1
|
Sun T, Wu X, Ye J. Establishment of embryogenic Pinus thunbergii Parl. suspension cultures: growth parameters, dynamic analysis, and plant regenerative capacities. BMC PLANT BIOLOGY 2024; 24:1200. [PMID: 39702005 DOI: 10.1186/s12870-024-05938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Pinus thunbergii is an economically important conifer species that plays a fundamental role in forest ecosystems. However, the population has declined dramatically in recent years as a result of the pine wilt disease outbreak. Thus, developing pine wilt-resistant P. thunbergii is an effective strategy for combating this epidemic. RESULTS The somatic embryogenesis of nematode-resistant P. thunbergii was previously reported by our group. The current study looked into the potential commercialization of suspension cultures as a means of large-scale production of nematode-resistant P. thunbergii seedlings. According to our findings, P. thunbergii suspension cultures were suitable for an initial inoculum of embryogenic tissue (2 g) and a subculture inoculum (6.7% (v/v)). Suspension cultures were cultivated for 8-10 days in a 30 mL liquid medium (Gupta and Durzan medium, DCR medium) to facilitate their maturation. The suspension cultures produced a large number of high-quality somatic embryos, which were then used to regenerate the plants and move them into the field. A more accurate assessment of the quality of suspension cultures for somatic embryogenesis could come from the suspension's dynamics. The results showed that the medium's phosphate, ammonium, nitrate, and carbohydrates were quickly eaten from day 0 to day 10. In terms of the absorption of nitrogen sources, the ammonium (NH4+) was absorbed prior to nitrate (NO3-). Additionally, the activity of mitochondrial succinate dehydrogenase and superoxide dismutase was directly related to cell growth. CONCLUSIONS This study presents an approach for selecting appropriate suspension cultures for efficient somatic maturation of P. thunbergii that can also be applied to other conifers. Furthermore, it is possible to commercialize nematode-resistant P. thunbergii seedlings using bioreactors, according to the suspension culture system we describe. To the best of our knowledge, this is the first work to describe a P. thunbergii suspension culture.
Collapse
Affiliation(s)
- Tingyu Sun
- Key Laboratory of National Forestry and Grassland Administration on Prevention and Control Technology of Pine Wilt Disease, Hefei, China
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Xiaoqin Wu
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Jianren Ye
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
2
|
Liu HC, Chan HS, Nargotra P, Shih HD, Kuo CH, Liu YC. Development of Stephania tetrandra S. MOORE hairy root culture process for tetrandrine production. J Biotechnol 2024; 394:11-23. [PMID: 39151800 DOI: 10.1016/j.jbiotec.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Tetrandrine, a bioactive active compound mainly found in the roots of Stephania tetrandra, exhibits various pharmacological properties. In vitro hairy root (HR) culture may serve as a promising solution for the extraction of tetrandrine, overcoming the limitations of natural cultivation. The present study describes the consistent production of tetrandrine from S. tetrandra hairy roots induced by different strains of Agrobacterium rhizogenes. Cultivation in woody plant medium (WPM) resulted in the highest HR biomass (0.056 g/petri-dish) and tetrandrine content (7.28 mg/L) as compared to other media. The maximum HR biomass (6.95 g dw/L) and tetrandrine production (68.69 mg/L) were obtained in the fifth week of cultivation. The presence of ammonium nitrate (800 mg/L), calcium nitrate (1156 mg/L), sucrose (20 g/L) and casein (2 g/L) enhanced the tetrandrine production. Moreover, the fed-batch cultivation demonstrated that the NH4NO3 (1200 mg/L) was an important growth limiting factor that yielded the highest tetrandrine amount (119.59 mg/L). The cultivation of hairy roots in a mist trickling bioreactor for eight weeks was less (26.24 mg/L) than in the flask. Despite a lower tetrandrine yield observed in bioreactors compared to flask cultures, refining the growth medium and fine-tuning bioreactor operations hold promise for boosting tetrandrine yield.
Collapse
Affiliation(s)
- Hsuan-Chieh Liu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan; Biomass Materials Technology Department, Agri-Industrial Systems Technology Division, Central Region Campus, Industrial Technology Research Institute, Nantou 54041, Taiwan.
| | - Hsiao-Sung Chan
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan.
| | - Parushi Nargotra
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| | - Hsin-Der Shih
- Plant Pathology Division, Taiwan Agricultural Research Institute, Ministry of Agriculture, Taichung 413008, Taiwan.
| | - Chia-Hung Kuo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; Center for Aquatic Products Inspection Service, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan.
| | - Yung-Chuan Liu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
3
|
Murthy HN, Joseph KS, Paek KY, Park SY. Bioreactor configurations for adventitious root culture: recent advances toward the commercial production of specialized metabolites. Crit Rev Biotechnol 2024; 44:837-859. [PMID: 37500186 DOI: 10.1080/07388551.2023.2233690] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/13/2023] [Accepted: 06/01/2023] [Indexed: 07/29/2023]
Abstract
In vitro plant cell and organ cultures are appealing alternatives to traditional methods of producing valuable specialized metabolites for use as: pharmaceuticals, food additives, cosmetics, perfumes, and agricultural chemicals. Cell cultures have been adopted for the production of specialized metabolites in certain plants. However, in certain other systems, adventitious roots are superior to cell suspension cultures as they are organized structures that accumulate high levels of specialized metabolites. The cultivation of adventitious roots has been investigated in various bioreactor systems, including: mechanically agitated, pneumatically agitated, and modified bioreactors. The main relevance and importance of this work are to develop a long-lasting industrial biotechnological technology as well as to improve the synthesis of these metabolites from the plant in vitro systems. These challenges are exacerbated by: the peculiarities of plant cell metabolism, the complexity of specialized metabolite pathways, the proper selection of bioreactor systems, and bioprocess optimization. This review's major objective is to analyze several bioreactor types for the development of adventitious roots, as well as the advantages and disadvantages of each type of bioreactor, and to describe the strategies used to increase the synthesis of specialized metabolites. This review also emphasizes current advancements in the field, and successful instances of scaled-up cultures and the generation of specialized metabolites for commercial purposes are also covered.
Collapse
Affiliation(s)
- Hosakatte Niranjana Murthy
- Department of Botany, Karnatak University, Dharwad, India
- Department of Horticultural Science, Chungbuk National University, Cheongju, Republic of Korea
| | | | - Kee Yoeup Paek
- Department of Horticultural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - So Young Park
- Department of Horticultural Science, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
4
|
Zhao X, Li X, Bao A, Zhang X, Xu Y, Li Y. Metabolome and transcriptome integration explored the mechanism of browning in Glycyrrhiza uralensis Fisch cells. FRONTIERS IN PLANT SCIENCE 2024; 15:1305871. [PMID: 39045599 PMCID: PMC11263121 DOI: 10.3389/fpls.2024.1305871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 06/19/2024] [Indexed: 07/25/2024]
Abstract
Introduction Glycyrrhiza uralensis Fisch, a traditional Chinese medicinal herb known for its diverse pharmacological effects including heat-clearing, detoxification, phlegm dissolving, and cough relief, has experienced an exponential increase in demand due to its expanding clinical use and development prospects. Currently, large-scale cell culture stands out as one of the most promising biotechnological approaches for producing bioactive compounds from medicinal plants. However, the problem of cell browning represents a significant bottleneck in industrial applications of cell culture. Methods This study focuses on the Glycyrrhiza uralensis Fisch cells from the Ordos plateau, aiming to elucidate the enzymatic browning process during plant cell culture. Key substrates and genes involved in enzymatic browning were identified by metabolome and transcriptome analysis of normal and browning cells. Results Metabolome analysis reveals significant changes in the levels of chalcone, isoflavone, imidazole-pyrimidine, purine nucleosides, organic oxides, carboxylic acids and their derivatives, benzene and its derivatives, flavonoids, 2-arylated benzofuran flavonoids, diazanaphthalenes and fatty acyls within browning cells. In particular, chalcones, isoflavones, and flavones compounds account for a higher proportion of these changes. Furthermore, these compounds collectively show enrichment in four metabolic pathways: Isoflavone biosynthesis pathway; Cutin suberine and wax biosynthesis pathway; Aminoacyl-tRNA biosynthesis pathway; Isoquinoline alkaloid biosynthesis pathway; Transcriptome analysis revealed that the MYB transcription factor is a key regulator of flavonoid synthesis during the browning process in cells. In addition, 223 differentially expressed genes were identified, including phenylpropane, shikimic acid, glycolysis, and pentose phosphate pathways. Among these genes, 23 are directly involved in flavonoid biosynthesis; qPCR validation showed that eight genes (GlPK, GlPAL, Gl24CL, Gl1PDT, Gl3CHI, GlC4H, Gl2F3'H, and Gl2CCR) were up-regulated in browning cells compared to normal cells. These findings corroborate the sequencing results and underscore the critical role of these genes in cellular browning. Discussion Consequently, modulation of their expression offers promising strategies for effective control of cellular browning issues.
Collapse
Affiliation(s)
| | | | | | | | - Yongbin Xu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yali Li
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| |
Collapse
|
5
|
Pérez-Mejía N, Villarreal ML, Sánchez-Carranza JN, González-Maya L, González-Cortazar M, Ortíz-Caltempa A, Alvarez L. Phytochemical Profiles and Cytotoxic Activity of Bursera fagaroides (Kunth) Engl. Leaves and Its Callus Culture. PLANTS (BASEL, SWITZERLAND) 2024; 13:1622. [PMID: 38931054 PMCID: PMC11207444 DOI: 10.3390/plants13121622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Bursera fagaroides, popularly used in México, possesses bioactive lignans. These compounds are low in the bark, and its extraction endangers the life of the trees. The aim of the present investigation was to search for alternative sources of cytotoxic compounds in B. fagaroides prepared as leaves and in vitro callus cultures. The friable callus of B. fagaroides was established using a combination of plant growth regulators: 4 mgL-1 of 2,4-dichlorophenoxyacetic acid (2,4-D), 1 mgL-1 Naphthaleneacetic Acid (NAA) and 1 mgL-1 Zeatin. The maximum cell growth was at day 28 with a specific growth rate of μ = 0.059 days-1 and duplication time td = 11.8 days. HPLC quantification of the dichloromethane callus biomass extract showed that Scopoletin, with a concentration of 10.7 µg g-1 dry weight, was the main compound inducible as a phytoalexin by the addition of high concentrations of 2,4-D, as well as by the absence of nutrients in the culture medium. In this same extract, the compounds γ-sitosterol and stigmasterol were also identified by GC-MS analysis. Open column chromatography was used to separate and identify yatein, acetyl podophyllotoxin and 7',8'-dehydropodophyllotoxin in the leaves of the wild plant. Cytotoxic activity on four cancer cell lines was tested, with PC-3 prostate carcinoma (IC50 of 12.6 ± 4.6 µgmL-1) being the most sensitive to the wild-type plant extract and HeLa cervical carcinoma (IC50 of 72 ± 5 µgmL-1) being the most sensitive to the callus culture extract.
Collapse
Affiliation(s)
- Nancy Pérez-Mejía
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca C. P. 62209, Mexico; (N.P.-M.); (M.L.V.)
| | - María Luisa Villarreal
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca C. P. 62209, Mexico; (N.P.-M.); (M.L.V.)
| | - Jessica Nayelli Sánchez-Carranza
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca C. P. 62209, Mexico; (J.N.S.-C.); (L.G.-M.)
| | - Leticia González-Maya
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca C. P. 62209, Mexico; (J.N.S.-C.); (L.G.-M.)
| | - Manasés González-Cortazar
- Centro de Investigación Biomédica del Sur, IMSS, Calle República Argentina No. 1, Col. Centro, Xochitepec C. P. 62790, Mexico;
| | - Anabel Ortíz-Caltempa
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca C. P. 62209, Mexico; (N.P.-M.); (M.L.V.)
| | - Laura Alvarez
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca C. P. 62209, Mexico
| |
Collapse
|
6
|
Titova M, Popova E, Nosov A. Bioreactor Systems for Plant Cell Cultivation at the Institute of Plant Physiology of the Russian Academy of Sciences: 50 Years of Technology Evolution from Laboratory to Industrial Implications. PLANTS (BASEL, SWITZERLAND) 2024; 13:430. [PMID: 38337964 PMCID: PMC10857215 DOI: 10.3390/plants13030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
The cultivation of plant cells in large-scale bioreactor systems has long been considered a promising alternative for the overexploitation of wild plants as a source of bioactive phytochemicals. This idea, however, faced multiple constraints upon realization, resulting in very few examples of technologically feasible and economically effective biotechnological companies. The bioreactor cultivation of plant cells is challenging. Even well-growing and highly biosynthetically potent cell lines require a thorough optimization of cultivation parameters when upscaling the cultivation process from laboratory to industrial volumes. The optimization includes, but is not limited to, the bioreactor's shape and design, cultivation regime (batch, fed-batch, continuous, semi-continuous), aeration, homogenization, anti-foaming measures, etc., while maintaining a high biomass and metabolite production. Based on the literature data and our experience, the cell cultures often demonstrate cell line- or species-specific responses to parameter changes, with the dissolved oxygen concentration (pO2) and shear stress caused by stirring being frequent growth-limiting factors. The mass transfer coefficient also plays a vital role in upscaling the cultivation process from smaller to larger volumes. The Experimental Biotechnological Facility at the K.A. Timiryazev Institute of Plant Physiology has operated since the 1970s and currently hosts a cascade of bioreactors from the laboratory (20 L) to the pilot (75 L) and a semi-industrial volume (630 L) adapted for the cultivation of plant cells. In this review, we discuss the most appealing cases of the cell cultivation process's adaptation to bioreactor conditions featuring the cell cultures of medicinal plants Dioscorea deltoidea Wall. ex Griseb., Taxus wallichiana Zucc., Stephania glabra (Roxb.) Miers, Panax japonicus (T. Nees) C.A.Mey., Polyscias filicifolia (C. Moore ex E. Fourn.) L.H. Bailey, and P. fruticosa L. Harms. The results of cell cultivation in bioreactors of different types and designs using various cultivation regimes are covered and compared with the literature data. We also discuss the role of the critical factors affecting cell behavior in bioreactors with large volumes.
Collapse
Affiliation(s)
- Maria Titova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.P.); (A.N.)
| | - Elena Popova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.P.); (A.N.)
| | - Alexander Nosov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.P.); (A.N.)
- Department of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
7
|
Marchev AS, Stoykova ID, Georgiev MI. Large-Scale Production of Specialized Metabolites In Vitro Cultures. Methods Mol Biol 2024; 2827:303-322. [PMID: 38985279 DOI: 10.1007/978-1-0716-3954-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
For centuries plants have been intensively utilized as reliable sources of food, flavoring, and pharmaceutical ingredients. However, plant natural habitats are being rapidly lost due to the climate change and agriculture. Plant biotechnology offers a sustainable approach for the bioproduction of specialized plant metabolites. The unique structural features of plant-derived specialized metabolites, such as their safety profile and multi-target spectrum, have led to the establishment of many plant-derived drugs. However, there are still many challenges to overcome regarding the production of these metabolites from plant in vitro systems and establish a sustainable large-scale biotechnological process. These challenges are due to the peculiarities of plant cell metabolism, the complexity of plant specialized metabolite pathways, and the correct selection of bioreactor systems and bioprocess optimization. In this book chapter, we attempted to focus on the advantages of plant in vitro systems and in particular plant cell suspensions for their cultivation as a source of plant-derived specialized metabolites. A state-of-the-art technological platform for plant cell suspension cultivation from callus induction to lab-scale cultivation, extraction, and purification is presented. Possibilities for bioreactor cultivation of plant cell suspensions in benchtop and large-scale volumes are highlighted, including several examples and patents for industrial production of specialized metabolites.
Collapse
Affiliation(s)
- Andrey S Marchev
- Laboratory Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
| | - Iva D Stoykova
- Laboratory Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Milen I Georgiev
- Laboratory Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria.
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.
| |
Collapse
|
8
|
Verdú-Navarro F, Moreno-Cid JA, Weiss J, Egea-Cortines M. The advent of plant cells in bioreactors. FRONTIERS IN PLANT SCIENCE 2023; 14:1310405. [PMID: 38148861 PMCID: PMC10749943 DOI: 10.3389/fpls.2023.1310405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023]
Abstract
Ever since agriculture started, plants have been bred to obtain better yields, better fruits, or sustainable products under uncertain biotic and abiotic conditions. However, a new way to obtain products from plant cells emerged with the development of recombinant DNA technologies. This led to the possibility of producing exogenous molecules in plants. Furthermore, plant chemodiversity has been the main source of pharmacological molecules, opening a field of plant biotechnology directed to produce high quality plant metabolites. The need for different products by the pharma, cosmetics agriculture and food industry has pushed again to develop new procedures. These include cell production in bioreactors. While plant tissue and cell culture are an established technology, beginning over a hundred years ago, plant cell cultures have shown little impact in biotechnology projects, compared to bacterial, yeasts or animal cells. In this review we address the different types of bioreactors that are currently used for plant cell production and their usage for quality biomolecule production. We make an overview of Nicotiana tabacum, Nicotiana benthamiana, Oryza sativa, Daucus carota, Vitis vinifera and Physcomitrium patens as well-established models for plant cell culture, and some species used to obtain important metabolites, with an insight into the type of bioreactor and production protocols.
Collapse
Affiliation(s)
- Fuensanta Verdú-Navarro
- Bioprocessing R&D Department, Bionet, Parque Tecnológico Fuente Álamo, Fuente Álamo, Spain
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Juan A. Moreno-Cid
- Bioprocessing R&D Department, Bionet, Parque Tecnológico Fuente Álamo, Fuente Álamo, Spain
| | - Julia Weiss
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Marcos Egea-Cortines
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| |
Collapse
|
9
|
Titova MV, Kochkin DV, Sukhanova ES, Gorshkova EN, Tyurina TM, Ivanov IM, Lunkova MK, Tsvetkova EV, Orlova A, Popova EV, Nosov AM. Suspension Cell Culture of Polyscias fruticosa (L.) Harms in Bubble-Type Bioreactors-Growth Characteristics, Triterpene Glycosides Accumulation and Biological Activity. PLANTS (BASEL, SWITZERLAND) 2023; 12:3641. [PMID: 37896105 PMCID: PMC10610180 DOI: 10.3390/plants12203641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Polyscias fruticosa (L.) Harms, or Ming aralia, is a medicinal plant of the Araliaceae family, which is highly valued for its antitoxic, anti-inflammatory, analgesic, antibacterial, anti-asthmatic, adaptogenic, and other properties. The plant can be potentially used to treat diabetes and its complications, ischemic brain damage, and Parkinson's disease. Triterpene glycosides of the oleanane type, such as 3-O-[β-D-glucopyranosyl-(1→4)-β-D-glucuronopyranosyl] oleanolic acid 28-O-β-D-glucopyranosyl ester (PFS), ladyginoside A, and polysciosides A-H, are mainly responsible for biological activities of this species. In this study, cultivation of the cell suspension of P. fruticosa in 20 L bubble-type bioreactors was attempted as a sustainable method for cell biomass production of this valuable species and an alternative to overexploitation of wild plant resources. Cell suspension cultivated in bioreactors under a semi-continuous regime demonstrated satisfactory growth with a specific growth rate of 0.11 day-1, productivity of 0.32 g (L · day)-1, and an economic coefficient of 0.16 but slightly lower maximum biomass accumulation (~6.8 g L-1) compared to flask culture (~8.2 g L-1). Triterpene glycosides PFS (0.91 mg gDW-1) and ladyginoside A (0.77 mg gDW-1) were detected in bioreactor-produced cell biomass in higher concentrations compared to cells grown in flasks (0.50 and 0.22 mg gDW-1, respectively). In antibacterial tests, the minimum inhibitory concentrations (MICs) of cell biomass extracts against the most common pathogens Staphylococcus aureus, methicillin-resistant strain MRSA, Pseudomonas aeruginosa, and Escherichia coli varied within 250-2000 µg mL-1 which was higher compared to extracts of greenhouse plant leaves (MIC = 4000 µg mL-1). Cell biomass extracts also exhibited antioxidant activity, as confirmed by DPPH and TEAC assays. Our results suggest that bioreactor cultivation of P. fruticosa suspension cell culture may be a perspective method for the sustainable biomass production of this species.
Collapse
Affiliation(s)
- Maria V. Titova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia (A.O.); (E.V.P.); (A.M.N.)
| | - Dmitry V. Kochkin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia (A.O.); (E.V.P.); (A.M.N.)
- Biology Faculty, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Elena S. Sukhanova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia (A.O.); (E.V.P.); (A.M.N.)
| | - Elena N. Gorshkova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia (A.O.); (E.V.P.); (A.M.N.)
| | - Tatiana M. Tyurina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia (A.O.); (E.V.P.); (A.M.N.)
| | - Igor M. Ivanov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia (A.O.); (E.V.P.); (A.M.N.)
| | - Maria K. Lunkova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia (A.O.); (E.V.P.); (A.M.N.)
| | - Elena V. Tsvetkova
- Department of Biochemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia;
- Department of General Pathology and Pathological Physiology, Institute of Experimental Medicine, 197022 Saint Petersburg, Russia
| | - Anastasia Orlova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia (A.O.); (E.V.P.); (A.M.N.)
| | - Elena V. Popova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia (A.O.); (E.V.P.); (A.M.N.)
| | - Alexander M. Nosov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia (A.O.); (E.V.P.); (A.M.N.)
- Biology Faculty, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
10
|
Yugay YA, Sorokina MR, Grigorchuk VP, Rusapetova TV, Silant’ev VE, Egorova AE, Adedibu PA, Kudinova OD, Vasyutkina EA, Ivanov VV, Karabtsov AA, Mashtalyar DV, Degtyarenko AI, Grishchenko OV, Kumeiko VV, Bulgakov VP, Shkryl YN. Biosynthesis of Functional Silver Nanoparticles Using Callus and Hairy Root Cultures of Aristolochia manshuriensis. J Funct Biomater 2023; 14:451. [PMID: 37754865 PMCID: PMC10532211 DOI: 10.3390/jfb14090451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
This study delves into the novel utilization of Aristolochia manshuriensis cultured cells for extracellular silver nanoparticles (AgNPs) synthesis without the need for additional substances. The presence of elemental silver has been verified using energy-dispersive X-ray spectroscopy, while distinct surface plasmon resonance peaks were revealed by UV-Vis spectra. Transmission and scanning electron microscopy indicated that the AgNPs, ranging in size from 10 to 40 nm, exhibited a spherical morphology. Fourier-transform infrared analysis validated the abilty of A. manshuriensis extract components to serve as both reducing and capping agents for metal ions. In the context of cytotoxicity on embryonic fibroblast (NIH 3T3) and mouse neuroblastoma (N2A) cells, AgNPs demonstrated varying effects. Specifically, nanoparticles derived from callus cultures exhibited an IC50 of 2.8 µg/mL, effectively inhibiting N2A growth, whereas AgNPs sourced from hairy roots only achieved this only at concentrations of 50 µg/mL and above. Notably, all studied AgNPs' treatment-induced cytotoxicity in fibroblast cells, yielding IC50 values ranging from 7.2 to 36.3 µg/mL. Furthermore, the findings unveiled the efficacy of the synthesized AgNPs against pathogenic microorganisms impacting both plants and animals, including Agrobacterium rhizogenes, A. tumefaciens, Bacillus subtilis, and Escherichia coli. These findings underscore the effectiveness of biotechnological methodologies in offering advanced and enhanced green nanotechnology alternatives for generating nanoparticles with applications in combating cancer and infectious disorders.
Collapse
Affiliation(s)
- Yulia A. Yugay
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Y.A.Y.); (M.R.S.); (V.P.G.); (T.V.R.); (O.D.K.); (E.A.V.); (A.I.D.); (O.V.G.); (V.P.B.)
| | - Maria R. Sorokina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Y.A.Y.); (M.R.S.); (V.P.G.); (T.V.R.); (O.D.K.); (E.A.V.); (A.I.D.); (O.V.G.); (V.P.B.)
| | - Valeria P. Grigorchuk
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Y.A.Y.); (M.R.S.); (V.P.G.); (T.V.R.); (O.D.K.); (E.A.V.); (A.I.D.); (O.V.G.); (V.P.B.)
| | - Tatiana V. Rusapetova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Y.A.Y.); (M.R.S.); (V.P.G.); (T.V.R.); (O.D.K.); (E.A.V.); (A.I.D.); (O.V.G.); (V.P.B.)
| | - Vladimir E. Silant’ev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia; (V.E.S.); (V.V.K.)
- Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia;
| | - Anna E. Egorova
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, Moscow 111123, Russia;
| | - Peter A. Adedibu
- School of Advanced Engineering Studies “Institute of Biotechnology, Bioengineering and Food Systems”, Far Eastern Federal University, Vladivostok 690922, Russia;
| | - Olesya D. Kudinova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Y.A.Y.); (M.R.S.); (V.P.G.); (T.V.R.); (O.D.K.); (E.A.V.); (A.I.D.); (O.V.G.); (V.P.B.)
| | - Elena A. Vasyutkina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Y.A.Y.); (M.R.S.); (V.P.G.); (T.V.R.); (O.D.K.); (E.A.V.); (A.I.D.); (O.V.G.); (V.P.B.)
| | - Vladimir V. Ivanov
- Far Eastern Geological Institute, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia; (V.V.I.); (A.A.K.)
| | - Alexander A. Karabtsov
- Far Eastern Geological Institute, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia; (V.V.I.); (A.A.K.)
| | - Dmitriy V. Mashtalyar
- Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia;
| | - Anton I. Degtyarenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Y.A.Y.); (M.R.S.); (V.P.G.); (T.V.R.); (O.D.K.); (E.A.V.); (A.I.D.); (O.V.G.); (V.P.B.)
| | - Olga V. Grishchenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Y.A.Y.); (M.R.S.); (V.P.G.); (T.V.R.); (O.D.K.); (E.A.V.); (A.I.D.); (O.V.G.); (V.P.B.)
| | - Vadim V. Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia; (V.E.S.); (V.V.K.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Victor P. Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Y.A.Y.); (M.R.S.); (V.P.G.); (T.V.R.); (O.D.K.); (E.A.V.); (A.I.D.); (O.V.G.); (V.P.B.)
| | - Yury N. Shkryl
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Y.A.Y.); (M.R.S.); (V.P.G.); (T.V.R.); (O.D.K.); (E.A.V.); (A.I.D.); (O.V.G.); (V.P.B.)
- School of Advanced Engineering Studies “Institute of Biotechnology, Bioengineering and Food Systems”, Far Eastern Federal University, Vladivostok 690922, Russia;
| |
Collapse
|
11
|
Li Y, Wang J, Li L, Song W, Li M, Hua X, Wang Y, Yuan J, Xue Z. Natural products of pentacyclic triterpenoids: from discovery to heterologous biosynthesis. Nat Prod Rep 2023; 40:1303-1353. [PMID: 36454108 DOI: 10.1039/d2np00063f] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Covering: up to 2022Pentacyclic triterpenoids are important natural bioactive substances that are widely present in plants and fungi. They have significant medicinal efficacy, play an important role in reducing blood glucose and protecting the liver, and have anti-inflammatory, anti-oxidation, anti-fatigue, anti-viral, and anti-cancer activities. Pentacyclic triterpenoids are derived from the isoprenoid biosynthetic pathway, which generates common precursors of triterpenes and steroids, followed by cyclization with oxidosqualene cyclases (OSCs) and decoration via cytochrome P450 monooxygenases (CYP450s) and glycosyltransferases (GTs). Many biosynthetic pathways of triterpenoid saponins have been elucidated by studying their metabolic regulation network through the use of multiomics and identifying their functional genes. Unfortunately, natural resources of pentacyclic triterpenoids are limited due to their low content in plant tissues and the long growth cycle of plants. Based on the understanding of their biosynthetic pathway and transcriptional regulation, plant bioreactors and microbial cell factories are emerging as alternative means for the synthesis of desired triterpenoid saponins. The rapid development of synthetic biology, metabolic engineering, and fermentation technology has broadened channels for the accumulation of pentacyclic triterpenoid saponins. In this review, we summarize the classification, distribution, structural characteristics, and bioactivity of pentacyclic triterpenoids. We further discuss the biosynthetic pathways of pentacyclic triterpenoids and involved transcriptional regulation. Moreover, the recent progress and characteristics of heterologous biosynthesis in plants and microbial cell factories are discussed comparatively. Finally, we propose potential strategies to improve the accumulation of triterpenoid saponins, thereby providing a guide for their future biomanufacturing.
Collapse
Affiliation(s)
- Yanlin Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Jing Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, PR China
| | - Linyong Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Wenhui Song
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Min Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Xin Hua
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Yu Wang
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, PR China.
| | - Zheyong Xue
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| |
Collapse
|
12
|
Stanković M. 10th Anniversary of Plants-Recent Advances and Further Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 12:1696. [PMID: 37111918 PMCID: PMC10145593 DOI: 10.3390/plants12081696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/08/2023] [Indexed: 06/19/2023]
Abstract
Published for the first time in 2012, Plants will celebrate its 10th anniversary [...].
Collapse
Affiliation(s)
- Milan Stanković
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
13
|
Motolinia-Alcántara EA, Franco-Vásquez AM, Nieto-Camacho A, Arreguín-Espinosa R, Rodríguez-Monroy M, Cruz-Sosa F, Román-Guerrero A. Phenolic Compounds from Wild Plant and In Vitro Cultures of Ageratina pichichensis and Evaluation of Their Antioxidant Activity. PLANTS (BASEL, SWITZERLAND) 2023; 12:1107. [PMID: 36903964 PMCID: PMC10005229 DOI: 10.3390/plants12051107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Ageratina pichichensis, is commonly used in traditional Mexican medicine. In vitro cultures were established from wild plant (WP) seeds, obtaining in vitro plant (IP), callus culture (CC), and cell suspension culture (CSC) with the objective to determine total phenol content (TPC) and flavonoids (TFC), as well as their antioxidant activity by DPPH, ABTS and TBARS assays, added to the compound's identification and quantification by HPLC, from methanol extracts obtained by sonication. CC showed significantly higher TPC and TFC than WP and IP, while CSC produced 2.0-2.7 times more TFC than WP, and IP produced only 14.16% TPC and 38.8% TFC compared with WP. There were identified compounds such as epicatechin (EPI), caffeic acid (CfA), and p-coumaric acid (pCA) in in vitro cultures that were not found in WP. The quantitative analysis shows gallic acid (GA) as the least abundant compound in samples, whereas CSC produced significantly more EPI and CfA than CC. Despite these results, in vitro cultures show lower antioxidant activity than WP, for DPPH and TBARS WP > CSC > CC > IP and ABTS WP > CSC = CC > IP. Overall, A. pichichensis WP and in vitro cultures produce phenolic compounds with antioxidant activity, especially CC and CSC, which are shown to be a biotechnological alternative for obtaining bioactive compounds.
Collapse
Affiliation(s)
- Elizabeth Alejandra Motolinia-Alcántara
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril de San Rafael Atlixco 186, Col. Leyes de Reforma 1a. Sección, Alcaldía Iztapalapa, Ciudad de Mexico 09310, Mexico
| | - Adrián Marcelo Franco-Vásquez
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de Mexico 04510, Mexico
| | - Antonio Nieto-Camacho
- Laboratorio de Pruebas Biológicas, Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de Mexico 04510, Mexico
| | - Roberto Arreguín-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de Mexico 04510, Mexico
| | - Mario Rodríguez-Monroy
- Centro de Desarrollo de Productos Bióticos (CEPROBI), Departamento de Biotecnología, Instituto Politécnico Nacional (IPN), Yautepec 62731, Mexico
| | - Francisco Cruz-Sosa
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril de San Rafael Atlixco 186, Col. Leyes de Reforma 1a. Sección, Alcaldía Iztapalapa, Ciudad de Mexico 09310, Mexico
| | - Angelica Román-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril de San Rafael Atlixco 186, Col. Leyes de Reforma 1a. Sección, Alcaldía Iztapalapa, Ciudad de Mexico 09310, Mexico
| |
Collapse
|
14
|
Aksenova MA, Nechaeva TL, Zubova MY, Goncharuk EA, Kazantseva VV, Katanskaya VM, Lapshin PV, Zagoskina NV. Influence of Different Precursors on Content of Polyphenols in Camellia sinensis In Vitro Callus Culture. PLANTS (BASEL, SWITZERLAND) 2023; 12:796. [PMID: 36840145 PMCID: PMC9965760 DOI: 10.3390/plants12040796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Plant tissue cultures are considered as potential producers of biologically active plant metabolites, which include various phenolic compounds that can be used to maintain human health. Moreover, in most cases, their accumulation is lower than in the original explants, which requires the search for factors and influences for the intensification of this process. In this case, it is very promising to use the precursors of their biosynthesis as potential "regulators" of the various metabolites' formation. The purpose of our research was to study the effect of L-phenylalanine (PhA, 3 mM), trans-cinnamic acid (CA, 1 mM) and naringenin (NG, 0.5 mM), as components of various stages of phenolic metabolism, on accumulation of various phenolic compound classes, including phenylpropanoids, flavans and proanthocyanidins, as well as the content of malondialdehyde in in vitro callus culture of the tea plant (Camellia sinensis L.). According to the data obtained, the precursors' influence did not lead to changes in the morphology and water content of the cultures. At the same time, an increase in the total content of phenolic compounds, as well as phenylpropanoids, flavans and proanthocyanidins, was noted in tea callus cultures. Effectiveness of precursor action depends on its characteristics and the exposure duration, and was more pronounced in the treatments with PhA. This compound can be considered as the most effective precursor regulating phenolic metabolism, contributing to a twofold increase in the total content of phenolic compounds, flavanes and proanthocyanidins, and a fourfold increase in phenylpropanoids in tea callus cultures.
Collapse
|
15
|
Klocko AL. Genetic Containment for Molecular Farming. PLANTS (BASEL, SWITZERLAND) 2022; 11:2436. [PMID: 36145835 PMCID: PMC9501302 DOI: 10.3390/plants11182436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022]
Abstract
Plant molecular farming can provide humans with a wide variety of plant-based products including vaccines, therapeutics, polymers, industrial enzymes, and more. Some of these products, such as Taxol, are produced by endogenous plant genes, while many others require addition of genes by artificial gene transfer. Thus, some molecular farming plants are transgenic (or cisgenic), while others are not. Both the transgenic nature of many molecular farming plants and the fact that the products generated are of high-value and specific in purpose mean it is essential to prevent accidental cross-over of molecular farming plants and products into food or feed. Such mingling could occur either by gene flow during plant growth and harvest or by human errors in material handling. One simple approach to mitigate possible transfer would be to use only non-food non-feed species for molecular farming purposes. However, given the extent of molecular farming products in development, testing, or approval that do utilize food or feed crops, a ban on use of these species would be challenging to implement. Therefore, other approaches will need to be considered for mitigation of cross-flow between molecular farming and non-molecular-farming plants. This review summarized some of the production systems available for molecular farming purposes and options to implement or improve plant containment.
Collapse
Affiliation(s)
- Amy L Klocko
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| |
Collapse
|
16
|
Effect of Different Cytokinins on Shoot Outgrowth and Bioactive Compounds Profile of Lemograss Essential Oil. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb13030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lemongrass (Cymbopogon citratus) essential oil (EO) is a major source of bioactive compounds (BC) with anticancer activity such as α-citral, limonene, geraniol, geranyl acetate, and β-caryophyllene. Comparative studies about cytokinin effects on BC profiles in lemongrass are missing. Here, we evaluated four cytokinins (2iP, tZ, BAP, and KIN) in two different osmotic media, MS-N (3% sucrose, 3 g L−1 Gelrite™) and MS-S (5% sucrose, 5 g L−1 Gelrite™). It results in a higher multiplication rate in BAP containing medium compared to tZ, KIN, and 2iP (p ≤ 0.05). While shoots grown on MS-N/BAP, tZ, and KIN exhibited a highly branching morphology, MS-N/2iP produced a less branching architecture. BC profile analysis of established plants in pots revealed that their maxima production depends on the in vitro shoot growth conditions: i.e., highest content (80%) of α-citral in plants that were cultured in MS-S/BAP (p ≤ 0.05), limonene (41%) in MS-N/2iP, or geranyl acetate (25.79%) in MS-S/2iP. These results indicate that it is possible to increase or address the production of BC in lemongrass by manipulating the cytokinin type and osmotic pressure in culture media. The culture protocol described here is currently successfully applied for somatic embryogenesis induction and genetic transformation in lemongrass.
Collapse
|
17
|
Kaňuková Š, Gubišová M, Klčová L, Mihálik D, Kraic J. Establishment of Stem Cell-like Cells of Sida hermaphrodita (L.) Rusby from Explants Containing Cambial Meristems. Int J Mol Sci 2022; 23:ijms23147644. [PMID: 35886991 PMCID: PMC9320681 DOI: 10.3390/ijms23147644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 12/10/2022] Open
Abstract
The in vitro cultures of plant stem cells and stem cell-like cells can be established from tissues containing meristematic cells. Chemical compounds—as well as their production potential—is among the emerging topics of plant biotechnology. We induced the callus cell biomass growth and characterized the parameters indicating the presence of stem cells or stem cell-like cells. Four types of explants (stem, petiole, leaf, root) from Sida hermaphrodita (L.) Rusby and various combinations of auxins and cytokinins were tested for initiation of callus, growth of sub-cultivated callus biomass, and establishment of stem cells or stem cell-like cells. Induction of callus and its growth parameters were significantly affected both by the explant type and the combination of used plant growth hormones and regulators. The responsibility for callus initiation and growth was the highest in stem-derived explants containing cambial meristematic cells. Growth parameters of callus biomass and specific characteristics of vacuoles confirmed the presence of stem cells or stem cell-like cells in sub-cultivated callus cell biomass. Establishment of in vitro stem cell or stem cell-like cell cultures in S. hermaphrodita can lead to the development of various applications of in vitro cultivation systems as well as alternative applications of this crop.
Collapse
Affiliation(s)
- Šarlota Kaňuková
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 91701 Trnava, Slovakia; (Š.K.); (D.M.)
| | - Marcela Gubišová
- Research Institute of Plant Production, National Agricultural and Food Centre, Bratislavská cesta 122, 92168 Piešťany, Slovakia; (M.G.); (L.K.)
| | - Lenka Klčová
- Research Institute of Plant Production, National Agricultural and Food Centre, Bratislavská cesta 122, 92168 Piešťany, Slovakia; (M.G.); (L.K.)
| | - Daniel Mihálik
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 91701 Trnava, Slovakia; (Š.K.); (D.M.)
- Research Institute of Plant Production, National Agricultural and Food Centre, Bratislavská cesta 122, 92168 Piešťany, Slovakia; (M.G.); (L.K.)
| | - Ján Kraic
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 91701 Trnava, Slovakia; (Š.K.); (D.M.)
- Research Institute of Plant Production, National Agricultural and Food Centre, Bratislavská cesta 122, 92168 Piešťany, Slovakia; (M.G.); (L.K.)
- Correspondence: or ; Tel.: +421-337-947-168
| |
Collapse
|
18
|
Abdulhafiz F. Plant Cell Culture Technologies: A promising alternatives to Produce High-Value Secondary Metabolites. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
19
|
Mohamed TA, Ali SK, Elshamy AI, Saleh IA, Ibrahim MAA, Atia MAM, Alshammari SO, Mohamed AEHH, Hussien TA, Hamed AR, Saedi HRE, Abdel-Azim NS, Shams KA, Efferth T, Saker M, Paré PW, Hegazy MEF. Plant cell cultures: An enzymatic tool for polyphenolic and flavonoid transformations. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154019. [PMID: 35325826 DOI: 10.1016/j.phymed.2022.154019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/26/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In the pharmaceutical sector, tissue culture techniques for large-scale production of natural chemicals can be a less expensive alternative to large-scale synthesis. Although recent biotransformation research have used plant cell cultures to target a wide range of bioactive compounds, more compiled information and synopses are needed to better understand metabolic pathways and improve biotransformation efficiencies. PURPOSE This report reviews the biochemical transformation of phenolic natural products by plant cell cultures in order to identify potential novel biotechnological approaches for ensuring more homogeneous and stable phenolic production year-round under controlled environmental conditions. METHODS Articles on the use of plant cell culture for polyphenolic and flavonoid transformations (1988 - 2021) were retrieved from SciFinder, PubMed, Scopus, and Web of Science through electronic and manual search in English. Following that, the authors chose the required papers based on the criteria they defined. The following keywords were used for the online search: biotransformation, Plant cell cultures, flavonoids, phenolics, and pharmaceutical products. RESULTS The initial search found a total of 96 articles. However, only 70 of them were selected as they met the inclusion criteria defined by the authors. The analysis of these studies revealed that plant tissue culture is applicable for the large-scale production of plant secondary metabolites including the phenolics, which have high therapeutic value. CONCLUSION Plant tissue cultures could be employed as an efficient technique for producing secondary metabolites including phenolics. Phenolics possess a wide range of therapeutic benefits, as anti-oxidant, anti-cancer, and anti-inflammatory properties. Callus culture, suspension cultures, transformation, and other procedures have been used to improve the synthesis of phenolics. Their production on a large scale is now achievable. More breakthroughs will lead to newer insights and, without a doubt, to a new era of phenolics-based pharmacological agents for the treatment of a variety of infectious and degenerative disorders.
Collapse
Affiliation(s)
- Tarik A Mohamed
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Sherin K Ali
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Abdelsamed I Elshamy
- Natural Compounds Chemistry Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Ibrahim A Saleh
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mohamed A M Atia
- Molecular Genetics and Genome Mapping Laboratory, Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Shifaa O Alshammari
- Department of Biology, College of Science, University of Hafr Al Batin, Hafar Al Batin, Saudi Arabia
| | | | - Taha A Hussien
- Pharmacognosy Department, Faculty of Pharmacy, Sphinx University, New Assiut City, Assiut 10, Egypt
| | - Ahmed R Hamed
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Hesham R El Saedi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm S-10691, Sweden; nternational Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Department of Chemistry, Faculty of Science, El-Menoufia University, Shebin El-Kom 32512, Egypt
| | - Nahla S Abdel-Azim
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Khaled A Shams
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany.
| | - Mahmoud Saker
- Genetic Engineering and Biotech. Division, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Paul W Paré
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Mohamed-Elamir F Hegazy
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
| |
Collapse
|