1
|
Singh A, Yasheshwar, Kaushik NK, Kala D, Nagraik R, Gupta S, Kaushal A, Walia Y, Dhir S, Noorani MS. Conventional and cutting-edge advances in plant virus detection: emerging trends and techniques. 3 Biotech 2025; 15:100. [PMID: 40151342 PMCID: PMC11937476 DOI: 10.1007/s13205-025-04253-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Plant viruses pose a significant threat to global agriculture. For a long time, conventional methods including detection based on visual symptoms, host range investigations, electron microscopy, serological assays (e.g., ELISA, Western blotting), and nucleic acid-based techniques (PCR, RT-PCR) have been used for virus identification. With increased sensitivity, speed, and specificity, new technologies like loop-mediated isothermal amplification (LAMP), high-throughput sequencing (HTS), nanotechnology-based biosensors, and CRISPR diagnostics have completely changed the way plant viruses are detected. Recent advances in detection techniques integrate artificial intelligence (AI), machine learning (ML), and the Internet of Things (IoT) for real-time monitoring. Innovations like hyperspectral imaging, deep learning, and cloud-based IoT platforms further support disease identification and surveillance. Nanotechnology-based lateral flow assays and CRISPR-Cas systems provide rapid, field-deployable solutions. Despite these advancements, challenges such as sequence limitations, multiplexing constraints, and environmental concerns remain. Future research should focus on refining portable on-site diagnostic kits, optimizing nanotechnology applications, and enhancing global surveillance systems. Interdisciplinary collaboration across molecular biology, bioinformatics, and engineering is essential to developing scalable, cost-effective solutions for plant virus detection, ensuring agricultural sustainability and ecosystem protection.
Collapse
Affiliation(s)
- Anjana Singh
- Plant Molecular Virology Lab, Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062 India
- Deshbandhu College, University of Delhi, New Delhi, 110019 India
| | - Yasheshwar
- Department of Botany, Acharya Narendra Dev College, University of Delhi, New Delhi, 110019 India
| | - Naveen K. Kaushik
- Department of Industrial Biotechnology, College of Biotechnology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125004 India
| | - Deepak Kala
- NL-11 Centera Tetrahertz Laboratory, Institute of High-Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland
| | - Rupak Nagraik
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
| | - Shagun Gupta
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 India
| | - Ankur Kaushal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 India
| | - Yashika Walia
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 India
| | - Sunny Dhir
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 India
| | - Md Salik Noorani
- Plant Molecular Virology Lab, Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062 India
| |
Collapse
|
2
|
Kanapiya A, Amanbayeva U, Tulegenova Z, Abash A, Zhangazin S, Dyussembayev K, Mukiyanova G. Recent advances and challenges in plant viral diagnostics. FRONTIERS IN PLANT SCIENCE 2024; 15:1451790. [PMID: 39193213 PMCID: PMC11347306 DOI: 10.3389/fpls.2024.1451790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Accurate and timely diagnosis of plant viral infections plays a key role in effective disease control and maintaining agricultural productivity. Recent advances in the diagnosis of plant viruses have significantly expanded our ability to detect and monitor viral pathogens in agricultural crops. This review discusses the latest advances in diagnostic technologies, including both traditional methods and the latest innovations. Conventional methods such as enzyme-linked immunosorbent assay and DNA amplification-based assays remain widely used due to their reliability and accuracy. However, diagnostics such as next-generation sequencing and CRISPR-based detection offer faster, more sensitive and specific virus detection. The review highlights the main advantages and limitations of detection systems used in plant viral diagnostics including conventional methods, biosensor technologies and advanced sequence-based techniques. In addition, it also discusses the effectiveness of commercially available diagnostic tools and challenges facing modern diagnostic techniques as well as future directions for improving informed disease management strategies. Understanding the main features of available diagnostic methodologies would enable stakeholders to choose optimal management strategies against viral threats and ensure global food security.
Collapse
Affiliation(s)
- Aizada Kanapiya
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Ulbike Amanbayeva
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
| | - Zhanar Tulegenova
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
| | - Altyngul Abash
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Sayan Zhangazin
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Kazbek Dyussembayev
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
| | - Gulzhamal Mukiyanova
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
- Scientific Center "Agrotechnopark", Shakarim University, Semey, Kazakhstan
| |
Collapse
|
3
|
Javaran VJ, Poursalavati A, Lemoyne P, Ste-Croix DT, Moffett P, Fall ML. NanoViromics: long-read sequencing of dsRNA for plant virus and viroid rapid detection. Front Microbiol 2023; 14:1192781. [PMID: 37415816 PMCID: PMC10320856 DOI: 10.3389/fmicb.2023.1192781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
There is a global need for identifying viral pathogens, as well as for providing certified clean plant materials, in order to limit the spread of viral diseases. A key component of management programs for viral-like diseases is having a diagnostic tool that is quick, reliable, inexpensive, and easy to use. We have developed and validated a dsRNA-based nanopore sequencing protocol as a reliable method for detecting viruses and viroids in grapevines. We compared our method, which we term direct-cDNA sequencing from dsRNA (dsRNAcD), to direct RNA sequencing from rRNA-depleted total RNA (rdTotalRNA), and found that it provided more viral reads from infected samples. Indeed, dsRNAcD was able to detect all of the viruses and viroids detected using Illumina MiSeq sequencing (dsRNA-MiSeq). Furthermore, dsRNAcD sequencing was also able to detect low-abundance viruses that rdTotalRNA sequencing failed to detect. Additionally, rdTotalRNA sequencing resulted in a false-positive viroid identification due to the misannotation of a host-driven read. Two taxonomic classification workflows, DIAMOND & MEGAN (DIA & MEG) and Centrifuge & Recentrifuge (Cent & Rec), were also evaluated for quick and accurate read classification. Although the results from both workflows were similar, we identified pros and cons for both workflows. Our study shows that dsRNAcD sequencing and the proposed data analysis workflows are suitable for consistent detection of viruses and viroids, particularly in grapevines where mixed viral infections are common.
Collapse
Affiliation(s)
- Vahid J. Javaran
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Abdonaser Poursalavati
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierre Lemoyne
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
| | - Dave T. Ste-Croix
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
- Département de phytologie, Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, Québec, QC, Canada
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mamadou L. Fall
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
| |
Collapse
|
4
|
Lee HJ, Cho IS, Jeong RD. Nanopore Metagenomics Sequencing for Rapid Diagnosis and Characterization of Lily Viruses. THE PLANT PATHOLOGY JOURNAL 2022; 38:503-512. [PMID: 36221922 PMCID: PMC9561158 DOI: 10.5423/ppj.oa.06.2022.0084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/28/2022] [Accepted: 08/12/2022] [Indexed: 05/21/2023]
Abstract
Lilies (Lilium spp.) are one of the most important ornamental flower crops grown in Korea. Most viral diseases in lilies are transmitted by infected bulbs, which cause serious economic losses due to reduced yields. Various diagnostic techniques and high-throughput sequencing methods have been used to detect lily viruses. According to Oxford Nanopore Technologies (ONT), MinION is a compact and portable sequencing device. In this study, three plant viruses, lily mottle, lily symptomless, and plantago asiatica mosaic virus, were detected in lily samples using the ONT platform. As a result of genome assembly of reads obtained through ONT, 100% coverage and 90.3-93.4% identity were obtained. Thus, we show that the ONT platform is a promising tool for the diagnosis and characterization of viruses that infect crops.
Collapse
Affiliation(s)
- Hyo-Jeong Lee
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 61185,
Korea
| | - In-Sook Cho
- Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Rae-Dong Jeong
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 61185,
Korea
- Corresponding author. Phone) +82-62-530-2075, FAX) +82-62-530-2069, E-mail)
| |
Collapse
|
5
|
Sun K, Liu Y, Zhou X, Yin C, Zhang P, Yang Q, Mao L, Shentu X, Yu X. Nanopore sequencing technology and its application in plant virus diagnostics. Front Microbiol 2022; 13:939666. [PMID: 35958160 PMCID: PMC9358452 DOI: 10.3389/fmicb.2022.939666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Plant viruses threaten crop yield and quality; thus, efficient and accurate pathogen diagnostics are critical for crop disease management and control. Recent advances in sequencing technology have revolutionized plant virus research. Metagenomics sequencing technology, represented by next-generation sequencing (NGS), has greatly enhanced the development of virus diagnostics research because of its high sensitivity, high throughput and non-sequence dependence. However, NGS-based virus identification protocols are limited by their high cost, labor intensiveness, and bulky equipment. In recent years, Oxford Nanopore Technologies and advances in third-generation sequencing technology have enabled direct, real-time sequencing of long DNA or RNA reads. Oxford Nanopore Technologies exhibit versatility in plant virus detection through their portable sequencers and flexible data analyses, thus are wildly used in plant virus surveillance, identification of new viruses, viral genome assembly, and evolution research. In this review, we discuss the applications of nanopore sequencing in plant virus diagnostics, as well as their limitations.
Collapse
Affiliation(s)
- Kai Sun
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yi Liu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xin Zhou
- Ausper Biopharma, Hangzhou, China
| | - Chuanlin Yin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Pengjun Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Qianqian Yang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Lingfeng Mao
- Hangzhou Baiyi Technology Co., Ltd., Hangzhou, China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
- *Correspondence: Xuping Shentu,
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
- Xiaoping Yu,
| |
Collapse
|
6
|
Zhou Y, Ren M, Zhang P, Jiang D, Yao X, Luo Y, Yang Z, Wang Y. Application of Nanopore Sequencing in the Detection of Foodborne Microorganisms. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1534. [PMID: 35564242 PMCID: PMC9100974 DOI: 10.3390/nano12091534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/21/2022]
Abstract
Foodborne pathogens have become the subject of intense interest because of their high incidence and mortality worldwide. In the past few decades, people have developed many methods to solve this challenge. At present, methods such as traditional microbial culture methods, nucleic acid or protein-based pathogen detection methods, and whole-genome analysis are widely used in the detection of pathogenic microorganisms in food. However, these methods are limited by time-consuming, cumbersome operations or high costs. The development of nanopore sequencing technology offers the possibility to address these shortcomings. Nanopore sequencing, a third-generation technology, has the advantages of simple operation, high sensitivity, real-time sequencing, and low turnaround time. It can be widely used in the rapid detection and serotyping of foodborne pathogens. This review article discusses foodborne diseases, the principle of nanopore sequencing technology, the application of nanopore sequencing technology in foodborne pathogens detection, as well as its development prospects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yin Wang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (M.R.); (P.Z.); (D.J.); (X.Y.); (Y.L.); (Z.Y.)
| |
Collapse
|