1
|
Sereshki S, Lonardi S. Predicting Differentially Methylated Cytosines in TET and DNMT3 Knockout Mutants via a Large Language Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592257. [PMID: 39282350 PMCID: PMC11398415 DOI: 10.1101/2024.05.02.592257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
DNA cytosine methylation is an epigenetic marker which regulates many cellular processes. Mammalian genomes typically maintain consistent methylation patterns over time, except in specific regulatory regions like promoters and certain types of enhancers. The dynamics of DNA methylation is controlled by a complex cellular machinery, in which the enzymes DNMT3 and TET play a major role. This study explores the identification of differentially methylated cytosines (DMCs) in TET and DNMT3 knockout mutants in mice and human embryonic stem cells. We investigate (i) whether a large language model can be trained to recognize DMCs in human and mouse from the sequence surrounding the cytosine of interest, (ii) whether a classifier trained on human knockout data can predict DMCs in the mouse genome (and vice versa), (iii) whether a classifier trained on DNMT3 knockout can predict DMCs for TET knockout (and vice versa). Our study identifies statistically significant motifs associated with the prediction of DMCs each mutant, casting a new light on the understanding of DNA methylation dynamics in stem cells. Our software tool is available at https://github.com/ucrbioinfo/dmc_prediction.
Collapse
Affiliation(s)
- Saleh Sereshki
- Department of Computer Science and Engineering, University of California, Riverside, 900 University Ave, Riverside, 92521, CA, United States
| | - Stefano Lonardi
- Department of Computer Science and Engineering, University of California, Riverside, 900 University Ave, Riverside, 92521, CA, United States
| |
Collapse
|
2
|
Talarico E, Zambelli A, Araniti F, Greco E, Chiappetta A, Bruno L. Unravelling the Epigenetic Code: DNA Methylation in Plants and Its Role in Stress Response. EPIGENOMES 2024; 8:30. [PMID: 39189256 PMCID: PMC11348131 DOI: 10.3390/epigenomes8030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
Environmental stress significantly affects plant growth, development, and survival. Plants respond to stressors such as temperature fluctuations, water scarcity, nutrient deficiencies, and pathogen attacks through intricate molecular and physiological adaptations. Epigenetic mechanisms are crucial in regulating gene expression in response to environmental stress. This review explores the current understanding of epigenetic modifications, including DNA methylation, and their roles in modulating gene expression patterns under environmental stress conditions. The dynamic nature of epigenetic modifications, their crosstalk with stress-responsive pathways, and their potential implications for plant adaptation and crop improvement are highlighted in the face of changing environmental conditions.
Collapse
Affiliation(s)
- Emanuela Talarico
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy; (E.T.); (E.G.); (A.C.)
| | - Alice Zambelli
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, 20133 Milan, Italy; (A.Z.); (F.A.)
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, 20133 Milan, Italy; (A.Z.); (F.A.)
| | - Eleonora Greco
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy; (E.T.); (E.G.); (A.C.)
| | - Adriana Chiappetta
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy; (E.T.); (E.G.); (A.C.)
| | - Leonardo Bruno
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy; (E.T.); (E.G.); (A.C.)
| |
Collapse
|
3
|
Kaya C, Uğurlar F, Adamakis IDS. Epigenetic Modifications of Hormonal Signaling Pathways in Plant Drought Response and Tolerance for Sustainable Food Security. Int J Mol Sci 2024; 25:8229. [PMID: 39125799 PMCID: PMC11311266 DOI: 10.3390/ijms25158229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Drought significantly challenges global food security, necessitating a comprehensive understanding of plant molecular responses for effective mitigation strategies. Epigenetic modifications, such as DNA methylation and histone modifications, are key in regulating genes and hormones essential for drought response. While microRNAs (miRNAs) primarily regulate gene expression post-transcriptionally, they can also interact with epigenetic pathways as potential effectors that influence chromatin remodeling. Although the role of miRNAs in epigenetic memory is still being explored, understanding their contribution to drought response requires examining these indirect effects on epigenetic modifications. A key aspect of this exploration is epigenetic memory in drought-adapted plants, offering insights into the transgenerational inheritance of adaptive traits. Understanding the mechanisms that govern the maintenance and erasure of these epigenetic imprints provides nuanced insights into how plants balance stability and flexibility in their epigenomes. A major focus is on the dynamic interaction between hormonal pathways-such as those for abscisic acid (ABA), ethylene, jasmonates, and salicylic acid (SA)-and epigenetic mechanisms. This interplay is crucial for fine-tuning gene expression during drought stress, leading to physiological and morphological adaptations that enhance plant drought resilience. This review also highlights the transformative potential of advanced technologies, such as bisulfite sequencing and CRISPR-Cas9, in providing comprehensive insights into plant responses to water deficit conditions. These technologies pave the way for developing drought-tolerant crops, which is vital for sustainable agriculture.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa 63200, Turkey; (C.K.); (F.U.)
| | - Ferhat Uğurlar
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa 63200, Turkey; (C.K.); (F.U.)
| | | |
Collapse
|
4
|
Rao X, Yang S, Lü S, Yang P. DNA Methylation Dynamics in Response to Drought Stress in Crops. PLANTS (BASEL, SWITZERLAND) 2024; 13:1977. [PMID: 39065503 PMCID: PMC11280950 DOI: 10.3390/plants13141977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Drought is one of the most hazardous environmental factors due to its severe damage on plant growth, development and productivity. Plants have evolved complex regulatory networks and resistance strategies for adaptation to drought stress. As a conserved epigenetic regulation, DNA methylation dynamically alters gene expression and chromosome interactions in plants' response to abiotic stresses. The development of omics technologies on genomics, epigenomics and transcriptomics has led to a rapid increase in research on epigenetic variation in non-model crop species. In this review, we summarize the most recent findings on the roles of DNA methylation under drought stress in crops, including methylating and demethylating enzymes, the global methylation dynamics, the dual regulation of DNA methylation on gene expression, the RNA-dependent DNA methylation (RdDM) pathway, alternative splicing (AS) events and long non-coding RNAs (lnc RNAs). We also discuss drought-induced stress memory. These epigenomic findings provide valuable potential for developing strategies to improve crop drought tolerance.
Collapse
Affiliation(s)
| | | | | | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (X.R.); (S.Y.); (S.L.)
| |
Collapse
|
5
|
Fan Y, Sun C, Yan K, Li P, Hein I, Gilroy EM, Kear P, Bi Z, Yao P, Liu Z, Liu Y, Bai J. Recent Advances in Studies of Genomic DNA Methylation and Its Involvement in Regulating Drought Stress Response in Crops. PLANTS (BASEL, SWITZERLAND) 2024; 13:1400. [PMID: 38794470 PMCID: PMC11125032 DOI: 10.3390/plants13101400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
As global arid conditions worsen and groundwater resources diminish, drought stress has emerged as a critical impediment to plant growth and development globally, notably causing declines in crop yields and even the extinction of certain cultivated species. Numerous studies on drought resistance have demonstrated that DNA methylation dynamically interacts with plant responses to drought stress by modulating gene expression and developmental processes. However, the precise mechanisms underlying these interactions remain elusive. This article consolidates the latest research on the role of DNA methylation in plant responses to drought stress across various species, focusing on methods of methylation detection, mechanisms of methylation pattern alteration (including DNA de novo methylation, DNA maintenance methylation, and DNA demethylation), and overall responses to drought conditions. While many studies have observed significant shifts in genome-wide or gene promoter methylation levels in drought-stressed plants, the identification of specific genes and pathways involved remains limited. This review aims to furnish a reference for detailed research into plant responses to drought stress through epigenetic approaches, striving to identify drought resistance genes regulated by DNA methylation, specific signaling pathways, and their molecular mechanisms of action.
Collapse
Affiliation(s)
- Youfang Fan
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| | - Chao Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| | - Kan Yan
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
| | - Pengcheng Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| | - Ingo Hein
- The James Hutton Institute, Dundee DD2 5DA, UK; (I.H.); (E.M.G.)
| | | | - Philip Kear
- International Potato Center (CIP), CIP China Center for Asia Pacific (CCCAP), Beijing 102199, China;
| | - Zhenzhen Bi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| | - Panfeng Yao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| | - Zhen Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| | - Jiangping Bai
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| |
Collapse
|
6
|
Shi Y, Jin X, Ackah M, Amoako FK, Li J, Tsigbey VE, Li H, Cui Z, Sun L, Zhao C, Zhao W. Comparative Physio-Biochemical and Transcriptome Analyses Reveal Contrasting Responses to Magnesium Imbalances in Leaves of Mulberry ( Morus alba L.) Plants. Antioxidants (Basel) 2024; 13:516. [PMID: 38790621 PMCID: PMC11117640 DOI: 10.3390/antiox13050516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Magnesium (Mg) deficiency is a major factor limiting the growth and development of plants. Mulberry (Morus alba L.) is an important fruit tree crop that requires Mg for optimal growth and yield, especially in acid soils. However, the molecular mechanism of Mg stress tolerance in mulberry plants remains unknown. In this study, we used next-generation sequencing technology and biochemical analysis to profile the transcriptome and physiological changes of mulberry leaves under different Mg treatments (deficiency: 0 mM, low: 1 mM, moderate low: 2 mM, sufficiency: 3 mM, toxicity: 6 mM, higher toxicity: 9 mM) as T1, T2, T3, CK, T4, T5 treatments, respectively, for 20 days. The results showed that Mg imbalance altered the antioxidant enzymatic activities, such as catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), and non-enzymatic, including soluble protein, soluble sugar, malondialdehyde (MDA), and proline (PRO), contents of the plant. The Mg imbalances disrupted the ultrastructures of the vital components of chloroplast and mitochondria relative to the control. The transcriptome data reveal that 11,030 genes were differentially expressed (DEGs). Genes related to the photosynthetic processes (CAB40, CAB7, CAB6A, CAB-151, CAP10A) and chlorophyll degradation (PAO, CHLASE1, SGR) were altered. Antioxidant genes such as PER42, PER21, and PER47 were downregulated, but DFR was upregulated. The carbohydrate metabolism pathway was significantly altered, while those involved in energy metabolism processes were perturbed under high Mg treatment compared with control. We also identified several candidate genes associated with magnesium homeostasis via RT-qPCR validation analysis, which provided valuable information for further functional characterization studies such as promoter activity assay or gene overexpression experiments using transient expression systems.
Collapse
Affiliation(s)
- Yisu Shi
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xin Jin
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Frank Kwarteng Amoako
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany;
| | - Jianbin Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Victor Edem Tsigbey
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Haonan Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zipei Cui
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Longwei Sun
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Chengfeng Zhao
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
7
|
Wang S, Zhao X, Li C, Dong J, Ma J, Long Y, Xing Z. DNA methylation regulates the secondary metabolism of saponins to improve the adaptability of Eleutherococcus senticosus during drought stress. BMC Genomics 2024; 25:330. [PMID: 38565995 PMCID: PMC10986080 DOI: 10.1186/s12864-024-10237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Plant growth and development can be significantly impacted by drought stress. Plants will adjust the synthesis and accumulation of secondary metabolites to improve survival in times of water constraint. Simultaneously, drought stress can lead to modifications in the DNA methylation status of plants, and these modifications can directly impact gene expression and product synthesis by changing the DNA methylation status of functional genes involved in secondary metabolite synthesis. However, further research is needed to fully understand the extent to which DNA methylation modifies the content of secondary metabolites to mediate plants' responses to drought stress, as well as the underlying mechanisms involved. Our study found that in Eleutherococcus senticosus (E. senticosus), moderate water deprivation significantly decreased DNA methylation levels throughout the genome and at the promoters of EsFPS, EsSS, and EsSE. Transcription factors like EsMYB-r1, previously inhibited by DNA methylation, can re-bind to the EsFPS promotor region following DNA demethylation. This process promotes gene expression and, ultimately, saponin synthesis and accumulation. The increased saponin levels in E. senticosus acted as antioxidants, enhancing the plant's adaptability to drought stress.
Collapse
Affiliation(s)
- Shuo Wang
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - XueLei Zhao
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Chang Li
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Jing Dong
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - JiaCheng Ma
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - YueHong Long
- College of Life Sciences, North China University of Science and Technology, Tangshan, China.
| | - ZhaoBin Xing
- College of Life Sciences, North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
8
|
Danso B, Ackah M, Jin X, Ayittey DM, Amoako FK, Zhao W. Genome-Wide Analysis of the Xyloglucan Endotransglucosylase/Hydrolase ( XTH) Gene Family: Expression Pattern during Magnesium Stress Treatment in the Mulberry Plant ( Morus alba L.) Leaves. PLANTS (BASEL, SWITZERLAND) 2024; 13:902. [PMID: 38592929 PMCID: PMC10975095 DOI: 10.3390/plants13060902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Mulberry (Morus alba L.), a significant fruit tree crop, requires magnesium (Mg) for its optimal growth and productivity. Nonetheless, our understanding of the molecular basis underlying magnesium stress tolerance in mulberry plants remains unexplored. In our previous study, we identified several differential candidate genes associated with Mg homeostasis via transcriptome analysis, including the xyloglucan endotransglucosylase/hydrolase (XTH) gene family. The XTH gene family is crucial for plant cell wall reconstruction and stress responses. These genes have been identified and thoroughly investigated in various plant species. However, there is no research pertaining to XTH genes within the M. alba plant. This research systematically examined the M. alba XTH (MaXTH) gene family at the genomic level using a bioinformatic approach. In total, 22 MaXTH genes were discovered and contained the Glyco_hydro_16 and XET_C conserved domains. The MaXTHs were categorized into five distinct groups by their phylogenetic relationships. The gene structure possesses four exons and three introns. Furthermore, the MaXTH gene promoter analysis reveals a plethora of cis-regulatory elements, mainly stress responsiveness, phytohormone responsiveness, and growth and development. GO analysis indicated that MaXTHs encode proteins that exhibit xyloglucan xyloglucosyl transferase and hydrolase activities in addition to cell wall biogenesis as well as xyloglucan and carbohydrate metabolic processes. Moreover, a synteny analysis unveiled an evolutionary relationship between the XTH genes in M. alba and those in three other species: A. thaliana, P. trichocarpa, and Zea mays. Expression profiles from RNA-Seq data displayed distinct expression patterns of XTH genes in M. alba leaf tissue during Mg treatments. Real-time quantitative PCR analysis confirmed the expression of the MaXTH genes in Mg stress response. Overall, this research enhances our understanding of the characteristics of MaXTH gene family members and lays the foundation for future functional genomic study in M. alba.
Collapse
Affiliation(s)
- Blessing Danso
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (B.D.)
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (B.D.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xin Jin
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (B.D.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Derek M. Ayittey
- School of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201308, China
| | - Frank Kwarteng Amoako
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany;
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (B.D.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
9
|
Ackah M, Jin X, Zhang Q, Amoako FK, Wang L, Attaribo T, Zhao M, Yuan F, Herman RA, Qiu C, Lin Q, Yin Z, Zhao W. Long noncoding RNA transcriptome analysis reveals novel lncRNAs in Morus alba 'Yu-711' response to drought stress. THE PLANT GENOME 2024; 17:e20273. [PMID: 36285722 DOI: 10.1002/tpg2.20273] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Drought stress has been a key environmental factor affecting plant growth and development. The plant genome is capable of producing long noncoding RNAs (lncRNAs). To better understand white mulberry (Morus alba L.) drought response mechanism, we conducted a comparative transcriptome study comparing two treatments: drought-stressed (EG) and well-watered (CK) plants. A total of 674 differentially expressed lncRNAs (DElncRNAs) were identified. In addition, 782 differentially expressed messenger RNAs (DEmRNAs) were identified. We conducted Gene Ontology (GO) and KEGG enrichment analyses focusing on the differential lncRNAs cis-target genes. The target genes of the DElncRNAs were most significantly involved in the biosynthesis of secondary metabolites. Gene regulatory networks of the target genes involving DElncRNAs-mRNAs-DEmRNAs and DElncRNA-miRNA-DEmRNA were constructed. In the DElncRNAs-DEmRNAs network, 30 DEmRNAs involved in the biosynthesis of secondary metabolites are collocated with 46 DElncRNAs. The interaction between DElncRNAs and candidate genes was identified using LncTar. In summary, quantitative real-time polymerase chain reaction (qRT-PCR) validated nine candidate genes and seven target lncRNAs including those identified by LncTar. We predicted that the DElncRNAs-DEmRNAs might recruit microRNAs (miRNAs) to interact with gene regulatory networks under the drought stress response in mulberry. The findings will contribute to our understanding of the regulatory functions of lncRNAs under drought stress and will shed new light on the mulberry-drought stress interactions.
Collapse
Affiliation(s)
- Michael Ackah
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu Univ. of Science and Technology, Zhenjiang, 212100, China
- School of Food and Biological Engineering, Jiangsu Univ., Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Xin Jin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu Univ. of Science and Technology, Zhenjiang, 212100, China
| | - Qiaonan Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu Univ. of Science and Technology, Zhenjiang, 212100, China
| | - Frank Kwarteng Amoako
- Institute of Plant Nutrition and Soil Science, Kiel Univ., Hermann-Rodewald-Straße 2, Kiel, 24118, Germany
| | - Lei Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu Univ. of Science and Technology, Zhenjiang, 212100, China
| | - Thomas Attaribo
- School of Agriculture, C. K. Tedam Univ. of Technology and Applied Sciences, Navrongo, UK-0215-5321, Ghana
| | - Mengdi Zhao
- Dep. of Materials Science and Engineering, Suzhou Univ. of Science and Technology, 99 Xuefu Road, Huqiu District, Suzhou, 215004, China
| | - Feng Yuan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu Univ. of Science and Technology, Zhenjiang, 212100, China
| | - Richard Ansah Herman
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu Univ. of Science and Technology, Zhenjiang, 212100, China
| | - Changyu Qiu
- Sericultural Research Institute, Guangxi Zhuang Autonomous Region, Nanning, 530007, China
| | - Qiang Lin
- Sericultural Research Institute, Guangxi Zhuang Autonomous Region, Nanning, 530007, China
| | - Zhi Yin
- Nanjing Univ. of Finance & Economics, Nanjing, 210023, China
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu Univ. of Science and Technology, Zhenjiang, 212100, China
| |
Collapse
|
10
|
Zou J, Zhang Q, Amoako FK, Ackah M, Li H, Shi Y, Li J, Jiang Z, Zhao W. Genome-wide transcriptome profiling of mulberry (Morus alba) response to boron deficiency and toxicity reveal candidate genes associated with boron tolerance in leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108316. [PMID: 38176189 DOI: 10.1016/j.plaphy.2023.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024]
Abstract
Mulberry (Morus alba) is an essential plant with countless economic benefits; however, its growth and metabolic processes are hampered by boron (B) stresses. Very little research has been performed to elucidate boron tolerance and detoxification mechanisms in this species. The M. alba cultivar, Yu-711, was exposed to five different concentrations of boric acid (H3BO3), including deficient (T1; 0 mM) moderate B deficiency (T2; 0.02 mM), sufficient (CK; 0.1 mM) and toxic (T3 and T4; 0.5 and 1 mM) levels for 18 days of growth in pots experiment. Transcriptome analysis of B deficiency and toxicity treatments was performed on mulberry leaves. The transcriptome data reveal that a total of 6114 genes were differentially expressed (DEGs), of which 3830 were up-regulated and 2284 were down-regulated. A comparative analysis between treatment groups CK-vs-T1 (deficiency) and CK-vs-T4 (toxicity) indicates that 590 and 1383 genes were down-regulated in both deficiency and B toxicity, respectively. The results show that 206 genes were differentially expressed in all treatments. B deficiency and toxicity significantly altered the expression of the key aquaporins (PIP2-1, PIP2-7, PIP2-4 and NIP3-1) and high-affinity boron transporter genes (BOR1 and BOR7). In addition, boron stress also altered the expression of antioxidants and photosynthesis-related genes. B stresses were found to alter several transcription factors including ERF1B, which is associated with the regulation of boron uptake and the synthesis and signaling of phytohormones. Unravelling the mechanisms of B tolerance and detoxification is important and would give us further insight into how B stresses affect mulberry plants.
Collapse
Affiliation(s)
- Jincheng Zou
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China
| | - Qiaonan Zhang
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China
| | - Frank Kwarteng Amoako
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, Kiel, 24118, Germany
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China.
| | - Haonan Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China
| | - Yisu Shi
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China
| | - Jianbin Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China
| | - Zijie Jiang
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China.
| |
Collapse
|
11
|
Maniatis G, Tani E, Katsileros A, Avramidou EV, Pitsoli T, Sarri E, Gerakari M, Goufa M, Panagoulakou M, Xipolitaki K, Klouvatos K, Megariti S, Pappi P, Papadakis IE, Bebeli PJ, Kapazoglou A. Genetic and Epigenetic Responses of Autochthonous Grapevine Cultivars from the 'Epirus' Region of Greece upon Consecutive Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 13:27. [PMID: 38202337 PMCID: PMC10780352 DOI: 10.3390/plants13010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/06/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Within the framework of preserving and valorizing the rich grapevine germplasm of the Epirus region of Greece, indigenous grapevine (Vitis vinifera L.) cultivars were characterized and assessed for their resilience to abiotic stresses in the context of climate change. The cultivars 'Debina' and 'Dichali' displayed significant differences in their response to drought stress as judged by morpho-physiological analysis, indicating higher drought tolerance for Dichali. Hence, they were selected for further study aiming to identify genetic and epigenetic mechanisms possibly regulating drought adaptability. Specifically, self-rooted and heterografted on 'Richter 110' rootstock plants were subjected to two phases of drought with a recovery period in between. Gene expression analysis was performed for two stress-related miRNAs and their target genes: (a) miRNA159 and putative targets, VvMYB101, VvGATA-26-like, VvTOPLESS-4-like and (b) miRNA156 and putative target gene VvCONSTANS-5. Overall, grafted plants exhibited a higher drought tolerance than self-rooted plants, suggesting beneficial rootstock-scion interactions. Comparative analysis revealed differential gene expression under repetitive drought stresses between the two cultivars as well as between the self-rooted and grafted plants. 'Dichali' exhibited an up-regulation of most of the genes examined, which may be associated with increased tolerance. Nevertheless, the profound down-regulation of VvTOPLESS-4-like (a transcriptional co-repressor of transcription factors) upon drought and the concomitant up-regulation of miRNA159 highlights the importance of this 'miRNA-target' module in drought responsiveness. DNA methylation profiling using MSAP analysis revealed differential methylation patterns between the two genotypes in response to drought. Further investigations of gene expression and DNA methylation will contribute to our understanding of the epigenetic mechanisms underlying grapevine tolerance to drought stress.
Collapse
Affiliation(s)
- Grigorios Maniatis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Anastasios Katsileros
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Evangelia V. Avramidou
- Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Ilisia, 11528 Athens, Greece;
| | - Theodora Pitsoli
- Department of Vitis, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Lykovrysi, 14123 Athens, Greece;
| | - Efi Sarri
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Maria Gerakari
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Maria Goufa
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Maria Panagoulakou
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Konstantina Xipolitaki
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Kimon Klouvatos
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Stamatia Megariti
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Polixeni Pappi
- Laboratory of Plant Virology, Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization DIMITRA (ELGO-DIMITRA), Kastorias 32A, Mesa Katsampas, 71307 Heraklion, Crete, Greece;
| | - Ioannis E. Papadakis
- Laboratory of Pomology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Penelope J. Bebeli
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Aliki Kapazoglou
- Department of Vitis, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Lykovrysi, 14123 Athens, Greece;
| |
Collapse
|
12
|
Zang Y, Xie L, Su J, Luo Z, Jia X, Ma X. Advances in DNA methylation and demethylation in medicinal plants: a review. Mol Biol Rep 2023; 50:7783-7796. [PMID: 37480509 DOI: 10.1007/s11033-023-08618-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/21/2023] [Indexed: 07/24/2023]
Abstract
DNA methylation and demethylation are widely acknowledged epigenetic phenomena which can cause heritable and phenotypic changes in functional genes without changing the DNA sequence. They can thus affect phenotype formation in medicinal plants. However, a comprehensive review of the literature summarizing current research trends in this field is lacking. Thus, this review aims to provide an up-to-date summary of current methods for the detection of 5-mC DNA methylation, identification and analysis of DNA methyltransferases and demethyltransferases, and regulation of DNA methylation in medicinal plants. The data showed that polyploidy and environmental changes can affect DNA methylation levels in medicinal plants. Changes in DNA methylation can thus regulate plant morphogenesis, growth and development, and formation of secondary metabolites. Future research is required to explore the mechanisms by which DNA methylation regulates the accumulation of secondary metabolites in medicinal plants.
Collapse
Affiliation(s)
- Yimei Zang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Biomedicine College, Beijing City University, Beijing, 100094, China
| | - Lei Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jiaxian Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Xunli Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
13
|
Jin X, Ackah M, Acheampong A, Zhang Q, Wang L, Lin Q, Qiu C, Zhao W. Genome-Wide Identification of Candidate Genes Associated with Heat Stress in Mulberry ( Morus alba L.). Curr Issues Mol Biol 2023; 45:4151-4167. [PMID: 37232733 DOI: 10.3390/cimb45050264] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Mulberry (Morus alba L.) is an economically important plant for the silk industry and has the possibility of contributing immensely to Chinese pharmacopeia because of its health benefits. Domesticated silkworms feed only on mulberry leaves, meaning that the worms' survival depends on the mulberry tree. Mulberry production is threatened by climate change and global warming. However, the regulatory mechanisms of mulberry responses to heat are poorly understood. We performed transcriptome analysis of high-temperature-stressed (42 °C) M. alba seedlings using RNA-Seq technologies. A total of 703 differentially expressed genes (DEGs) were discovered from 18,989 unigenes. Among these, 356 were up-regulated, and 347 were down-regulated. KEGG analysis revealed that most DEGs were enriched in valine, leucine and isoleucine degradation, and in starch and sucrose metabolism, alpha-linolenic acid metabolism, carotenoid biosynthesis and galactose metabolism, among others. In addition, TFs such as the NAC, HSF, IAA1, MYB, AP2, GATA, WRKY, HLH and TCP families were actively involved in response to high temperatures. Moreover, we used RT-qPCR to confirm the expression changes of eight genes under heat stress observed in the RNA-Seq analysis. This study provides M. alba transcriptome profiles under heat stress and provides theoretical bases to researchers for better understanding mulberry heat response mechanisms and breeding heat-tolerant mulberry plants.
Collapse
Affiliation(s)
- Xin Jin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Adolf Acheampong
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Qiaonan Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Lei Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Qiang Lin
- Guangxi Sericultural Research Institute, Guangxi Zhuang Autonomous Regin, Nanning 530007, China
| | - Changyu Qiu
- Guangxi Sericultural Research Institute, Guangxi Zhuang Autonomous Regin, Nanning 530007, China
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
14
|
Mahmood U, Li X, Fan Y, Chang W, Niu Y, Li J, Qu C, Lu K. Multi-omics revolution to promote plant breeding efficiency. FRONTIERS IN PLANT SCIENCE 2022; 13:1062952. [PMID: 36570904 PMCID: PMC9773847 DOI: 10.3389/fpls.2022.1062952] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Crop production is the primary goal of agricultural activities, which is always taken into consideration. However, global agricultural systems are coming under increasing pressure from the rising food demand of the rapidly growing world population and changing climate. To address these issues, improving high-yield and climate-resilient related-traits in crop breeding is an effective strategy. In recent years, advances in omics techniques, including genomics, transcriptomics, proteomics, and metabolomics, paved the way for accelerating plant/crop breeding to cope with the changing climate and enhance food production. Optimized omics and phenotypic plasticity platform integration, exploited by evolving machine learning algorithms will aid in the development of biological interpretations for complex crop traits. The precise and progressive assembly of desire alleles using precise genome editing approaches and enhanced breeding strategies would enable future crops to excel in combating the changing climates. Furthermore, plant breeding and genetic engineering ensures an exclusive approach to developing nutrient sufficient and climate-resilient crops, the productivity of which can sustainably and adequately meet the world's food, nutrition, and energy needs. This review provides an overview of how the integration of omics approaches could be exploited to select crop varieties with desired traits.
Collapse
Affiliation(s)
- Umer Mahmood
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xiaodong Li
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Wei Chang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yue Niu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jiana Li
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
15
|
Lieberman-Lazarovich M, Kaiserli E, Bucher E, Mladenov V. Natural and induced epigenetic variation for crop improvement. CURRENT OPINION IN PLANT BIOLOGY 2022; 70:102297. [PMID: 36108411 DOI: 10.1016/j.pbi.2022.102297] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Maintaining global food security is a major challenge that requires novel strategies for crop improvement. Epigenetic regulation of plant responses to adverse environmental conditions provides a tunable mechanism to optimize plant growth, adaptation and ultimately yield. Epibreeding employs agricultural practices that rely on key epigenetic features as a means of engineering favorable phenotypic traits in target crops. This review summarizes recent findings on the role of epigenetic marks such as DNA methylation and histone modifications, in controlling phenotypic variation in crop species in response to environmental factors. The potential use of natural and induced epigenetic features as platforms for crop improvement via epibreeding, is discussed.
Collapse
Affiliation(s)
- Michal Lieberman-Lazarovich
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel.
| | - Eirini Kaiserli
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Etienne Bucher
- Crop Genome Dynamics Group, Agroscope Changins, 1260, Nyon, Switzerland
| | - Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Sq. Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| |
Collapse
|
16
|
Rasheed A, Jie Y, Nawaz M, Jie H, Ma Y, Shah AN, Hassan MU, Gillani SFA, Batool M, Aslam MT, Naseem AR, Qari SH. Improving Drought Stress Tolerance in Ramie ( Boehmeria nivea L.) Using Molecular Techniques. FRONTIERS IN PLANT SCIENCE 2022; 13:911610. [PMID: 35845651 PMCID: PMC9280341 DOI: 10.3389/fpls.2022.911610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Ramie is one of the most significant fiber crops and contributes to good quality fiber. Drought stress (DS) is one of the most devastating abiotic factors which is accountable for a substantial loss in crop growth and production and disturbing sustainable crop production. DS impairs growth, plant water relation, and nutrient uptake. Ramie has evolved a series of defense responses to cope with DS. There are numerous genes regulating the drought tolerance (DT) mechanism in ramie. The morphological and physiological mechanism of DT is well-studied; however, modified methods would be more effective. The use of novel genome editing tools like clustered regularly interspaced short palindromic repeats (CRISPR) is being used to edit the recessive genes in crops to modify their function. The transgenic approaches are used to develop several drought-tolerant varieties in ramie, and further identification of tolerant genes is needed for an effective breeding plan. Quantitative trait loci (QTLs) mapping, transcription factors (TFs) and speed breeding are highly studied techniques, and these would lead to the development of drought-resilient ramie cultivars. The use of hormones in enhancing crop growth and development under water scarcity circumstances is critical; however, using different concentrations and testing genotypes in changing environments would be helpful to sort the tolerant genotypes. Since plants use various ways to counter DS, investigating mechanisms of DT in plants will lead to improved DT in ramie. This critical review summarized the recent advancements on DT in ramie using novel molecular techniques. This information would help ramie breeders to conduct research studies and develop drought tolerant ramie cultivars.
Collapse
Affiliation(s)
- Adnan Rasheed
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yucheng Jie
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Hongdong Jie
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yushen Ma
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | | | - Maria Batool
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Ahmad Raza Naseem
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
17
|
Sun M, Yang Z, Liu L, Duan L. DNA Methylation in Plant Responses and Adaption to Abiotic Stresses. Int J Mol Sci 2022; 23:ijms23136910. [PMID: 35805917 PMCID: PMC9266845 DOI: 10.3390/ijms23136910] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
Due to their sessile state, plants are inevitably affected by and respond to the external environment. So far, plants have developed multiple adaptation and regulation strategies to abiotic stresses. One such system is epigenetic regulation, among which DNA methylation is one of the earliest and most studied regulatory mechanisms, which can regulate genome functioning and induce plant resistance and adaption to abiotic stresses. In this review, we outline the most recent findings on plant DNA methylation responses to drought, high temperature, cold, salt, and heavy metal stresses. In addition, we discuss stress memory regulated by DNA methylation, both in a transient way and the long-term memory that could pass to next generations. To sum up, the present review furnishes an updated account of DNA methylation in plant responses and adaptations to abiotic stresses.
Collapse
Affiliation(s)
| | | | - Li Liu
- Correspondence: (L.L.); (L.D.)
| | | |
Collapse
|