.M. Ali Reza
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Mahfuz Ahmed Sakib
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Mst. Samima Nasrin
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Jishan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Mohammad Forhad Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Md. Amjad Hossen
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Md. Hazrat Ali
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
- Department of Pharmacy, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
| | - Md. Anwarul Haque
- Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
7
|
Fajarwati I, Solihin DD, Wresdiyati T, Batubara I. Self-recovery in diabetic Sprague Dawley rats induced by intraperitoneal alloxan and streptozotocin. Heliyon 2023; 9:e15533. [PMID: 37159693 PMCID: PMC10163600 DOI: 10.1016/j.heliyon.2023.e15533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 03/16/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023] Open
Abstract
Alloxan and streptozotocin are the most popular diabetogenic agents in assessing antidiabetic activity. Self-recovery, indicated by unstable hyperglycemia conditions in animals induced by those agents, becomes a significant disturbance to accurate examination. This study aimed to evaluate and reveal the self-recovery incidence in Sprague Dawley rats induced with alloxan and streptozotocin. Each dose of alloxan (120, 150, 180 mg/kg) and streptozotocin (40, 50, 60 mg/kg) was administered through intraperitoneal injection. The results showed that each dose of alloxan induced self-recovery incidence. In rats given streptozotocin, self-recovery only occurred at a dose of 40 mg/kg. The other higher doses of streptozotocin induced stable hyperglycemia. Furthermore, this study revealed two types of self-recovery, namely temporary recovery and end recovery. Temporary recovery occurred in rats given alloxan, during end recovery in alloxan and streptozotocin. The examination of insulin levels showed a significant reduction in the temporary recovery and stable diabetic rats compared to the end recovery rats. Besides, the bodyweight of rats was also affected by different incidences of self-recovery. This study recommends paying more attention to the possibility of self-recovery in obtaining animal models of diabetes, emphasizing the determination of suitable diabetogenic agents and proper doses to reduce self-recovery incidences. The finding of temporary recovery in rats receiving alloxan indicates that alloxan induced delayed diabetes in rats.
Collapse
Affiliation(s)
- Indah Fajarwati
- Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Jalan Agatis Kampus IPB Dramaga, Bogor 16680, Indonesia
- Corresponding author.
| | - Dedy Duryadi Solihin
- Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Jalan Agatis Kampus IPB Dramaga, Bogor 16680, Indonesia
- Corresponding author.
| | - Tutik Wresdiyati
- Divisions of Anatomy, Histology, and Embriology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Jalan Agatis Kampus IPB Dramaga, Bogor 16680, Indonesia
| | - Irmanida Batubara
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Jalan Tanjung Kampus IPB Dramaga, Bogor 16680, Indonesia
- Tropical Biopharmaca Research Center, Institute of Research and Community Services, IPB University, Jalan Taman Kencana No. 3 Kampus IPB Taman Kencana, Bogor 16128, Indonesia
| |
Collapse
|
8
|
Silva MLAE, Lucarini R, Dos Santos FF, Martins CHG, Pauletti PM, Januario AH, Santos MFC, Cunha WR. Hypoglycemic effect of rosmarinic acid-rich infusion (RosCE) from Origanum vulgare in alloxan-induced diabetic rats. Nat Prod Res 2022; 36:4525-4531. [PMID: 34647501 DOI: 10.1080/14786419.2021.1990282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/13/2021] [Accepted: 10/02/2021] [Indexed: 10/20/2022]
Abstract
Origanum vulgare, known for its medicinal value, is officially accepted in many countries. The flowers and leaves are used globally in homeopathy. In Brazilian folk medicine, O. vulgare has been used to treat diabetes mellitus. This study evaluated the hypoglycemic activity of an infusion extract (RosCE) of commercially available O. vulgare leaves in alloxan-induced diabetic rats. Oral administration of RosCE resulted in the reduction of blood glucose levels after the first day of treatment, compared to the diabetic control group. These results showed that RosCE displays hypoglycemic activity, which may be due to the combined effect of rosmarinic acid, and other minor compounds. Reversed phase-high performance liquid chromatography-diode array detection was used to identify and quantify the major constituents of RosCE. This study presents evidence that supports the folkloric use of O. vulgare for the treatment of hyperglycemia, confirming the use of its infusion as an antidiabetic herbal medicine.
Collapse
Affiliation(s)
- Márcio L A E Silva
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| | - Rodrigo Lucarini
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| | - Fransergio F Dos Santos
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| | | | - Patricia M Pauletti
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| | - Ana H Januario
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| | | | - Wilson R Cunha
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| |
Collapse
|
9
|
Investigating Polyphenol Nanoformulations for Therapeutic Targets against Diabetes Mellitus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5649156. [PMID: 35832521 PMCID: PMC9273389 DOI: 10.1155/2022/5649156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/03/2022] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus (DM) is a fatal metabolic disorder, and its prevalence has escalated in recent decades to a greater extent. Since the incidence and severity of the disease are constantly increasing, plenty of therapeutic approaches are being considered as a promising solution. Many dietary polyphenols have been reported to be effective against diabetes along with its accompanying vascular consequences by targeting multiple therapeutic targets. Additionally, the biocompatibility of these polyphenols raises questions about their use as pharmacological mediators. Nevertheless, the pharmacokinetic and biopharmaceutical properties of these polyphenols limit their clinical benefit as therapeutics. Pharmaceutical industries have attempted to improve compliance and therapeutic effects. However, nanotechnological approaches to overcome the pharmacokinetic and biopharmaceutical barriers associated with polyphenols as antidiabetic medications have been shown to be effective to improve clinical compliance and efficacy. Therefore, this review highlighted a comprehensive and up-to-date assessment of polyphenol nanoformulations in the treatment of diabetes and vascular consequences.
Collapse
|
10
|
Uddin ABMN, Hossain F, Reza ASMA, Nasrin MS, Alam AHMK. Traditional uses, pharmacological activities, and phytochemical constituents of the genus Syzygium: A review. Food Sci Nutr 2022; 10:1789-1819. [PMID: 35702283 PMCID: PMC9179155 DOI: 10.1002/fsn3.2797] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
The genus Syzygium comprises 1200-1800 species that belong to the family of Myrtaceae. Moreover, plants that are belonged to this genus are being used in the traditional system of medicine in Asian countries, especially in China, India, and Bangladesh. The aim of this review is to describe the scientific works and to provide organized information on the available traditional uses, phytochemical constituents, and pharmacological activities of mostly available species of the genus Syzygium in Bangladesh. The information related to genus Syzygium was analytically composed from the scientific databases, including PubMed, Google Scholar, Science Direct, Web of Science, Wiley Online Library, Springer, Research Gate link, published books, and conference proceedings. Bioactive compounds such as flavanone derivatives, ellagic acid derivatives and other polyphenolics, and terpenoids are reported from several species of the genus Syzygium. However, many members of the species of the genus Syzygium need further comprehensive studies regarding phytochemical constituents and mechanism-based pharmacological activities.
Collapse
Affiliation(s)
- A. B. M. Neshar Uddin
- Department of Pharmaceutical SciencesNorth South UniversityDhakaBangladesh
- Department of PharmacyFaculty of Science and EngineeringInternational Islamic University ChittagongChittagongBangladesh
| | - Farhad Hossain
- Department of PharmacyUniversity of RajshahiRajshahiBangladesh
| | - A. S. M. Ali Reza
- Department of PharmacyFaculty of Science and EngineeringInternational Islamic University ChittagongChittagongBangladesh
| | - Mst. Samima Nasrin
- Department of PharmacyFaculty of Science and EngineeringInternational Islamic University ChittagongChittagongBangladesh
| | | |
Collapse
|
11
|
Gheraibia S, Belattar N, Diab KA, Hassan ME, El-Nekeety AA, Abdel-Aziem SH, Hassan NS, Abdel-Wahhab MA. Costus speciosus extract protects against the oxidative damage of zearalenone via modulation of inflammatory cytokines, Nrf2 and iNOS gene expression in rats. Toxicon 2022; 214:62-73. [PMID: 35597521 DOI: 10.1016/j.toxicon.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
Abstract
Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin that induces severe health disturbances in humans and animals. This study aimed to determine the bioactive compounds in Costus speciosus extract (CSE) using GC-MS and evaluate its protective capability against ZEN-induced oxidative damage, genotoxicity, and cytotoxicity in rats. Six groups of male Sprague Dawley rats were treated orally for 15 days including the control group, CSE-treated groups at low (200 mg/kg b. w) or high (400 mg/kg b. w) dose, ZEN-treated group (40 μg/kg b. w), and the groups treated with ZEN plus the low or the high dose of CSE. Blood and tissue samples were collected for different assays and pathological analyses. The results of GC-MS indicated the identification of 6 compounds and Azulene was the major. Animals that received ZEN showed severe disturbances in serum biochemical, cytokines, oxidative stress indicators, mRNA expression of iNOS, Nrf2, and inflammatory-related genes. ZEN also increased micronucleated polychromatic erythrocytes (MNPCEs) and comet tail formation in bone marrow cells along with the disturbances in the histological architecture of the liver and kidney. Co-administration of CSE plus ZEN could normalize the majority of the tested parameters and the histological picture at a dose as low as 200 mg/kg b. w. Therefore, CSE protects against ZEN toxicity via its antioxidant activity, modulation of iNOS, inflammatory-related genes, and the Nrf2 pathway and it could be used in the endemic regions.
Collapse
Affiliation(s)
- Sara Gheraibia
- Laboratory of Applied Biochemistry, Faculty of Sciences of Nature and Life, Ferhat Abbes University, Setif, 1, Algeria
| | - Noureddine Belattar
- Laboratory of Applied Biochemistry, Faculty of Sciences of Nature and Life, Ferhat Abbes University, Setif, 1, Algeria
| | - Kawthar A Diab
- Genetics and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | - Marwa E Hassan
- Toxicology Dept., Research Institute of Medical Entomology, Giza, Egypt
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | | | - Nabila S Hassan
- Pathology Department, National Research Center, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
12
|
Nasrin S, Islam MN, Tayab MA, Nasrin MS, Siddique MAB, Emran TB, Reza ASMA. Chemical profiles and pharmacological insights of Anisomeles indica Kuntze: An experimental chemico-biological interaction. Pharmacotherapy 2022; 149:112842. [PMID: 35325851 DOI: 10.1016/j.biopha.2022.112842] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022]
Abstract
Anisomeles indica (L.) Kuntze is an ethnomedicinally important plant that has long been used in traditional medicine to treat a variety of ailments, including dyspepsia, abdominal pain, colic, allergies, inflammation, and rheumatic arthritis. However, the scientific framework underlying these medicinal properties is not well known. This study aimed to investigate the antidepressive, antidiarrheal, thrombolytic, and anti-inflammatory potential of a methanol extract of A. indica (MeOH-AI). The potential bioactive compounds in the MeOH-AI were identified using gas chromatography-mass spectrometry (GC-MS), and antidepressant activities were evaluated using the tail suspension test (TST) and forced swim test (FST). Antidiarrheal effects were also assayed in castor oil-induced diarrhea and gastrointestinal motility studies. The anti-inflammatory activities were explored by examining the effects on protein inhibition and denaturation in heat- and hypotonic solution-induced hemolysis assays. The thrombolytic activity was evaluated using the clot lysis test in human blood. BIOVIA and Schrödinger Maestro (v11.1) were applied for docking analysis to determine binding interactions, and the absorption, distribution, metabolisms, excretion/toxicity (ADME/T) properties of bioactive compounds were explored using a web-based method. The GC-MS analysis of MeOH-AI revealed the presence of several bioactive compounds. MeOH-AI administration resulted in significant (p < 0.01) reductions in the immobility times for both the FST and TST compared with those in the control group. MeOH-AI also induced significant (p < 0.01) reductions in castor oil-induced diarrhea severity and gastrointestinal motility in a mouse model. In addition, the in vitro anti-inflammatory and thrombolytic activity studies produced remarkable responses. The binding assay showed that 4-dehydroxy-N-(4,5-methylenedioxy-2-nitrobenzylidene) tyramine interacts favorably with monoamine oxidase and serotonin and M3 muscarinic acetylcholine receptors, displaying good pharmacokinetic properties, which may mediate the effects of MeOH-AI on depression and diarrhea. Overall, the research findings indicated that MeOH-AI has significant antidepressant, antidiarrheal, and anti-inflammatory effects and may represent an alternative source of novel therapeutic factors.
Collapse
Affiliation(s)
- Suaad Nasrin
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Mohammad Nazmul Islam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Mohammed Abu Tayab
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Mst Samima Nasrin
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh.
| | - A S M Ali Reza
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh.
| |
Collapse
|
13
|
The Multifunctional Role of Herbal Products in the Management of Diabetes and Obesity: A Comprehensive Review. Molecules 2022; 27:molecules27051713. [PMID: 35268815 PMCID: PMC8911649 DOI: 10.3390/molecules27051713] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity and diabetes are the most demanding health problems today, and their prevalence, as well as comorbidities, is on the rise all over the world. As time goes on, both are becoming big issues that have a big impact on people’s lives. Diabetes is a metabolic and endocrine illness set apart by hyperglycemia and glucose narrow-mindedness because of insulin opposition. Heftiness is a typical, complex, and developing overall wellbeing worry that has for quite some time been connected to significant medical issues in individuals, all things considered. Because of the wide variety and low adverse effects, herbal products are an important hotspot for drug development. Synthetic compounds are not structurally diverse and lack drug-likeness properties. Thus, it is basic to keep on exploring herbal products as possible wellsprings of novel drugs. We conducted this review of the literature by searching Scopus, Science Direct, Elsevier, PubMed, and Web of Science databases. From 1990 until October 2021, research reports, review articles, and original research articles in English are presented. It provides top to bottom data and an examination of plant-inferred compounds that might be utilized against heftiness or potentially hostile to diabetes treatments. Our expanded comprehension of the systems of activity of phytogenic compounds, as an extra examination, could prompt the advancement of remedial methodologies for metabolic diseases. In clinical trials, a huge number of these food kinds or restorative plants, as well as their bioactive compounds, have been shown to be beneficial in the treatment of obesity.
Collapse
|
14
|
Özenver N, Efferth M, Efferth T. Ethnopharmacology, phytochemistry, chemical ecology and invasion biology of Acanthus mollis L. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114833. [PMID: 34785251 DOI: 10.1016/j.jep.2021.114833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acanthus mollis L. (Bear's Breeches) is a wide-spread medicinal and ornamental plant and is particularly suited to exemplarily illustrate the diverse aspects of invasion biology by neophytes. Since ancient times, it has been a popular Mediterranean ornamental plant in horticulture and served as model for the decoration of column capitals in architecture. AIM OF THE STUDY In the present review, we aimed to give an overview about ethnopharmacology, phytochemistry, chemical ecology, and invasion biology of A. mollis. Thus, the importance of plantation cultivation in the presence of ecologically problematic species and environmental protection were emphasized. MATERIALS AND METHODS We conducted an extensive literature search via screening PubMed, Scopus, and Web of Science, in order to compile the data about A. mollis and its role on invasion biology and thereby attracting attention to the prominence of the horticultural and agricultural cultivation of plant species with a special focus on A. mollis as a model. RESULTS AND CONCLUSION Phytochemical analyses revealed secondary metabolites from the classes of flavonoids, phenols, phenylpropanoids, anthraquinones arylnaphthalene lignans, phytosterols and others. Extracts of A. mollis and isolated phytochemicals not only exert assorted activities including antioxidant, anti-inflammatory and neuroprotective in murine and human experimental models, but also act against plant parasites (bacteria, insects, mollusks, fungi), protecting the plant from microbial attack and herbivorous predators. A. mollis has been used in traditional medicine to treat dermatological ailments, gastrointestinal diseases, ulcers and even tumors. Nevertheless, the robustness and rapid growth of A. mollis as well as the global horticultural trade facilitated its invasion into fragile ecosystems of Australia, New Zealand, and several other spots around the globe in Northern Europe (Great Britain), Asia (China, India), South Africa, and South America (Argentina). The release of A. mollis from gardens into the wild represents a considerable danger as invasive species are threatening biodiversity and leading to the extinction of domestic plants in the long run. Likewise, the likelihood of other medicinal plants in terms of invasion biology are needed to be fully recognized and discussed.
Collapse
Affiliation(s)
- Nadire Özenver
- Johannes Gutenberg University, Institute of Pharmaceutical and Biomedical Sciences, Department of Pharmaceutical Biology, 55128, Mainz, Germany; Hacettepe University, Faculty of Pharmacy, Department of Pharmacognosy, 06100, Ankara, Turkey.
| | - Monika Efferth
- Johannes Gutenberg University, Institute of Pharmaceutical and Biomedical Sciences, Department of Pharmaceutical Biology, 55128, Mainz, Germany.
| | - Thomas Efferth
- Johannes Gutenberg University, Institute of Pharmaceutical and Biomedical Sciences, Department of Pharmaceutical Biology, 55128, Mainz, Germany.
| |
Collapse
|
15
|
Antioxidative role of palm grass rhizome ameliorates anxiety and depression in experimental rodents and computer-aided model. Heliyon 2021; 7:e08199. [PMID: 34729435 PMCID: PMC8546422 DOI: 10.1016/j.heliyon.2021.e08199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 10/14/2021] [Indexed: 01/22/2023] Open
Abstract
Palm grass (Curculigo recurvata) is an ethnomedicinally important herb reported to have significant medicinal values. The present study aimed to evaluate the antidepressant and anxiolytic activities of a methanol extract of C. recurvata rhizome (Me-RCR) through different approaches. The antidepressant and anxiolytic properties of Me-RCR were assessed by using elevated plus maze (EPM), hole-board (HBT), tail suspension (TST), and forced swimming (FST) tests in Swiss Albino mice. The in-depth antioxidative potential of Me-RCR was also evaluated through DPPH radical scavenging activity, ferric-reducing power capacity, total phenolic, flavonoid, flavonol, and antioxidant content analysis. Computational investigations were performed using computer-aided methods for screening the anxiolytic, antidepressant, and antioxidative activities of the selected lead molecules. Treatment with Me-RCR (200 and 400 mg/kg, b.w.) notably increased the number of open arm entries and the time spent in the EPM test. In the HBT, Me-RCR exhibited significant anxiolytic activity at a dose of 200 mg/kg, whereas similar activity was observed at 400 mg/kg in the EPM test. Me-RCR significantly decreased the immobility time in a dose-dependent manner in both TST and FST. The IC50 for DPPH and reducing power capacity assay were found to be 18.56 and 193 μg/mL, respectively. Promising outcomes were noted for the determination of total phenolics, flavonoids, flavonols, and antioxidant capacity. In the case of computer-aided studies, nyasicoside showed promising binding energy for antidepressant and anxiolytic activities, whereas isocurculigine demonstrated promising effects as an antioxidant. Overall, these findings suggest that Me-RCR could be a favourable therapeutic candidate for the treatment of mental and psychiatric disorders, as well as a good source of antioxidants.
Collapse
|
16
|
Reza ASMA, Haque MA, Sarker J, Nasrin MS, Rahman MM, Tareq AM, Khan Z, Rashid M, Sadik MG, Tsukahara T, Alam AHMK. Antiproliferative and antioxidant potentials of bioactive edible vegetable fraction of Achyranthes ferruginea Roxb. in cancer cell line. Food Sci Nutr 2021; 9:3777-3805. [PMID: 34262737 PMCID: PMC8269638 DOI: 10.1002/fsn3.2343] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/26/2021] [Accepted: 05/09/2021] [Indexed: 12/24/2022] Open
Abstract
In the present study, the aerial parts of Achyranthes ferruginea underwent investigation of their in vitro antioxidant and free radical-scavenging activities in cell-free conditions, their phytoconstituents using gas chromatography-mass spectrometry (GC-MS), and their cytotoxic activity in HeLa cells. A. ferruginea was extracted with 80% methanol and successively fractionated with solvents to yield petroleum ether (PEF), chloroform (CHF), ethyl acetate (EAF), and aqueous (AQF) fractions. GC-MS analysis revealed that CHF contained ten phytoconstituents, including different forms of octadecanoic acid methyl esters. The total antioxidant and ferric-reducing antioxidant capacities of the extracts and the standard catechin (CA) were as follows: CA >CHF >PEF >CME (crude methanolic extract) >EAF >AQF, and CA >CHF >EAF >PEF >AQF >CME, respectively. CHF showed the highest DPPH-free radical-scavenging activity, with a median inhibitory concentration of 10.5 ± 0.28 µg/ml, which was slightly higher than that of the standard butylated hydroxytoluene (12.0 ± 0.09 µg/ml). In the hydroxyl radical-scavenging assay, CHF showed identical scavenging activity (9.25 ± 0.73 µg/ml) when compared to CA (10.50 ± 1.06 µg/ml). Moreover, CHF showed strong cytotoxic activity (19.95 ± 1.18 µg/ml) in HeLa cells, which was alike to that of the standards vincristine sulfate and 5-fluorouracil (15.84 ± 1.64 µg/ml and 12.59 ± 1.75 µg/ml, respectively). The in silico study revealed that identified compounds were significantly linked to the targets of various cancer cells and oxidative enzymes. However, online prediction by SwissADME, admetSAR, and PASS showed that it has drug-like, nontoxic, and potential pharmacological actions.
Collapse
Affiliation(s)
- A. S. M. Ali Reza
- Department of PharmacyInternational Islamic University ChittagongChittagongBangladesh
| | - Md. Anwarul Haque
- Department of PharmacyUniversity of RajshahiRajshahiBangladesh
- Doctoral Program in Biomedical SciencesGraduate School of Comprehensive Human SciencesUniversity of TsukubaIbarakiJapan
- Department of Experimental PathologyFaculty of MedicineUniversity of TsukubaIbarakiJapan
| | - Joy Sarker
- Department of PharmacyUniversity of RajshahiRajshahiBangladesh
| | - Mst. Samima Nasrin
- Department of PharmacyInternational Islamic University ChittagongChittagongBangladesh
| | | | - Abu Montakim Tareq
- Department of PharmacyInternational Islamic University ChittagongChittagongBangladesh
| | - Zidan Khan
- Department of PharmacyInternational Islamic University ChittagongChittagongBangladesh
| | - Mamunur Rashid
- Department of PharmacyUniversity of RajshahiRajshahiBangladesh
| | - Md. Golam Sadik
- Department of PharmacyUniversity of RajshahiRajshahiBangladesh
| | - Toshifumi Tsukahara
- School of Materials ScienceJapan Advanced Institute of Science and TechnologyNomi CityJapan
| | | |
Collapse
|