1
|
Song W, Peng C, Liu Y, Han F, Zhu H, Zhou D, Wang Y, Chen L, Meng X, Hou R. Simultaneous Analysis of 53 Pesticides in Safflower ( Carthamus tinctorius L.) by Using LC-MS/MS Coupled with a Modified QuEChERS Technique. TOXICS 2023; 11:537. [PMID: 37368637 DOI: 10.3390/toxics11060537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVE An optimized quick, easy, cheap, effective, rugged, and safe (QuEChERS) technique was investigated and compared with the conventional QuEChERS technique for the simultaneous analysis of fifty-three pesticide residues in safflower using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). METHOD Graphitic carbon nitride (g-C3N4) consisting of a major amount of carbon and nitrogen with a large surface area was used as a QuEChERS adsorbent instead of graphitized carbon black (GCB) for safflower extraction purification. Validation experiments were performed using spiked pesticide samples, and real samples were analyzed. RESULTS The linearity of the modified QuEChERS technique was evaluated with high coefficients of determination (R-2) being higher than 0.99. The limits of detection were <10 μg/kg. The spiked recoveries ranged from 70.4% to 97.6% with a relative standard deviation of less than 10.0%. The fifty-three pesticides exhibited negligible matrix effects (<20%). Thiamethoxam, acetamiprid, metolachlor, and difenoconazole were detected in real samples using an established method. CONCLUSION This work provides a new g-C3N4-based modified QuEChERS technique for multi-pesticide residue analysis in complex food matrices.
Collapse
Affiliation(s)
- Wei Song
- Technical Center for Hefei Customs, Hefei 230022, China
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
| | - Chuanyi Peng
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
- Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yuxin Liu
- Technical Center for Hefei Customs, Hefei 230022, China
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
| | - Fang Han
- Technical Center for Hefei Customs, Hefei 230022, China
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
| | - Haitao Zhu
- Technical Center for Hefei Customs, Hefei 230022, China
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
| | - Dianbing Zhou
- Technical Center for Hefei Customs, Hefei 230022, China
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
| | - Yu Wang
- Technical Center for Hefei Customs, Hefei 230022, China
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
| | - Lijun Chen
- Technical Center for Hefei Customs, Hefei 230022, China
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
| | - Xiaodi Meng
- Technical Center for Hefei Customs, Hefei 230022, China
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
| | - Ruyan Hou
- Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China
- Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
2
|
Zainol Abidin IZ, Johari AN, Yazid MD, Zainal Ariffin Z, Eziwar Dyari HR, Zainal Ariffin SH. Osteogenic Potential and Bioactive Profiles of Piper sarmentosum Ethanolic Extract-Treated Stem Cells. Pharmaceuticals (Basel) 2023; 16:ph16050708. [PMID: 37242491 DOI: 10.3390/ph16050708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Piper sarmentosum is a well-known traditional herbal plant in various diseases treatments. Multiple scientific studies have also reported various biological activities exhibited by the plant's extract, such as antimicrobial, anticarcinogenic and antihyperglycemic activities, and, in addition, a bone protective effect in ovariectomized rats has been reported. However, no known Piper sarmentosum extract is involved in osteoblast differentiation using stem cells. Our study aims to identify the potential of P. sarmentosum ethanolic extract to induce osteoblast differentiation of human peripheral blood stem cells. Prior to the assay, the proliferation ability of the cells was observed for 14 days and the presence of hematopoietic stem cells in the culture was determined by the expression of SLAMF1 and CD34 genes. During the differentiation assay, the cells were treated with P. sarmentosum ethanolic extract for 14 days. Osteoblast differentiation was examined using an (alkaline phosphatase) ALP assay, by monitoring the expression of osteogenic gene markers and by von Kossa staining. The untreated cells served as the negative control, while cells treated with 50 µg/mL ascorbic acid and 10 mM β-glycerophosphate acted as the positive control. Finally, the determination of the compound profile was performed using a gas chromatography-mass spectrometry (GC-MS) analysis. The isolated cells were able to proliferate for 14 days during the proliferation assay. The expression of hematopoietic stem cell markers was also upregulated during the 14 days assay. Following the differentiation induction, the ALP activity exhibited a significant increase (p < 0.05) from day 3 of the differentiation assay. A molecular analysis also showed that the osteogenic markers ALP, RUNX2, OPN and OCN were upregulated compared to the positive control. The presence of mineralized cells with a brownish-stained morphology was observed, indicating the mineralization process increased in a time-dependent manner regardless of the concentration used. There were 54 compounds observed in the GC-MS analysis, including β-asarones, carvacrol and phytol, which have been shown to possess osteoinductive capacities. Our results demonstrate that the ethanolic extract of P. sarmentosum can induce osteoblast differentiation of peripheral blood stem cells. The extract contains potent compounds which can potentially induce the differentiation of bone cells, i.e., osteoblasts.
Collapse
Affiliation(s)
| | - Anis Nabilah Johari
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras 56000, Malaysia
| | | | - Herryawan Ryadi Eziwar Dyari
- Department of Earth Sciences and Environmental, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Shahrul Hisham Zainal Ariffin
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
3
|
Cao S, Shi L, Shen Y, He L, Meng X. Ecological roles of secondary metabolites of Saposhnikovia divaricata in adaptation to drought stress. PeerJ 2022; 10:e14336. [PMID: 36353606 PMCID: PMC9639429 DOI: 10.7717/peerj.14336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Saposhnikovia divaricata is a traditional Chinese herb that mainly grows in arid grasslands and strongly adapts to various stresses. Drought is not only a major abiotic stress factor but also a typical feature conducive to producing high-quality medicinal material. The present study investigated by treating S. divaricata plants with polyethylene glycol (PEG-6000). Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) identified 146 compounds from the roots of S. divaricata, among which seven primary metabolites and 28 secondary metabolites showed significant changes after drought treatment. UV-Vis spectrophotometer detected the activity of antioxidant enzymes and the content of superoxide anion (O2 -.) and malondialdehyde (MDA). The differential primary metabolites revealed that drought promotes glycolysis, reducing primary metabolism and enhancing secondary metabolism. Meanwhile, the differential secondary metabolites showed an increase in the content of compounds upstream of the secondary metabolic pathway, and other glycosides and increased that of the corresponding aglycones. The activities of antioxidant enzymes and the content of O2 -. and MDA shown different changes duing the drought treatment. These observations indicate that drought promotes the biosynthesis and transformation of the secondary metabolites and activity of antioxidant enzymes, improving plant adaptability. The present study also analyzed a few primary and secondary metabolites of S. divaricata under different degrees and durations of drought and speculated on the metabolic pathways in an arid environment. The findings indicate the biological nature, diversity, and complexity of secondary metabolites and the mechanisms of plant adaptation to ecological stress.
Collapse
Affiliation(s)
- Sisi Cao
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Medical College, Harbin Vocational & Technical College, Harbin, Heilongjiang, China
| | - Lei Shi
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Ying Shen
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Luwen He
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiangcai Meng
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|