1
|
Feng D, Liu W, Chen K, Ning S, Gao Q, Chen J, Liu J, Sun X, Xu W. Exogenous Substances Used to Relieve Plants from Drought Stress and Their Associated Underlying Mechanisms. Int J Mol Sci 2024; 25:9249. [PMID: 39273198 PMCID: PMC11395679 DOI: 10.3390/ijms25179249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Drought stress (DS) is one of the abiotic stresses that plants encounter commonly in nature, which affects their life, reduces agricultural output, and prevents crops from growing in certain areas. To enhance plant tolerance against DS, abundant exogenous substances (ESs) have been attempted and proven to be effective in helping plants relieve DS. Understanding the effect of each ES on alleviation of plant DS and mechanisms involved in the DS relieving process has become a research focus and hotspot that has drawn much attention in the field of botany, agronomy, and ecology. With an extensive and comprehensive review and summary of hundred publications, this paper groups various ESs based on their individual effects on alleviating plant/crop DS with details of the underlying mechanisms involved in the DS-relieving process of: (1) synthesizing more osmotic adjustment substances; (2) improving antioxidant pathways; (3) promoting photosynthesis; (4) improving plant nutritional status; and (5) regulating phytohormones. Moreover, a detailed discussion and perspective are given in terms of how to meet the challenges imposed by erratic and severe droughts in the agrosystem through using promising and effective ESs in the right way and at the right time.
Collapse
Affiliation(s)
- Di Feng
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Saline-Alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Soil Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumchi 830091, China
| | - Wenxin Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Ke Chen
- College of Agriculture, South China Agricultural University, Guangzhou 510640, China
| | - Songrui Ning
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Qian Gao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiao Chen
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Saline-Alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Soil Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumchi 830091, China
| | - Jiao Liu
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Saline-Alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Soil Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumchi 830091, China
| | - Xiaoan Sun
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Saline-Alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Soil Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumchi 830091, China
| | - Wanli Xu
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Saline-Alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Soil Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumchi 830091, China
| |
Collapse
|
2
|
Daler S, Kaya O. Exogenous alpha-lipoic acid treatments reduce the oxidative damage caused by drought stress in two grapevine rootstocks. PHYSIOLOGIA PLANTARUM 2024; 176:e14437. [PMID: 39004804 DOI: 10.1111/ppl.14437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Drought represents the predominant and most critical abiotic stress challenge within the domain of viticulture, necessitating the identification and application of efficacious strategies to ameliorate its deleterious effects. In the contemporary realm of abiotic stress management, the deployment of α-lipoic acid (α-Lipo), known for its antioxidant capabilities, as an exogenous treatment has been investigated for mitigating various abiotic stresses in numerous plant species, yet a detailed exploration of its efficacy in alleviating drought stress in grapevines remains to be conclusively determined. This study aimed to elucidate the adaptive mechanisms against drought stress by examining the effects of different α-Lipo concentrations (0, 1, 25 and 50 μM) applied on the foliar under well-irrigated and drought conditions on American grapevine rootstocks '1103 P' (drought tolerant) and '3309 C' (drought sensitive). Our findings revealed that the efficacy of α-Lipo varied significantly depending on rootstock type and irrigation status. 1103 P rootstock treated with 1 μM α-Lipo under well-irrigated conditions showed greater positive effects on growth traits, photosynthetic and osmotic parameters. In contrast, in rootstock 3309 C under the same conditions, the highest effects were obtained at 25 and 50 μM α-Lipo concentrations. Under drought stress conditions, 50 μM α-Lipo treatment improved physiological parameters (chlorophyll content, proportional water coverage and stomatal conductance), proline content and antioxidant enzyme activities (SOD, CAT and APX), while reducing electrolyte leakage and MDA levels in both rootstocks, showing a strong potential to increase oxidative stress tolerance and sustain plant growth. Heatmap visualization analysis confirmed the data obtained from Principal Component Analysis (PCA) and revealed that 1103 P treated with 50 μM α-Lipo under drought stress conditions exhibited superior physiological performance compared to 3309 C under the same conditions. This indicates the importance of potential rootstock differences in stress adaptation or α-Lipo uptake efficiency. These findings suggest that α-Lipo holds promise as an eco-friendly, natural bio-stimulant for use in arid environments, contributing to the advancement of sustainable agricultural practices in the foreseeable future.
Collapse
Affiliation(s)
- Selda Daler
- Department of Horticulture, Faculty of Agriculture, Yozgat Bozok University, Yozgat, Turkey
| | - Ozkan Kaya
- Republic of Turkey Ministry of Agriculture and Forestry, Erzincan Horticultural Research Institute, Erzincan, Turkey
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
3
|
Kolomeichuk LV, Murgan OK, Danilova ED, Serafimovich MV, Khripach VA, Litvinovskaya RP, Sauchuk AL, Denisiuk DV, Zhabinskii VN, Kuznetsov VV, Efimova MV. Effects of Lactone- and Ketone-Brassinosteroids of the 28-Homobrassinolide Series on Barley Plants under Water Deficit. PLANTS (BASEL, SWITZERLAND) 2024; 13:1345. [PMID: 38794416 PMCID: PMC11124923 DOI: 10.3390/plants13101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
The aim of this work was to study the ability of 28-homobrassinolide (HBL) and 28-homocastasterone (HCS) to increase the resistance of barley (Hordeum vulgare L.) plants to drought and to alter their endogenous brassinosteroid status. Germinated barley seeds were treated with 0.1 nM HBL or HCS solutions for two hours. A water deficit was created by stopping the watering of 7-day-old plants for the next two weeks. Plants responded to drought through growth inhibition, impaired water status, increased lipid peroxidation, differential effects on antioxidant enzymes, intense proline accumulation, altered expression of genes involved in metabolism, and decreased endogenous contents of hormones (28-homobrassinolide, B-ketones, and B-lactones). Pretreatment of plants with HBL reduced the inhibitory effect of drought on fresh and dry biomass accumulation and relative water content, whereas HCS partially reversed the negative effect of drought on fresh biomass accumulation, reduced the intensity of lipid peroxidation, and increased the osmotic potential. Compared with drought stress alone, pretreatment of plants with HCS or HBL followed by drought increased superoxide dismutase activity sevenfold or threefold and catalase activity (by 36%). The short-term action of HBL and HCS in subsequent drought conditions partially restored the endogenous B-ketone and B-lactone contents. Thus, the steroidal phytohormones HBL and HCS increased barley plant resistance to subsequent drought, showing some specificity of action.
Collapse
Affiliation(s)
- Liliya V. Kolomeichuk
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia; (L.V.K.); (O.K.M.); (E.D.D.); (M.V.S.)
| | - Ol’ga K. Murgan
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia; (L.V.K.); (O.K.M.); (E.D.D.); (M.V.S.)
| | - Elena D. Danilova
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia; (L.V.K.); (O.K.M.); (E.D.D.); (M.V.S.)
| | - Mariya V. Serafimovich
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia; (L.V.K.); (O.K.M.); (E.D.D.); (M.V.S.)
| | - Vladimir A. Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Street 5/2, 220084 Minsk, Belarus; (V.A.K.); (A.L.S.); (V.N.Z.)
| | - Raisa P. Litvinovskaya
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Street 5/2, 220084 Minsk, Belarus; (V.A.K.); (A.L.S.); (V.N.Z.)
| | - Alina L. Sauchuk
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Street 5/2, 220084 Minsk, Belarus; (V.A.K.); (A.L.S.); (V.N.Z.)
| | - Daria V. Denisiuk
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Street 5/2, 220084 Minsk, Belarus; (V.A.K.); (A.L.S.); (V.N.Z.)
| | - Vladimir N. Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Street 5/2, 220084 Minsk, Belarus; (V.A.K.); (A.L.S.); (V.N.Z.)
| | - Vladimir V. Kuznetsov
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia; (L.V.K.); (O.K.M.); (E.D.D.); (M.V.S.)
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia;
| | - Marina V. Efimova
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia; (L.V.K.); (O.K.M.); (E.D.D.); (M.V.S.)
| |
Collapse
|
4
|
Qian Z, Lu L, Zihan W, Qianyue B, Chungang Z, Shuheng Z, Jiali P, Jiaxin Y, Shuang Z, Jian W. Gamma-aminobutyric acid (GABA) improves salinity stress tolerance in soybean seedlings by modulating their mineral nutrition, osmolyte contents, and ascorbate-glutathione cycle. BMC PLANT BIOLOGY 2024; 24:365. [PMID: 38706002 PMCID: PMC11071273 DOI: 10.1186/s12870-024-05023-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND In plants, GABA plays a critical role in regulating salinity stress tolerance. However, the response of soybean seedlings (Glycine max L.) to exogenous gamma-aminobutyric acid (GABA) under saline stress conditions has not been fully elucidated. RESULTS This study investigated the effects of exogenous GABA (2 mM) on plant biomass and the physiological mechanism through which soybean plants are affected by saline stress conditions (0, 40, and 80 mM of NaCl and Na2SO4 at a 1:1 molar ratio). We noticed that increased salinity stress negatively impacted the growth and metabolism of soybean seedlings, compared to control. The root-stem-leaf biomass (27- and 33%, 20- and 58%, and 25- and 59% under 40- and 80 mM stress, respectively]) and the concentration of chlorophyll a and chlorophyll b significantly decreased. Moreover, the carotenoid content increased significantly (by 35%) following treatment with 40 mM stress. The results exhibited significant increase in the concentration of hydrogen peroxide (H2O2), malondialdehyde (MDA), dehydroascorbic acid (DHA) oxidized glutathione (GSSG), Na+, and Cl- under 40- and 80 mM stress levels, respectively. However, the concentration of mineral nutrients, soluble proteins, and soluble sugars reduced significantly under both salinity stress levels. In contrast, the proline and glycine betaine concentrations increased compared with those in the control group. Moreover, the enzymatic activities of ascorbate peroxidase, monodehydroascorbate reductase, glutathione reductase, and glutathione peroxidase decreased significantly, while those of superoxide dismutase, catalase, peroxidase, and dehydroascorbate reductase increased following saline stress, indicating the overall sensitivity of the ascorbate-glutathione cycle (AsA-GSH). However, exogenous GABA decreased Na+, Cl-, H2O2, and MDA concentration but enhanced photosynthetic pigments, mineral nutrients (K+, K+/Na+ ratio, Zn2+, Fe2+, Mg2+, and Ca2+); osmolytes (proline, glycine betaine, soluble sugar, and soluble protein); enzymatic antioxidant activities; and AsA-GSH pools, thus reducing salinity-associated stress damage and resulting in improved growth and biomass. The positive impact of exogenously applied GABA on soybean plants could be attributed to its ability to improve their physiological stress response mechanisms and reduce harmful substances. CONCLUSION Applying GABA to soybean plants could be an effective strategy for mitigating salinity stress. In the future, molecular studies may contribute to a better understanding of the mechanisms by which GABA regulates salt tolerance in soybeans.
Collapse
Affiliation(s)
- Zhao Qian
- School of Life Sciences, Changchun Normal University, Changchun, 130032, China
| | - Liu Lu
- School of Agriculture, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Wei Zihan
- School of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bai Qianyue
- School of Agriculture, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Zhao Chungang
- School of Agriculture, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Zhang Shuheng
- School of Agriculture, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Pan Jiali
- School of Life Sciences, Changchun Normal University, Changchun, 130032, China
| | - Yu Jiaxin
- School of Life Sciences, Changchun Normal University, Changchun, 130032, China
| | - Zhang Shuang
- School of Life Sciences, Changchun Normal University, Changchun, 130032, China
| | - Wei Jian
- School of Life Sciences, Changchun Normal University, Changchun, 130032, China.
- School of Agriculture, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| |
Collapse
|
5
|
Mian NH, Azeem M, Ali Q, Mahmood S, Akram MS. Alpha lipoic acid mitigates adverse impacts of drought stress on growth and yield of mungbean: photosynthetic pigments, and antioxidative defense mechanism. PeerJ 2024; 12:e17191. [PMID: 38699184 PMCID: PMC11064871 DOI: 10.7717/peerj.17191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/13/2024] [Indexed: 05/05/2024] Open
Abstract
Context Exogenous use of potential organic compounds through different modes is a promising strategy for the induction of water stress tolerance in crop plants for better yield. Aims The present study aimed to explore the potential role of alpha-lipoic acid (ALA) in inducing water stress tolerance in mungbean lines when applied exogenously through various modes. Methods The experiment was conducted in a field with a split-plot arrangement, having three replicates for each treatment. Two irrigation regimes, including normal and reduced irrigation, were applied. The plants allocated to reduced irrigation were watered only at the reproductive stage. Three levels of ALA (0, 0.1, 0.15 mM) were applied through different modes (seed priming, foliar or priming+foliar). Key results ALA treatment through different modes manifested higher growth under reduced irrigation (water stress) and normal irrigation. Compared to the other two modes, the application of ALA as seed priming was found more effective in ameliorating the adverse impacts of water stress on growth and yield associated with their better content of leaf photosynthetic pigments, maintenance of plant water relations, levels of non-enzymatic antioxidants, improved activities of enzymatic antioxidants, and decreased lipid peroxidation and H2O2 levels. The maximum increase in shoot fresh weight (29% and 28%), shoot dry weight (27% and 24%), 100-grain weight (24% and 23%) and total grain yield (20% and 21%) in water-stressed mungbean plants of line 16003 and 16004, respectively, was recorded due to ALA seed priming than other modes of applications. Conclusions Conclusively, 0.1 and 0.15 mM levels of ALA as seed priming were found to reduce the adverse impact of water stress on mungbean yield that was associated with improved physio-biochemical mechanisms. Implications The findings of the study will be helpful for the agriculturalists working in arid and semi-arid regions to obtain a better yield of mungbean that will be helpful to fulfill the food demand in those areas to some extent.
Collapse
Affiliation(s)
| | - Muhammad Azeem
- Government College University, Faisalabad, Faisalabad, Pakistan
| | - Qasim Ali
- Government College University, Faisalabad, Faisalabad, Pakistan
| | - Saqib Mahmood
- Government College University, Faisalabad, Faisalabad, Pakistan
| | | |
Collapse
|
6
|
Bouranis DL, Chorianopoulou SN. Foliar Application of Sulfur-Containing Compounds-Pros and Cons. PLANTS (BASEL, SWITZERLAND) 2023; 12:3794. [PMID: 38005690 PMCID: PMC10674314 DOI: 10.3390/plants12223794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023]
Abstract
Sulfate is taken up from the soil solution by the root system; and inside the plant, it is assimilated to hydrogen sulfide, which in turn is converted to cysteine. Sulfate is also taken up by the leaves, when foliage is sprayed with solutions containing sulfate fertilizers. Moreover, several other sulfur (S)-containing compounds are provided through foliar application, including the S metabolites hydrogen sulfide, glutathione, cysteine, methionine, S-methylmethionine, and lipoic acid. However, S compounds that are not metabolites, such as thiourea and lignosulfonates, along with dimethyl sulfoxide and S-containing adjuvants, are provided by foliar application-these are the S-containing agrochemicals. In this review, we elaborate on the fate of these compounds after spraying foliage and on the rationale and the efficiency of such foliar applications. The foliar application of S-compounds in various combinations is an emerging area of agricultural usefulness. In the agricultural practice, the S-containing compounds are not applied alone in spray solutions and the need for proper combinations is of prime importance.
Collapse
Affiliation(s)
- Dimitris L. Bouranis
- Plant Physiology and Morphology Laboratory, Crop Science Department, Agricultural University of Athens, 11855 Athens, Greece;
- PlanTerra Institute for Plant Nutrition and Soil Quality, Agricultural University of Athens, 11855 Athens, Greece
| | - Styliani N. Chorianopoulou
- Plant Physiology and Morphology Laboratory, Crop Science Department, Agricultural University of Athens, 11855 Athens, Greece;
- PlanTerra Institute for Plant Nutrition and Soil Quality, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
7
|
Hameed S, Atif M, Perveen S. Role of gibberellins, neem leaf extract, and serine in improving wheat growth and grain yield under drought-triggered oxidative stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1675-1691. [PMID: 38162918 PMCID: PMC10754809 DOI: 10.1007/s12298-023-01402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
The foliar application of gibberellins (GA3), neem leaf extract (NLE) and serine can be proven as effective growth regulating agents to counter drought stress-related deleterious effects. The literature about the collaborative role of these substances in foliar spray application under drought stress is not available to this date. No single report is available in literature on combine foliar application of GA3, NLE, and serine in improving wheat growth and yield under drought-triggered oxidative stress. The objective of this study was to induct tolerance against drought stress in order to sustain maximum growth and yield of wheat varieties (Anaj-2017 and Galaxy-2013) with foliar applications of GA3, NLE, and serine. The current field trial was designed to disclose the protective role of these substances in wheat varieties (Anaj-2017 and Galaxy-2013) under water-deficit stress. Two irrigation levels, i.e., control (normal irrigation) and water stress (water deficit irrigation), and 5 levels of GA3, NLE and serine i.e., control (water spray), GA3 (10.0 ppm), NLE (10.0%), serine (9.5 mM), and mixture (GA3 + NLE + serine) in a 1:1:1 ratio was applied. Application of these substances improved the pigments (Chlorophyll a, b), carotenoids, growth, biomass, and grain yield traits of both wheat varieties under water-deficit stress. Activities of antioxidant enzymes (POD, CAT and SOD), and non-enzymatic antioxidants (proline, total phenolic contents, anthocyanin and free amino acids) were up-regulated under drought stress and with foliar spray treatments. The foliar applications of these substances reduced the drought triggered overproduction of lipid peroxidation (MDA) and H2O2. The study found that Galaxy-2013 variety is more tolerant to drought stress than Anaj-2017, while co-applied treatments (GA3 + NLE + serine) were shown to be the most effective among all applications. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01402-9.
Collapse
Affiliation(s)
- Sidra Hameed
- Department of Botany, Government College University, Faisalabad, 38000 Pakistan
| | - Muhammad Atif
- Department of Botany, Government College University, Faisalabad, 38000 Pakistan
| | - Shagufta Perveen
- Department of Botany, Government College University, Faisalabad, 38000 Pakistan
| |
Collapse
|
8
|
Li S, Yang L, Huang X, Zou Z, Zhang M, Guo W, Addo-Danso SD, Zhou L. Mineral Nutrient Uptake, Accumulation, and Distribution in Cunninghamia lanceolata in Response to Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112140. [PMID: 37299119 DOI: 10.3390/plants12112140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Mineral accumulation in plants under drought stress is essential for drought tolerance. The distribution, survival, and growth of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.), an evergreen conifer, can be affected by climate change, particularly seasonal precipitation and drought. Hence, we designed a drought pot experiment, using 1-year-old Chinese fir plantlets, to evaluate drought effects under simulated mild drought, moderate drought, and severe drought, which corresponds to 60%, 50%, and 40% of soil field maximum moisture capacity, respectively. A treatment of 80% of soil field maximum moisture capacity was used as control. Effects of drought stress on mineral uptake, accumulation, and distribution in Chinese fir organs were determined under different drought stress regimes for 0-45 days. Severe drought stress significantly increased phosphorous (P) and potassium (K) uptake at 15, 30 and 45 days, respectively, within fine (diameter < 2 mm), moderate (diameter 2-5 mm), and large (diameter 5-10 mm) roots. Drought stress decreased magnesium (Mg) and manganese (Mn) uptake by fine roots and increased iron (Fe) uptake in fine and moderate roots but decreased Fe uptake in large roots. Severe drought stress increased P, K, calcium (Ca), Fe, sodium (Na), and aluminum (Al) accumulation in leaves after 45 days and increased Mg and Mn accumulation after 15 days. In stems, severe drought stress increased P, K, Ca, Fe, and Al in the phloem, and P, K, Mg, Na, and Al in the xylem. In branches, P, K, Ca, Fe, and Al concentrations increased in the phloem, and P, Mg, and Mn concentrations increased in the xylem under severe drought stress. Taken together, plants develop strategies to alleviate the adverse effects of drought stress, such as promoting the accumulation of P and K in most organs, regulating minerals concentration in the phloem and xylem, to prevent the occurrence of xylem embolism. The important roles of minerals in response to drought stress should be further evaluated.
Collapse
Affiliation(s)
- Shubin Li
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Li Yang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Xiaoyan Huang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Zhiguang Zou
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Maxiao Zhang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjuan Guo
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Shalom Daniel Addo-Danso
- Forest and Climate Change Division, CSIR-Forestry Research Institute of Ghana, Kumasi P.O. Box UP 63 KNUST, Ghana
| | - Lili Zhou
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
- College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
9
|
Najafi Vafa Z, Sohrabi Y, Mirzaghaderi G, Heidari G. The effect of rhizobia in improving the protective mechanisms of wheat under drought and supplementary irrigation conditions. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1073240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IntroductionWheat (Triticum aestivum L.) is a strategic crop and one of the world's most essential cereals, providing most of the world's calories and protein needs. Drought stress is one of the main limitations for crop production such as wheat in arid and semi-arid regions. Plants can accumulate antioxidants, carbohydrates, and stress hormones that stimulate cell and molecular regeneration under stress conditions. Irrigation saves water, improves crop photosynthesis, and increases plant ability to absorb water and elements from soil. Therefore, irrigation at the right time or supplementary irrigation can help plant growth and crop yield under drought conditions. Appropriate nutrition with fertilizers increases plants' stress tolerance. Bio-fertilizers are restorative elements used in soil to improve tolerance to stresses such as drought stress. A well-known class of bio-fertilizers is plant growth promoting rhizobacteria (PGPR). These rhizosphere bacteria affect plant development and productivity by interacting with roots. Arbuscular mycorrhizal fungi (AMF) alleviate drought stress in plants by enhancing their ability to absorb water and nutrients from the soil. Seaweed extract bio-fertilizer is organic matter used to increase crop growth and soil fertility. This bio-fertilizer is utilized as growth stimulants and food supplements. Our research analyzed the effects of rhizobia and seaweed extracts on wheat's drought resistance mechanisms.Materials and methodsThis research was conducted in Iran in the crop years of 2017–2018 and 2018–2019 in the research farm of Kurdistan University Faculty of Agriculture located in Dehgolan with coordinates 47°18′ 55″ East and 35°19′ 10″ North with an altitude of 1866 meters above sea level, 45 kilometers east It was done on the wheat plant in Sanandaj city. The experiment was conducted in the form of a split-split plot in the form of a randomized complete block design with four replications. Irrigation treatments as the main factor (no irrigation or dry-land, one irrigation in the booting stage, two irrigations in the booting and spike stages), two wheat cultivars (Sardari and Sirvan) as secondary factors, and the application of biological fertilizers at eight levels including Mycorrhiza + Nitrozist and Phosphozist, Seaweed extract + Nitrozist and Phosphozist, Mycorrhiza + Seaweed extract, Mycorrhiza + Nitrozist and Phosphozist and no application of biological fertilizers (control) as Sub-sub-factors were considered.Results and discussionAccording to the study, when bio-fertilizer was applied with once and twice supplementary irrigation levels, leaf relative water content (RWC) and soluble protein content (SPC) increased, while lack of irrigation increased malondialdehyde (MDA). In both years, bio-fertilizers, especially their combinations, increased the amount and activity of enzymatic and non-enzymatic antioxidants, including peroxidase (POD), superoxide dismutase (SOD), phenol (Phe), flavonoid (Fla), and anthocyanin (Anth). Also, it enhanced the inhibition of free radicals by 2-2-Diphenyl picryl hydrazyl (DPPH) and cleared active oxygen species. It was found that malondialdehyde (MDA) levels were very low in wheat under two times irrigation with averages of 3.3909 and 3.3865 μmol g−1 FW. The results indicated a significant positive relationship between non-enzymatic and enzymatic antioxidants such as Phe, Fla, Anth, DPPH, POD, and SOD enzymes and their role in improving stress under dry-land conditions, especially in the Sardari variety. Biological fertilizers (Mycorrhiza + Nitrozist and Phosphozist + Seaweed extract) increased wheat yield compared to the control. Furthermore, Mycorrhiza + Nitrozist and Phosphozist + Seaweed extract improved grain yield by 8.04% and 6.96% in the 1st and 2nd years, respectively. Therefore, appropriate combinations of microorganisms, beneficial biological compounds, and supplementary irrigation can reduce the adverse effects of drought stress in arid and semi-arid regions.
Collapse
|
10
|
Hussain MI, Muscolo A, Ahmed M. Plant Responses to Biotic and Abiotic Stresses: Crosstalk between Biochemistry and Ecophysiology. PLANTS (BASEL, SWITZERLAND) 2022; 11:3294. [PMID: 36501330 PMCID: PMC9737920 DOI: 10.3390/plants11233294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Biotic and abiotic stresses, such as drought, salinity, extreme temperatures (cold and heat) and oxidative stress, are often interrelated; these conditions singularly or in combination induce cellular damage [...].
Collapse
Affiliation(s)
- Muhammad Iftikhar Hussain
- Department of Plant Biology & Soil Science, Universidad de Vigo, Campus Lagoas Marcosende, 36310 Vigo, Spain
| | - Adele Muscolo
- Department of Agriculture, Mediterranea University, Feo di Vito, 89122 Reggio Calabria, Italy
| | - Mukhtar Ahmed
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University, Murree Road, Rawalpindi 46300, Pakistan
| |
Collapse
|
11
|
Aljuaid BS, Ashour H. Exogenous γ-Aminobutyric Acid (GABA) Application Mitigates Salinity Stress in Maize Plants. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111860. [PMID: 36430995 PMCID: PMC9697566 DOI: 10.3390/life12111860] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
The effect of γ-Aminobutyrate (GABA) on maize seedlings under saline stress conditions has not been well tested in previous literature. Maize seedlings were subjected to two saline water concentrations (50 and 100 mM NaCl), with distilled water as the control. Maize seedlings under saline and control conditions were sprayed with GABA at two concentrations (0.5 and 1 mM). Our results indicated that GABA application (1 mM) significantly enhanced plant growth parameters (fresh shoots and fresh roots by 80.43% and 47.13%, respectively) and leaf pigments (chlorophyll a, b, and total chlorophyll by 22.88%, 56.80%, and 36.21%, respectively) compared to untreated seedlings under the highest saline level. Additionally, under 100 mM NaCl, methylglyoxal (MG), malondialdehyde (MDA), and hydrogen peroxidase (H2O2) were reduced by 1 mM GABA application by 43.66%, 33.40%, and 35.98%, respectively. Moreover, maize seedlings that were treated with 1 mM GABA contained a lower Na content (22.04%) and a higher K content (60.06%), compared to the control under 100 mM NaCl. Peroxidase, catalase, ascorbate peroxidase, and superoxide dismutase activities were improved (24.62%, 15.98%, 62.13%, and 70.07%, respectively) by the highest GABA rate, under the highest stress level. Seedlings treated with GABA under saline conditions showed higher levels of expression of the potassium transporter protein (ZmHKT1) gene, and lower expression of the ZmSOS1 and ZmNHX1 genes, compared to untreated seedlings. In conclusion, GABA application as a foliar treatment could be a promising strategy to mitigate salinity stress in maize plants.
Collapse
Affiliation(s)
- Bandar S. Aljuaid
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence: (B.S.A.); (H.A.)
| | - Hatem Ashour
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (B.S.A.); (H.A.)
| |
Collapse
|
12
|
Aljuaid BS, Mukherjee S, Sayed AN, El-Gabry YAEG, Omar MMA, Mahmoud SF, Alsubeie MS, Darwish DBE, Al-Qahtani SM, Al-Harbi NA, Alzuaibr FM, Basahi MA, Hamada MMA. Folic Acid Reinforces Maize Tolerance to Sodic-Alkaline Stress through Modulation of Growth, Biochemical and Molecular Mechanisms. Life (Basel) 2022; 12:life12091327. [PMID: 36143364 PMCID: PMC9506096 DOI: 10.3390/life12091327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The mechanism by which folic acid (FA) or its derivatives (folates) mediates plant tolerance to sodic-alkaline stress has not been clarified in previous literature. To apply sodic-alkaline stress, maize seedlings were irrigated with 50 mM of a combined solution (1:1) of sodic-alkaline salts (NaHCO3 and Na2CO3; pH 9.7). Maize seedlings under stressed and non-stressed conditions were sprayed with folic acid (FA) at 0 (distilled water as control), 0.05, 0.1, and 0.2 mM. Under sodic-alkaline stress, FA applied at 0.2 mM significantly improved shoot fresh weight (95%), chlorophyll (Chl a (41%), Chl b (57%), and total Chl (42%)), and carotenoids (27%) compared to the untreated plants, while root fresh weight was not affected compared to the untreated plants. This improvement was associated with a significant enhancement in the cell-membrane stability index (CMSI), relative water content (RWC), free amino acids (FAA), proline, soluble sugars, K, and Ca. In contrast, Na, Na/K ratio, H2O2, malondialdehyde (MDA), and methylglycoxal (MG) were significantly decreased. Moreover, seedlings treated with FA demonstrated significantly higher activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), and ascorbate peroxidase (APX) compared to the untreated plants. The molecular studies using RT-qPCR demonstrated that FA treatments, specifically at 0.2 mM, enhanced the K+/Na+ selectivity and the performance of photosynthesis under alkaline-stress conditions. These responses were observed through up-regulation of the expression of the high-affinity potassium-transporter protein (ZmHKT1), the major core protein of photosystem II (D2-Protein), and the activity of the first enzyme of carbon fixation cycle in C4 plants (PEP-case) by 74, 248, and 225% over the untreated plants, respectively. Conversely, there was a significant down-regulation in the expression ZmSOS1 and ZmNHX1 by 48.2 and 27.8%, respectively, compared to the untreated plants.
Collapse
Affiliation(s)
- Bandar S. Aljuaid
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, Kalyani 742213, India
- Correspondence: (S.M.); (M.M.A.H.)
| | - Amany N. Sayed
- Department of Agronomy, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | | | - Mohamed M. A. Omar
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Samy F. Mahmoud
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Moodi Saham Alsubeie
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Doaa Bahaa Eldin Darwish
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35511, Egypt
- Biology Department, Faculty of Science, Tabuk University, Tabuk 71491, Saudi Arabia
| | - Salem Mesfir Al-Qahtani
- Biology Department, University College of Tayma, University of Tabuk, P.O. Box 741, Tabuk 47512, Saudi Arabia
| | - Nadi Awad Al-Harbi
- Biology Department, University College of Tayma, University of Tabuk, P.O. Box 741, Tabuk 47512, Saudi Arabia
| | - Fahad Mohammed Alzuaibr
- Department of Biology, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
| | - Mohammed A. Basahi
- College of Science and Arts Sajir, Shaqra University, P.O. Box 33, Shaqra 11961, Saudi Arabia
| | - Maha M. A. Hamada
- Department of Agronomy, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (S.M.); (M.M.A.H.)
| |
Collapse
|
13
|
EL-Bauome HA, Abdeldaym EA, Abd El-Hady MAM, Darwish DBE, Alsubeie MS, El-Mogy MM, Basahi MA, Al-Qahtani SM, Al-Harbi NA, Alzuaibr FM, Alasmari A, Ismail IA, Dessoky ES, Doklega SMA. Exogenous Proline, Methionine, and Melatonin Stimulate Growth, Quality, and Drought Tolerance in Cauliflower Plants. AGRICULTURE 2022; 12:1301. [DOI: 10.3390/agriculture12091301] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The impact of proline, methionine, and melatonin on cauliflower plants under drought stress is still unclear in the available publications. So, this research aims to study these biochemical compounds’ effects on cauliflower plants grown under well-irrigated and drought-stressed conditions. The obtained results showed that under drought-stressed conditions, foliar application of proline, methionine, and melatonin significantly (p ≤ 0.05) enhanced leaf area, leaf chlorophyll content, leaf relative water content (RWC), vitamin C, proline, total soluble sugar, reducing sugar, and non-reducing sugar compared to the untreated plants. These treatments also significantly increased curd height, curd diameter, curd freshness, and dry matter compared to untreated plants. Conversely, the phenolic-related enzymes including polyphenol oxidase (PPO), peroxidase (POD), and phenylalanine ammonia-lyase (PAL) were significantly reduced compared to the untreated plants. A similar trend was observed in glucosinolates, abscisic acid (ABA), malondialdehyde (MDA), and total phenols. Eventually, it can be concluded that the foliar application of proline, methionine, and melatonin can be considered a proper strategy for enhancing the growth performance and productivity of cauliflower grown under drought-stressed conditions.
Collapse
|
14
|
Helal NM, Khattab HI, Emam MM, Niedbała G, Wojciechowski T, Hammami I, Alabdallah NM, Darwish DBE, El-Mogy MM, Hassan HM. Improving Yield Components and Desirable Eating Quality of Two Wheat Genotypes Using Si and NanoSi Particles under Heat Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:1819. [PMID: 35890453 PMCID: PMC9316522 DOI: 10.3390/plants11141819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 01/07/2023]
Abstract
Global climate change is a significant challenge that will significantly lower crop yield and staple grain quality. The present investigation was conducted to assess the effects of the foliar application of either Si (1.5 mM) or Si nanoparticles (1.66 mM) on the yield and grain quality attributes of two wheat genotypes (Triticum aestivum L.), cv. Shandweel 1 and cv. Gemmeiza 9, planted at normal sowing date and late sowing date (heat stress). Si and Si nanoparticles markedly mitigated the observed decline in yield and reduced the heat stress intensity index value at late sowing dates, and improved yield quality via the decreased level of protein, particularly glutenin, as well as the lowered activity of α-amylase in wheat grains, which is considered a step in improving grain quality. Moreover, Si and nanoSi significantly increased the oil absorption capacity (OAC) of the flour of stressed wheat grains. In addition, both silicon and nanosilicon provoked an increase in cellulose, pectin, total phenols, flavonoid, oxalic acid, total antioxidant power, starch and soluble protein contents, as well as Ca and K levels, in heat-stressed wheat straw, concomitant with a decrease in lignin and phytic acid contents. In conclusion, the pronounced positive effects associated with improving yield quantity and quality were observed in stressed Si-treated wheat compared with Si nanoparticle-treated ones, particularly in cv. Gemmeiza 9.
Collapse
Affiliation(s)
- Nesma M. Helal
- Botany Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (N.M.H.); (H.I.K.); (M.M.E.)
| | - Hemmat I. Khattab
- Botany Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (N.M.H.); (H.I.K.); (M.M.E.)
| | - Manal M. Emam
- Botany Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (N.M.H.); (H.I.K.); (M.M.E.)
| | - Gniewko Niedbała
- Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland;
| | - Tomasz Wojciechowski
- Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland;
| | - Inès Hammami
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (I.H.); (N.M.A.)
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (I.H.); (N.M.A.)
| | - Doaa Bahaa Eldin Darwish
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35511, Egypt;
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 46429, Saudi Arabia
| | - Mohamed M. El-Mogy
- Vegetable Crops Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Heba M. Hassan
- Botany Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (N.M.H.); (H.I.K.); (M.M.E.)
| |
Collapse
|
15
|
El-Yazied AA, Ibrahim MFM, Ibrahim MAR, Nasef IN, Al-Qahtani SM, Al-Harbi NA, Alzuaibr FM, Alaklabi A, Dessoky ES, Alabdallah NM, Omar MMA, Ibrahim MTS, Metwally AA, Hassan KM, Shehata SA. Melatonin Mitigates Drought Induced Oxidative Stress in Potato Plants through Modulation of Osmolytes, Sugar Metabolism, ABA Homeostasis and Antioxidant Enzymes. PLANTS (BASEL, SWITZERLAND) 2022; 11:1151. [PMID: 35567152 PMCID: PMC9104148 DOI: 10.3390/plants11091151] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 05/05/2023]
Abstract
The effect of melatonin (MT) on potato plants under drought stress is still unclear in the available literature. Here, we studied the effect of MT as a foliar application at 0, 0.05, 0.1, and 0.2 mM on potato plants grown under well-watered and drought stressed conditions during the most critical period of early tuberization stage. The results indicated that under drought stress conditions, exogenous MT significantly (p ≤ 0.05) improved shoot fresh weight, shoot dry weight, chlorophyll (Chl; a, b and a + b), leaf relative water content (RWC), free amino acids (FAA), non-reducing sugars, total soluble sugars, cell membrane stability index, superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (G-POX), and ascorbate peroxidase (APX) compared to the untreated plants. Meanwhile, carotenoids, proline, methylglyoxal (MG), H2O2, lipid peroxidation (malondialdehyde; MDA) and abscisic acid (ABA) were significantly decreased compared to the untreated plants. These responses may reveal the protective role of MT against drought induced carbonyl/oxidative stress and enhancing the antioxidative defense systems. Furthermore, tuber yield was differentially responded to MT treatments under well-watered and drought stressed conditions. Since, applied-MT led to an obvious decrease in tuber yield under well-watered conditions. In contrast, under drought conditions, tuber yield was substantially increased by MT-treatments up to 0.1 mM. These results may imply that under water deficiency, MT can regulate the tuberization process in potato plants by hindering ABA transport from the root to shoot system, on the one hand, and by increasing the non-reducing sugars on the other hand.
Collapse
Affiliation(s)
- Ahmed Abou El-Yazied
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (A.A.E.-Y.); (A.A.M.); (K.M.H.)
| | - Mohamed F. M. Ibrahim
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt;
| | - Mervat A. R. Ibrahim
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (M.A.R.I.); (M.M.A.O.); (M.T.S.I.)
| | - Ibrahim N. Nasef
- Department of Horticulture, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt;
| | - Salem Mesfir Al-Qahtani
- Biology Department, University College of Tayma, Tabuk University, P.O. Box 741, Tabuk 47512, Saudi Arabia; (S.M.A.-Q.); (N.A.A.-H.)
| | - Nadi Awad Al-Harbi
- Biology Department, University College of Tayma, Tabuk University, P.O. Box 741, Tabuk 47512, Saudi Arabia; (S.M.A.-Q.); (N.A.A.-H.)
| | - Fahad Mohammed Alzuaibr
- Department of Biology, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia;
| | - Abdullah Alaklabi
- Department of Biology, Faculty of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia;
| | - Eldessoky S. Dessoky
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Mohamed M. A. Omar
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (M.A.R.I.); (M.M.A.O.); (M.T.S.I.)
| | - Mariam T. S. Ibrahim
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (M.A.R.I.); (M.M.A.O.); (M.T.S.I.)
| | - Amr A. Metwally
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (A.A.E.-Y.); (A.A.M.); (K.M.H.)
| | - Karim. M. Hassan
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (A.A.E.-Y.); (A.A.M.); (K.M.H.)
| | - Said A. Shehata
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt;
| |
Collapse
|
16
|
Ramadan KMA, Alharbi MM, Alenzi AM, El-Beltagi HS, Darwish DBE, Aldaej MI, Shalaby TA, Mansour AT, El-Gabry YAEG, Ibrahim MFM. Alpha Lipoic Acid as a Protective Mediator for Regulating the Defensive Responses of Wheat Plants against Sodic Alkaline Stress: Physiological, Biochemical and Molecular Aspects. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060787. [PMID: 35336669 PMCID: PMC8949438 DOI: 10.3390/plants11060787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 05/13/2023]
Abstract
Recently, exogenous α-Lipoic acid (ALA) has been suggested to improve the tolerance of plants to a wide array of abiotic stresses. However, there is currently no definitive data on the role of ALA in wheat plants exposed to sodic alkaline stress. Therefore, this study was designed to evaluate the effects of foliar application by ALA at 0 (distilled water as control) and 20 µM on wheat seedlings grown under sodic alkaline stress (50 mM 1:1 NaHCO3 & Na2CO3; pH 9.7. Under sodic alkaline stress, exogenous ALA significantly (p ≤ 0.05) improved growth (shoot fresh and dry weight), chlorophyll (Chl) a, b and Chl a + b, while Chl a/b ratio was not affected. Moreover, leaf relative water content (RWC), total soluble sugars, carotenoids, total soluble phenols, ascorbic acid, K and Ca were significantly increased in the ALA-treated plants compared to the ALA-untreated plants. This improvement was concomitant with reducing the rate of lipid peroxidation (malondialdehyde, MDA) and H2O2. Superoxide dismutase (SOD) and ascorbate peroxidase (APX) demonstrated greater activity in the ALA-treated plants compared to the non-treated ones. Conversely, proline, catalase (CAT), guaiacol peroxidase (G-POX), Na and Na/K ratio were significantly decreased in the ALA-treated plants. Under sodic alkaline stress, the relative expression of photosystem II (D2 protein; PsbD) was significantly up-regulated in the ALA treatment (67% increase over the ALA-untreated plants); while Δ pyrroline-5-carboxylate synthase (P5CS), plasma membrane Na+/H+ antiporter protein of salt overly sensitive gene (SOS1) and tonoplast-localized Na+/H+ antiporter protein (NHX1) were down-regulated by 21, 37 and 53%, respectively, lower than the ALA-untreated plants. These results reveal that ALA may be involved in several possible mechanisms of alkalinity tolerance in wheat plants.
Collapse
Affiliation(s)
- Khaled M. A. Ramadan
- Central Laboratories, Department of Chemistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Maha Mohammed Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.M.A.); (A.M.A.); or (D.B.E.D.)
| | - Asma Massad Alenzi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.M.A.); (A.M.A.); or (D.B.E.D.)
| | - Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Biochemistry Department, Faculty of Agriculture, Cairo University, Gamma St, Giza 12613, Egypt
- Correspondence: (H.S.E.-B.); (M.F.M.I.); Tel.: +20-1123403173 (M.F.M.I.)
| | - Doaa Bahaa Eldin Darwish
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.M.A.); (A.M.A.); or (D.B.E.D.)
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35511, Egypt
| | - Mohammed I. Aldaej
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Tarek A. Shalaby
- Department of Arid Land Agriculture, College of Agricultural and Food Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia;
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | | | - Mohamed F. M. Ibrahim
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (H.S.E.-B.); (M.F.M.I.); Tel.: +20-1123403173 (M.F.M.I.)
| |
Collapse
|
17
|
Youssef MHM, Raafat A, El-Yazied AA, Selim S, Azab E, Khojah E, El Nahhas N, Ibrahim MFM. Exogenous Application of Alpha-Lipoic Acid Mitigates Salt-Induced Oxidative Damage in Sorghum Plants through Regulation Growth, Leaf Pigments, Ionic Homeostasis, Antioxidant Enzymes, and Expression of Salt Stress Responsive Genes. PLANTS (BASEL, SWITZERLAND) 2021; 10:2519. [PMID: 34834882 PMCID: PMC8624540 DOI: 10.3390/plants10112519] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 05/20/2023]
Abstract
In plants, α-Lipoic acid (ALA) is considered a dithiol short-chain fatty acid with several strong antioxidative properties. To date, no data are conclusive regarding its effects as an exogenous application on salt stressed sorghum plants. In this study, we investigated the effect of 20 µM ALA as a foliar application on salt-stressed sorghum plants (0, 75 and 150 mM as NaCl). Under saline conditions, the applied-ALA significantly (p ≤ 0.05) stimulated plant growth, indicated by improving both fresh and dry shoot weights. A similar trend was observed in the photosynthetic pigments, including Chl a, Chl b and carotenoids. This improvement was associated with an obvious increase in the membrane stability index (MSI). At the same time, an obvious decrease in the salt induced oxidative damages was seen when the concentration of H2O2 and malondialdehyde (MDA) was reduced in the salt stressed leaf tissues. Generally, ALA-treated plants demonstrated higher antioxidant enzyme activity than in the ALA-untreated plants. A moderate level of salinity (75 mM) induced the highest activities of superoxide dismutase (SOD), guaiacol peroxidase (G-POX), and ascorbate peroxidase (APX). Meanwhile, the highest activity of catalase (CAT) was seen with 150 mM NaCl. Interestingly, applied-ALA led to a substantial decrease in the concentration of both Na and the Na/K ratio. In contrast, K and Ca exhibited a considerable increase in this respect. The role of ALA in the regulation of K+/Na+ selectivity under saline condition was confirmed through a molecular study (RT-PCR). It was found that ALA treatment downregulated the relative gene expression of plasma membrane (SOS1) and vacuolar (NHX1) Na+/H+ antiporters. In contrast, the high-affinity potassium transporter protein (HKT1) was upregulated.
Collapse
Affiliation(s)
- Montaser H. M. Youssef
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (M.H.M.Y.); (A.R.)
| | - Aly Raafat
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (M.H.M.Y.); (A.R.)
| | - Ahmed Abou El-Yazied
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt;
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 2014, Saudi Arabia;
| | - Ehab Azab
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (E.A.); (E.K.)
| | - Ebtihal Khojah
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (E.A.); (E.K.)
| | - Nihal El Nahhas
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt;
| | - Mohamed F. M. Ibrahim
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (M.H.M.Y.); (A.R.)
| |
Collapse
|