1
|
Martini X, Stelinski LL. Investigating the role of chemical ecology in plant-pathogen, vector, and secondary consumer interactions and their consequences for integrated pest management. CURRENT OPINION IN INSECT SCIENCE 2025; 68:101307. [PMID: 39615878 DOI: 10.1016/j.cois.2024.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
Phytopathogens modify chemical communication between host plants and herbivorous vectors of those pathogens. These chemical cues often attract vectors to sources of inoculum and facilitate the further spread of the pathogens. Recent investigations have demonstrated that secondary consumers also respond to the same pathogen-induced cues that affect the behavior of vectors. Therefore, efforts to manipulate the behavior of natural enemies to improve biological control may yield unpredictable outcomes since coincident volatiles are induced by herbivory and pathogen attacks. We suggest that case-specific analyses of the costs and benefits of these multitrophic interactions are required to translate biological findings into integrated pest management practices.
Collapse
Affiliation(s)
- Xavier Martini
- University of Florida, Entomology and Nematology Department, North Florida Research and Education Center, Quincy, FL, USA.
| | - Lukasz L Stelinski
- University of Florida, Entomology and Nematology Department, Citrus Research and Education Center, Lake Alfred, FL, USA
| |
Collapse
|
2
|
Silva IP, Costa MGC, Costa-Pinto MFF, Silva MAA, Coelho Filho MA, Fancelli M. Volatile compounds in citrus in adaptation to water deficit and to herbivory by Diaphorina citri: How the secondary metabolism of the plant is modulated under concurrent stresses. A review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112157. [PMID: 38871029 DOI: 10.1016/j.plantsci.2024.112157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Citrus plants are grown in diverse regions of the world, from subtropical to semi-arid and humid tropical areas. Through mechanisms essential for their survival, they adapt to the environmental conditions to which they are subjected. Although there is vast literature on adaptation of citrus plants to individual stresses, plant responses to interaction among different types of stresses have not been clearly examined. Abiotic or biotic stresses, or a combination of these stresses, result in reorganization of plant energy resources for defense, whether it be for resistance, tolerance, or prevention of stress. Plants generally respond to these stress factors through production of secondary metabolites, such as volatile compounds, derived from different biosynthesis and degradation pathways, which are released through distinct routes. Volatile compounds vary among plant species, meeting the specific needs of the plant. Simultaneous exposure to the stress factors of water deficit and herbivory leads to responses such as qualitative and quantitative changes in the emission of secondary metabolites, and compounds may accumulate within the leaves or predispose the plant to more quickly respond to the stress brought about by the herbivore. The genetic makeup of citrus plants can contribute to a better response to stress factors; however, studies on the emission of volatile compounds in different citrus genotypes under simultaneous stresses are limited. This review examines the effects of abiotic stress due to water deficit and biotic stress due to herbivory by Diaphorina citri in citrus plants and examines their connection with volatile compounds. A summary is made of advances in knowledge regarding the performance of volatile compounds in plant defense against both stress factors, as well as the interaction between them and possible findings in citrus plants. In addition, throughout this review, we focus on how genetic variation of the citrus species is correlated with production of volatile compounds to improve stress tolerance.
Collapse
Affiliation(s)
- Indiara Pereira Silva
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Márcio Gilberto Cardoso Costa
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | | | - Monique Ayala Araújo Silva
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | | | | |
Collapse
|
3
|
Robledo J, Welker S, Shtein I, Bernardini C, Vincent C, Levy A. Phloem and Xylem Responses Are Both Implicated in Huanglongbing Tolerance of Sugar Belle. PHYTOPATHOLOGY 2024; 114:441-453. [PMID: 37551959 DOI: 10.1094/phyto-05-23-0148-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Although huanglongbing (HLB) is a devastating citrus disease, improved tolerant cultivars, such as Sugar Belle (SB) mandarin, have been identified. To understand the responses that HLB-affected SB undergoes, we compared 14CO2 fixation, carbohydrate export, phloem callose accumulation, relative expression of plant defense activators, and anatomical changes between healthy and infected SB trees versus susceptible Pineapple (PA) sweet orange. Eight- to ten-week-old leaves of infected SB showed a 2.5-fold increase in 14CO2 fixation and a 13% decrease in 14C-carbohydrate export, whereas HLB-affected PA presented a decrease of 33 and 50%, respectively. The mean distance of a callose deposit to its closest neighbor was 36% smaller in infected SB versus healthy, whereas in HLB-affected PA, it was 33% higher. Expression of papain-like cysteine proteases (PLCPs) was upregulated in SB but downregulated in PA. Infected SB showed minor alterations in the number of xylem vessels, a 16% larger xylem vessel lumen area, and a 14% increase in the proportional area of the xylem. In contrast, PA showed a 2.4-fold increase in the xylem vessel number and a 2% increase in the proportional xylem area. Three complementary mechanisms of tolerance in SB are hypothesized: (i) increased carbohydrate availability induced by greater CO2 fixation, mild effect in carbohydrate export, and local accumulation of callose in the phloem; (ii) activation of defense response via upregulation of PLCPs, and (iii) increased investment in the xylem structure. Thus, phloem and xylem modifications seem to be involved in SB tolerance.
Collapse
Affiliation(s)
- Jacobo Robledo
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| | - Stacy Welker
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Ilana Shtein
- Eastern Region Research and Development Center, Ariel, Israel
| | - Chiara Bernardini
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Christopher Vincent
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, U.S.A
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| |
Collapse
|
4
|
Wang S, Du M, Dong L, Qu R, Ran D, Ma J, Wang X, Xu L, Li W, He Y, Zou X. Function and molecular mechanism analysis of CaLasSDE460 effector involved in the pathogenesis of "Candidatus Liberibacter asiaticus" in citrus. MOLECULAR HORTICULTURE 2023; 3:14. [PMID: 37789492 PMCID: PMC10514941 DOI: 10.1186/s43897-023-00062-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/10/2023] [Indexed: 10/05/2023]
Abstract
Citrus Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CaLas), is the most serious disease worldwide. CaLasSDE460 was previously characterized as a potential virulence factor of CaLas. However, the function and mechanism of CaLasSDE460 involved in CaLas against citrus is still elusive. Here, we showed that transgenic expression of CaLasSDE460 in Wanjincheng oranges (C. sinensis Osbeck) contributed to the early growth of CaLas and the development of symptoms. When the temperature increased from 25 °C to 32 °C, CaLas growth and symptom development in transgenic plants were slower than those in WT controls. RNA-seq analysis of transgenic plants showed that CaLasSDE460 affected multiple biological processes. At 25 °C, transcription activities of the "Protein processing in endoplasmic reticulum" and "Cyanoamino acid metabolism" pathways increased while transcription activities of many pathways decreased at 32 °C. 124 and 53 genes, separately annotated to plant-pathogen interaction and MAPK signaling pathways, showed decreased expression at 32 °C, compared with these (38 for plant-pathogen interaction and 17 for MAPK signaling) at 25 °C. Several important genes (MAPKKK14, HSP70b, NCED3 and WRKY33), remarkably affected by CaLasSDE460, were identified. Totally, our data suggested that CaLasSDE460 participated in the pathogenesis of CaLas through interfering transcription activities of citrus defense response and this interfering was temperature-dependent.
Collapse
Affiliation(s)
- Shuai Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, People's Republic of China
| | - Meixia Du
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, People's Republic of China
| | - Liting Dong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, People's Republic of China
| | - Rongrong Qu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, People's Republic of China
| | - Danlu Ran
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, People's Republic of China
| | - Juanjuan Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, People's Republic of China
| | - Xuefeng Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, People's Republic of China
| | - Lanzhen Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, People's Republic of China
| | - Weimin Li
- Key Laboratory for Northern Urban, Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, People's Republic of China
| | - Yongrui He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, People's Republic of China
| | - Xiuping Zou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, People's Republic of China.
- Key Laboratory for Northern Urban, Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, People's Republic of China.
| |
Collapse
|
5
|
Guarino S, Mercati F, Fatta Del Bosco S, Motisi A, Abbate L. Rootstocks with Different Tolerance Grade to Citrus Tristeza Virus Induce Dissimilar Volatile Profile in Citrus sinensis and Avoidance Response in the Vector Aphis gossypii Glover. PLANTS (BASEL, SWITZERLAND) 2022; 11:3426. [PMID: 36559538 PMCID: PMC9788239 DOI: 10.3390/plants11243426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The citrus tristeza virus (CTV) is an agent of devastating epidemics of the citrus plant grafted on Citrus aurantium, one of the main rootstocks still used in the Mediterranean area. Consequently, CTV-tolerant alternative citrus rootstocks are considered necessary to manage this disease and/or its vector; that in Mediterranean countries is the aphid Aphis gossypii. In this study, we analyzed the VOCs emitted from Citrus sinensis plants grafted on the CTV-susceptible C. aurantium and on the CTV-tolerant Volkamer lemon, Forner-Alcaide no. 5, and Carrizo citrange. Furthermore, the aphid preference/avoidance response toward these combinations was evaluated in a semi-field experiment. The VOC profiles recorded on the leaves of C. sinensis grafted on the four rootstocks listed above showed significant differences in the abundances and ratios of the compounds emitted. The behavioral experiments indicated that A. gossypii prefers to orient and establish on the C. sinensis plants grafted on C. aurantium rather than on that grafted on the three CTV-tolerant varieties. The possibility that this avoidance mechanism is triggered by the different profile of the VOC emitted by the different combinations and the consequent susceptibility/tolerance shown toward CTV is discussed.
Collapse
|