1
|
Gupta S, Das A, Ganguli K, Chakraborty N, Fayezizadeh MR, Sil SK, Adak MK, Hasanuzzaman M. Salinity-responsive hyperaccumulation of flavonoids in Spirodela polyrrhiza, resultant maneuvering in the structure and antimicrobial as well as azo dye decontamination profile of biofabricated zinc oxide nanoentities. Sci Rep 2024; 14:24554. [PMID: 39427000 PMCID: PMC11490620 DOI: 10.1038/s41598-024-75232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
Duckweeds (Spirodela polyrrhiza) are free-floating macrophytes that grow profusely in nutrient-rich waters. Under ideal conditions, they exhibit a rapid growth rate and can absorb a substantial amount of nutrients, macromolecules, and pollutants from bodies of water. Zinc oxide nanoparticles (ZnO NPs) synthesized from plant extracts, particularly under stress conditions, have opened new research avenues in the field of nanotechnology. Under salinity stress, the accumulation of flavonoids in duckweeds can affect the structure of ZnO NPs, helping researchers ascertain their antimicrobial role. In our study, we exposed mid-log phase duckweed monocultures to 75 mM NaCl in a full-strength Murashige and Skoog medium for 7 days, followed by a 15-day recovery period. We observed significant overexpression of superoxide and hydrogen peroxide as reactive oxygen species. As a result, chlorophyll and certain metabolites were produced in lesser amounts, while flavonoid and phenol content increased by 12% and 8%, respectively. This overproduction persisted up to 10 days into the recovery treatment period but dropped by 8% and 5%, respectively, by the 15th day. The flavonoid coating transformed the NPs into rosette clusters, which exhibited reduced antimicrobial activity against Aeromonas hydrophila, a Gram-negative, fish-pathogenic bacterium. Herein, we discuss potential mechanisms for the conformational transformation of ZnO NPs into finer dimensions in response to NaCl-induced oxidative stress in duckweed. In this study, the azo dye degradation capacity of salinity-treated plants increased as the flavonoid profile became enriched. Zinc oxide nanoparticles, both prior to and after salinity treatment, were found to be efficient in scavenging azo dye and mitigating its toxicity, as evidenced by improved germination, growth, and overall plant morphometry.
Collapse
Affiliation(s)
- Santanu Gupta
- Department of Botany, Malda College, Malda, 732101, West Bengal, India
| | - Abir Das
- Department of Botany, University of Kalyani, Kalyani, 7431235, West Bengal, India
| | - Kuhely Ganguli
- Department of Botany, Malda College, Malda, 732101, West Bengal, India
| | - Nilakshi Chakraborty
- Department of Botany, University of Kalyani, Kalyani, 7431235, West Bengal, India
| | - Mohammad Reza Fayezizadeh
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, 61357- 43311, Iran.
| | - Sudipta Kumar Sil
- Department of Botany, University of Gour Banga, Malda, 732103, West Bengal, India.
| | - Malay Kumar Adak
- Department of Botany, University of Kalyani, Kalyani, 7431235, West Bengal, India
| | - Mirza Hasanuzzaman
- Departmentof Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh.
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
2
|
Sarkar A, Chakrabarti A, Bhaumik S, Debnath B, Singh SS, Ghosh R, Zaki MEA, Al-Hussain SA, Debnath S. Parkia javanica Edible Pods Reveal Potential as an Anti-Diabetic Agent: UHPLC-QTOF-MS/MS-Based Chemical Profiling, In Silico, In Vitro, In Vivo, and Oxidative Stress Studies. Pharmaceuticals (Basel) 2024; 17:968. [PMID: 39065816 PMCID: PMC11280426 DOI: 10.3390/ph17070968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
According to the World Health Organization, over 422 million people worldwide have diabetes, with the majority residing in low- and middle-income countries. Diabetes causes 1.5 million fatalities a year. The number of diabetes cases and its prevalence have progressively increased over the last few decades. This study aims to determine the phytochemicals in the edible part of Perkia javanica, predict their α-glucosidase inhibitory potential, one of the promising targets for diabetes, and then carry out in vitro and in vivo studies. The phytochemicals present in the n-butanol fraction of the methanol extract of P. javanica pods were analyzed using UHPLC-QTOF-MS/MS (Ultra-High-Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry). The UHPLC-QTOF analysis revealed the presence of 79 different compounds in the n-butanol fraction. Among these, six compounds demonstrated excellent binding affinities with α-glucosidase, surpassing the performance of two standard inhibitors, Miglitol and Voglibose. In vitro α-glucosidase inhibitory activities were assessed by the n-butanol fraction, followed by in vivo studies. According to the in vitro study, the inhibitory efficiency against α-glucosidase was determined to have an IC50 value of 261.9 µg/mL. The in vivo findings revealed a significant reduction in blood glucose levels in Swiss albino mice treated with the same extract, decreasing from 462.66 mg/dL to 228.66 mg/dL. Additionally, the extract significantly increased the activity of the enzymes catalase and superoxide dismutase (SOD) and decreased the amount of malondialdehyde (MDA) in the liver and kidney tissue. The predicted physicochemical parameters indicated that most of the compounds would be excreted from the body after inhibition in the small intestine without being absorbed. Considering the low cost and wide availability of raw materials, P. javanica pods can serve as a good food supplement that may help prevent type 2 diabetes management.
Collapse
Affiliation(s)
- Alekhya Sarkar
- Department of Forestry and Biodiversity, Tripura University, Suryamaninagar 799022, India; (A.S.); (B.D.)
| | - Arjita Chakrabarti
- Department of Zoology, Tripura University, Suryamaninagar 799022, India; (A.C.); (S.S.S.)
| | - Samhita Bhaumik
- Department of Chemistry, Women’s College, Agartala 799001, India;
| | - Bimal Debnath
- Department of Forestry and Biodiversity, Tripura University, Suryamaninagar 799022, India; (A.S.); (B.D.)
| | - Shiv Shankar Singh
- Department of Zoology, Tripura University, Suryamaninagar 799022, India; (A.C.); (S.S.S.)
| | - Rajat Ghosh
- In Silico Drug Design Lab., Department of Pharmacy, Tripura University, Suryamaninagar 799022, India;
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia;
| | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia;
| | - Sudhan Debnath
- Department of Chemistry, Netaji Subhash Mahavidyalaya, Udaipur 799114, India
| |
Collapse
|
3
|
Huang X, Lin K, Liu S, Yang J, Zhao H, Zheng XH, Tsai MJ, Chang CS, Huang L, Weng CF. Combination of plant metabolites hinders starch digestion and glucose absorption while facilitating insulin sensitivity to diabetes. Front Pharmacol 2024; 15:1362150. [PMID: 38903985 PMCID: PMC11188438 DOI: 10.3389/fphar.2024.1362150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/29/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Diabetes mellitus (DM) is a common endocrine disease resulting from interactions between genetic and environmental factors. Type II DM (T2DM) accounts for approximately 90% of all DM cases. Current medicines used in the treatment of DM have some adverse or undesirable effects on patients, necessitating the use of alternative medications. Methods To overcome the low bioavailability of plant metabolites, all entities were first screened through pharmacokinetic, network pharmacology, and molecular docking predictions. Experiments were further conducted on a combination of antidiabetic phytoactive molecules (rosmarinic acid, RA; luteolin, Lut; resveratrol, RS), along with in vitro evaluation (α-amylase inhibition assay) and diabetic mice tests (oral glucose tolerance test, OGTT; oral starch tolerance test, OSTT) for maximal responses to validate starch digestion and glucose absorption while facilitating insulin sensitivity. Results The results revealed that the combination of metabolites achieved all required criteria, including ADMET, drug likeness, and Lipinski rule. To determine the mechanisms underlying diabetic hyperglycemia and T2DM treatments, network pharmacology was used for regulatory network, PPI network, GO, and KEGG enrichment analyses. Furthermore, the combined metabolites showed adequate in silico predictions (α-amylase, α-glucosidase, and pancreatic lipase for improving starch digestion; SGLT-2, AMPK, glucokinase, aldose reductase, acetylcholinesterase, and acetylcholine M2 receptor for mediating glucose absorption; GLP-1R, DPP-IV, and PPAR-γ for regulating insulin sensitivity), in vitro α-amylase inhibition, and in vivo efficacy (OSTT versus acarbose; OGTT versus metformin and insulin) as nutraceuticals against T2DM. Discussion The results demonstrate that the combination of RA, Lut, and RS could be exploited for multitarget therapy as prospective antihyperglycemic phytopharmaceuticals that hinder starch digestion and glucose absorption while facilitating insulin sensitivity.
Collapse
Affiliation(s)
- Xin Huang
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
- Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| | - Kaihuang Lin
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
- Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| | - Sinian Liu
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
- Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| | - Junxiong Yang
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
- Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| | - Haowei Zhao
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
- Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| | - Xiao-Hui Zheng
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
- Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| | - May-Jywan Tsai
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Sheng Chang
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Liyue Huang
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
- Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| | - Ching-Feng Weng
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
- Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| |
Collapse
|
4
|
Ali Z, Rehman W, Rasheed L, Alzahrani AY, Ali N, Hussain R, Emwas AH, Jaremko M, Abdellattif MH. New 1,3,4-Thiadiazole Derivatives as α-Glucosidase Inhibitors: Design, Synthesis, DFT, ADME, and In Vitro Enzymatic Studies. ACS OMEGA 2024; 9:7480-7490. [PMID: 38405480 PMCID: PMC10882623 DOI: 10.1021/acsomega.3c05854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 02/27/2024]
Abstract
Diabetes is an emerging disorder in the world and is caused due to the imbalance of insulin production as well as serious effects on the body. In search of a better treatment for diabetes, we designed a novel class of 1,3,4-thiadiazole-bearing Schiff base analogues and assessed them for the α-glucosidase enzyme. In the series (1-12), compounds are synthesized and 3 analogues showed excellent inhibitory activity against α-glucosidase enzymes in the range of IC50 values of 18.10 ± 0.20 to 1.10 ± 0.10 μM. In this series, analogues 4, 8, and 9 show remarkable inhibition profile IC50 2.20 ± 0.10, 1.10 ± 0.10, and 1.30 ± 0.10 μM by using acarbose as a standard, whose IC50 is 11.50 ± 0.30 μM. The structure of the synthesized compounds was confirmed through various spectroscopic techniques, such as NMR and HREI-MS. Additionally, molecular docking, pharmacokinetics, cytotoxic evaluation, and density functional theory study were performed to investigate their behavior.
Collapse
Affiliation(s)
- Zahid Ali
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Wajid Rehman
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Liaqat Rasheed
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Abdullah Y. Alzahrani
- Department
of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir 61421, Saudi Arabia
| | - Nawab Ali
- Shanghai
Key Laboratory of Functional Materials Chemistry, School of Chemistry
and Molecular Engineering, East China University
of Science and Technology, Meilong Road130, Shanghai 200237, PR China
| | - Rafaqat Hussain
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Abdul-Hamid Emwas
- Core
Laboratories, King Abdullah University of
Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Biological
and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magda H. Abdellattif
- Department
of Chemistry, Sciences College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
5
|
Lam TP, Tran NVN, Pham LHD, Lai NVT, Dang BTN, Truong NLN, Nguyen-Vo SK, Hoang TL, Mai TT, Tran TD. Flavonoids as dual-target inhibitors against α-glucosidase and α-amylase: a systematic review of in vitro studies. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:4. [PMID: 38185713 PMCID: PMC10772047 DOI: 10.1007/s13659-023-00424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024]
Abstract
Diabetes mellitus remains a major global health issue, and great attention is directed at natural therapeutics. This systematic review aimed to assess the potential of flavonoids as antidiabetic agents by investigating their inhibitory effects on α-glucosidase and α-amylase, two key enzymes involved in starch digestion. Six scientific databases (PubMed, Virtual Health Library, EMBASE, SCOPUS, Web of Science, and WHO Global Index Medicus) were searched until August 21, 2022, for in vitro studies reporting IC50 values of purified flavonoids on α-amylase and α-glucosidase, along with corresponding data for acarbose as a positive control. A total of 339 eligible articles were analyzed, resulting in the retrieval of 1643 flavonoid structures. These structures were rigorously standardized and curated, yielding 974 unique compounds, among which 177 flavonoids exhibited inhibition of both α-glucosidase and α-amylase are presented. Quality assessment utilizing a modified CONSORT checklist and structure-activity relationship (SAR) analysis were performed, revealing crucial features for the simultaneous inhibition of flavonoids against both enzymes. Moreover, the review also addressed several limitations in the current research landscape and proposed potential solutions. The curated datasets are available online at https://github.com/MedChemUMP/FDIGA .
Collapse
Affiliation(s)
- Thua-Phong Lam
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Uppsala University, 75105, Uppsala, Sweden
| | - Ngoc-Vi Nguyen Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Uppsala University, 75105, Uppsala, Sweden
| | - Long-Hung Dinh Pham
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
| | - Nghia Vo-Trong Lai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Bao-Tran Ngoc Dang
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Ngoc-Lam Nguyen Truong
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Song-Ky Nguyen-Vo
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Thuy-Linh Hoang
- California Northstate University College of Pharmacy, California, 95757, USA
| | - Tan Thanh Mai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam.
| | - Thanh-Dao Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam.
| |
Collapse
|
6
|
Tchuente Djoko C, Tamfu AN, Nyemb JN, Toko Feunaing R, Laurent S, Henoumont C, Talla E, Venditti A. In vitro α-glucosidase inhibitory activity of isolated compounds and semisynthetic derivative from aerial parts of Erythrina senegalensis DC. Nat Prod Res 2023; 37:3994-4003. [PMID: 36647748 DOI: 10.1080/14786419.2023.2167205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023]
Abstract
The current study was conducted to isolate the phytoconstituents from Erythrina senegalensis leaves and stem bark and evaluate their inhibitory activity against α-glucosidase, digestive enzyme related to diabetes mellitus. Phytochemical investigation of the leaves resulted in the isolation of three saponins (3-5), two triterpenoids (7 and 8) and two steroids (10a and 10b) as inseparable mixture, while one saponin (6), one triterpenoid (9) and one mixture of two cinnamates (2a and 2b) were isolated from the stem bark. Except for compounds 2 b, 7, 8, 10a and 10 b all the isolated compounds are reported here for the first time from the genus Erythrina. Acetylation of the mixture of two cinnamates (2a and 2b) led to a new diester derivative (1) trivially called erythrinamate. The extracts and pure compounds (3, 4, 6) showed good α-glucosidase inhibitory activity compared to the standard drug acarbose. The findings suggest that saponins of E. senegalensis could be used to develop potential anti-hyperglycemic drugs.
Collapse
Affiliation(s)
- Cyrille Tchuente Djoko
- Department of Chemistry, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere, Cameroon
| | - Jean Noël Nyemb
- Department of Refining and Petrochemistry, National Advanced School of Mines and Petroleum Industries, The University of Maroua, Kaele, Cameroon
| | - Romeo Toko Feunaing
- Department of Chemistry, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging, Department of General, Organic and Biomedical Chemistry, University of Mons, Mons, Belgium
| | - Céline Henoumont
- Laboratory of NMR and Molecular Imaging, Department of General, Organic and Biomedical Chemistry, University of Mons, Mons, Belgium
| | - Emmanuel Talla
- Department of Chemistry, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere, Cameroon
| | | |
Collapse
|
7
|
Rocha S, Rufino AT, Freitas M, Silva AMS, Carvalho F, Fernandes E. Methodologies for Assessing Pancreatic Lipase Catalytic Activity: A Review. Crit Rev Anal Chem 2023; 54:3038-3065. [PMID: 37335098 DOI: 10.1080/10408347.2023.2221731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Obesity is a disease of epidemic proportions with a concerning increasing trend. Regarded as one of the main sources of energy, lipids can also represent a big part of an unnecessary intake of calories and be, therefore, directly related to the problem of obesity. Pancreatic lipase is an enzyme that is essential in the absorption and digestion of dietary fats and has been explored as an alternative for the reduction of fat absorption and consequent weigh loss. Literature describes a great variability of methodologies and experimental conditions used in research to evaluate the in vitro inhibitory activity of compounds against pancreatic lipase. However, in an attempt to choose the best approach, it is necessary to know all the reaction conditions and understand how these can affect the enzymatic assay. The objective of this review is to understand and summarize the methodologies and respective experimental conditions that are mainly used to evaluate pancreatic lipase catalytic activity. 156 studies were included in this work and a detailed description of the most commonly used UV/Vis spectrophotometric and fluorimetric instrumental techniques are presented, including a discussion regarding the differences found in the parameters used in both techniques, namely enzyme, substrate, buffer solutions, kinetics conditions, temperature and pH. This works shows that both UV/Vis spectrophotometry and fluorimetry are useful instrumental techniques for the evaluation of pancreatic lipase catalytic activity, presenting several advantages and limitations, which make the choice of parameters and experimental conditions a crucial decision to obtain the most reliable results.
Collapse
Affiliation(s)
- Sílvia Rocha
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Artur M S Silva
- LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
8
|
Rasheed L, Rehman W, Rahim F, Ali Z, Alanazi AS, Hussain R, Khan I, Alanazi MM, Naseer M, Abdellattif MH, Hussain R, Khan S, Taha M, Ali Shah SA. Molecular Modeling and Synthesis of Indoline-2,3-dione-Based Benzene Sulfonamide Derivatives and Their Inhibitory Activity against α-Glucosidase and α-Amylase Enzymes. ACS OMEGA 2023; 8:15660-15672. [PMID: 37151487 PMCID: PMC10157847 DOI: 10.1021/acsomega.3c01130] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023]
Abstract
Diabetes is also known as a critical and noisy disease. Hyperglycemia, that is, increased blood glucose level is a common effect of uncontrolled diabetes, and over a period of time can cause serious effects on health such as blood vessel damage and nervous system damage. However, many attempts have been made to find suitable and beneficial solutions to overcome diabetes. Considering this fact, we synthesized a novel series of indoline-2,3-dione-based benzene sulfonamide derivatives and evaluated them against α-glucosidase and α-amylase enzymes. Out of the synthesized sixteen compounds (1-16), only three compounds showed better results; the IC50 value was in the range of 12.70 ± 0.20 to 0.90 ± 0.10 μM for α-glucosidase against acarbose 11.50 ± 0.30 μM and 14.90 ± 0.20 to 1.10 ± 0.10 μM for α-amylase against acarbose 12.20 ± 0.30 μM. Among the series, only three compounds showed better inhibitory potential such as analogues 11 (0.90 ± 0.10 μM for α-glucosidase and 1.10 ± 0.10 μM for α-amylase), 1 (1.10 ± 0.10 μM for α-glucosidase and 1.30 ± 0.10 μM for α-amylase), and 6 (1.20 ± 0.10 μM for α-glucosidase and 1.60 ± 0.10 μM for α-amylase). Molecular modeling was performed to determine the binding affinity of active interacting residues against these enzymes, and it was found that benzenesulfonohydrazide derivatives can be indexed as suitable inhibitors for diabetes mellitus.
Collapse
Affiliation(s)
- Liaqat Rasheed
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Wajid Rehman
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
- . Phone: 0092-333-5779831
| | - Fazal Rahim
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Zahid Ali
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Ashwag S. Alanazi
- Department
of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rafaqat Hussain
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Imran Khan
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Mohammed M. Alanazi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Naseer
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Magda H. Abdellattif
- Department
of Chemistry, College of Sciences, Taif
University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Riaz Hussain
- Division
of Science and Technology, University of
Education Lahore, Lahore 54770, Pakistan
| | - Shoaib Khan
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Muhammad Taha
- Department
of Clinical Pharmacy, Institute for Research and Medical Consultations
(IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Syed Adnan Ali Shah
- Atta-ur-Rahman
Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia
| |
Collapse
|
9
|
Inhibition Kinetics and Theoretical Studies on Zanthoxylum chalybeum Engl. Dual Inhibitors of α-Glucosidase and α-Amylase. J Xenobiot 2023; 13:102-120. [PMID: 36976158 PMCID: PMC10059848 DOI: 10.3390/jox13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Compounds from Zanthoxylum chalybeum Engl. were previously reported for inhibitory activities of amylase and glucosidase enzymatic action on starch as a preliminary study toward the establishment of a management strategy against postprandial hyperglycemia, however, the inhibitory kinetics and molecular interaction of these compounds were never established. A study was thus designed to establish the inhibitory kinetics and in silico molecular interaction of α-glucosidase and α-amylase with Z. chalybeum metabolites based on Lineweaver–Burk/Dixon plot analyses and using Molecular Operating Environment (MOE) software, respectively. Skimmianine (5), Norchelerythrine (6), 6-Acetonyldihydrochelerythrine (7), and 6-Hydroxy-N-methyldecarine (8) alkaloids showed mixed inhibition against both α-glucosidase and α-amylase with comparable Ki to the reference acarbose (p > 0.05) on amylase but significantly higher activity than acarbose on α-glucosidase. One phenolic 2,3-Epoxy-6,7-methylenedioxyconiferol (10) showed a competitive mode of inhibition both on amylase and glucosidase which were comparable (p > 0.05) to the activity of acarbose. The other compounds analyzed and displayed varied modes of inhibition between noncompetitive and uncompetitive with moderate inhibition constants included chaylbemide A (1), chalybeate B (2) and chalybemide C (3), fagaramide (4), ailanthoidol (9), and sesame (11). The important residues of the proteins α-glucosidase and α-amylase were found to have exceptional binding affinities and significant interactions through molecular docking studies. The binding affinities were observed in the range of −9.4 to −13.8 and −8.0 to −12.6 relative to the acarbose affinities at −17.6 and −20.5 kcal/mol on α-amylase and α-glucosidase residue, respectively. H-bonding, π-H, and ionic interactions were noted on variable amino acid residues on both enzymes. The study thus provides the basic information validating the application of extracts of Z. chalybeum in the management of postprandial hyperglycemia. Additionally, the molecular binding mechanism discovered in this study could be useful for optimizing and designing new molecular analogs as pharmacological agents against diabetes.
Collapse
|
10
|
Nabil-Adam A, Ashour ML, Tamer TM, Shreadah MA, Hassan MA. Interaction of Jania rubens Polyphenolic Extract as an Antidiabetic Agent with α-Amylase, Lipase, and Trypsin: In Vitro Evaluations and In Silico Studies. Catalysts 2023; 13:443. [DOI: 10.3390/catal13020443] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023] Open
Abstract
Jania rubens red seaweed has various bioactive compounds that can be used for several medicinal and pharmaceutical applications. In this study, we investigate the antidiabetic, anti-inflammatory, and antioxidant competency of Jania rubens polyphenolic extract (JRPE) by assessing their interactions with α-amylase, lipase, and trypsin enzymes. HPLC analysis revealed the dominance of twelve polyphenolic compounds. We performed computational analysis using α-amylase, lipase, and trypsin as target proteins for the polyphenols to explore their activities based on their predicted modes of binding sites following molecular modeling analysis. The molecular docking analysis demonstrated a good affinity score with a noticeable affinity to polyphenolic compositions of Jania rubens. The compounds with the highest affinity score for α-amylase (PDB: 4W93) were kaempferol, quercetin, and chlorogenic acid, with −8.4, −8.8 and −8 kcal/mol, respectively. Similarly, lipase (PDB: 1LPB) demonstrated high docking scores of −7.1, −7.4, and −7.2 kcal/mol for kaempferol, quercetin, and chlorogenic acid, respectively. Furthermore, for trypsin (PDB: 4DOQ) results, kaempferol, quercetin, and chlorogenic acid docking scores were −7.2, −7.2, and −7.1 kcal/mol, respectively. The docking findings were verified using in vitro evaluations, manifesting comparable results. Overall, these findings enlighten that the JRPE has antidiabetic, anti-inflammatory, and antioxidant properties using different diabetics’ enzymes that could be further studied using in vivo investigations for diabetes treatment.
Collapse
Affiliation(s)
- Asmaa Nabil-Adam
- Marine Biotechnology and Natural Products Laboratory, National Institute of Oceanography & Fisheries, Cairo 11516, Egypt
| | - Mohamed L. Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo 11566, Egypt
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Tamer M. Tamer
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
| | - Mohamed A. Shreadah
- Marine Biotechnology and Natural Products Laboratory, National Institute of Oceanography & Fisheries, Cairo 11516, Egypt
| | - Mohamed A. Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
- University Medical Center Göttingen, Georg-August-University, 37073 Göttingen, Germany
| |
Collapse
|
11
|
Chemical and Biological Review of Endophytic Fungi Associated with Morus sp. (Moraceae) and In Silico Study of Their Antidiabetic Potential. Molecules 2023; 28:molecules28041718. [PMID: 36838706 PMCID: PMC9968060 DOI: 10.3390/molecules28041718] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
The chronic nature of diabetes mellitus motivates the quest for novel agents to improve its management. The scarcity and prior uncontrolled utilization of medicinal plants have encouraged researchers to seek new sources of promising compounds. Recently, endophytes have presented as eco-friendly leading sources for bioactive metabolites. This article reviewed the endophytic fungi associated with Morus species and their isolated compounds, in addition to the biological activities tested on their extracts and chemical constituents. The relevant literature was collected from the years 2008-2022 from PubMed and Web of Science databases. Notably, no antidiabetic activity was reported for any of the Morus-associated endophytic fungal extracts or their twenty-one previously isolated compounds. This encouraged us to perform an in silico study on the previously isolated compounds to explore their possible antidiabetic potential. Furthermore, pharmacokinetic and dynamic stability studies were performed on these compounds. Upon molecular docking, Colletotrichalactone A (14) showed a promising antidiabetic activity due to the inhibition of the α-amylase local target and the human sodium-glucose cotransporter 2 (hSGT2) systemic target with safe pharmacokinetic features. These results provide an in silico interpretation of the possible anti-diabetic potential of Morus endophytic metabolites, yet further study is required.
Collapse
|
12
|
Sharef AY, Hamdi BA, Alrawi RA, Ahmad HO. Onopordum acanthium L. extract attenuates pancreatic β-Cells and cardiac inflammation in streptozocin-induced diabetic rats. PLoS One 2023; 18:e0280464. [PMID: 36696433 PMCID: PMC9876371 DOI: 10.1371/journal.pone.0280464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/31/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Methanolic extract from Onopordum acanthium L. leaves (MEOAL) has been discovered to treat diabetic complications. The objective of this study is to evaluate the ameliorative role of MEOAL on pancreatic islet injury and myocardial inflammation in diabetic rats. METHODS Forty male Wister albino rats were allocated into five groups of eight rats each. Group A was the negative control group. Single intraperitoneal injection of streptozocin (50mg/kg) were used for the four experimental groups. Group B served as the positive control group. The rats in Groups C, D, and E received glibenclamide (5mg/kg), MEOAL (200, and 400 mg/kg) respectively, for eight weeks. Group C served as the standard drug group. High performance liquid chromatography (HPLC) and 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assays for antioxidant activity were conducted in MEOAL. In silico study, calculation of molecular binding energy (DG), and inhibition constant (pKi) of bioactive constituents in MEOAL were performed. RESULTS Administration of MEOAL significantly increases insulin content in β-cells with a marked enhancement of pancreatic islet structure, resulting in a significant reduction of blood glucose level and body weight loss. MEOAL treatment suppressed the increase of inflammatory cell score in myocardial tissue with an elevation of M2 -like macrophage. The phytochemical studies recorded the presence of six polyphenols, including catechin, kaempferol, syringic acid, p-coumaric acid, epicatechin and gallic acid in MEOAL. Moreover, the antioxidant activity of the extract was greater than that of standard ascorbic acid. The docking studies of the ligands Catechin, kaempferol and epicatechin with proteins showed high affinities with various targets related in β-Cells and cardiac inflammation. CONCLUSIONS The attenuation of pancreatic β-Cells damage and cardiac inflammation by MEOAL could be attributed to the presence of Catechin, kaempferol and epicatechin which have high affinities with the receptors namely pancreatic alpha-amylase, glucokinase, COX-2, and COX-1.
Collapse
Affiliation(s)
| | - Bushra Ahmed Hamdi
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- * E-mail:
| | - Rafal Abdulrazaq Alrawi
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Hiwa Omer Ahmad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| |
Collapse
|
13
|
Natural Compounds as DPP-4 Inhibitors: 3D-Similarity Search, ADME Toxicity, and Molecular Docking Approaches. Symmetry (Basel) 2022. [DOI: 10.3390/sym14091842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Type 2 diabetes mellitus is one of the most common diseases of the 21st century, caused by a sedentary lifestyle, poor diet, high blood pressure, family history, and obesity. To date, there are no known complete cures for type 2 diabetes. To identify bioactive natural products (NPs) to manage type 2 diabetes, the NPs from the ZINC15 database (ZINC-NPs DB) were screened using a 3D shape similarity search, molecular docking approaches, and ADMETox approaches. Frequently, in silico studies result in asymmetric structures as “hit” molecules. Therefore, the asymmetrical FDA-approved diabetes drugs linagliptin (8-[(3R)-3-aminopiperidin-1-yl]-7-but-2-ynyl-3-methyl-1-[(4-methylquinazolin-2-yl)methyl]purine-2,6-dione), sitagliptin ((3R)-3-amino-1-[3-(trifluoromethyl)-6,8-dihydro-5H-[1,2,4]triazolo[4,3-a]pyrazin-7-yl]-4-(2,4,5-trifluorophenyl)butan-1-one), and alogliptin (2-[[6-[(3R)-3-aminopiperidin-1-yl]-3-methyl-2,4-dioxopyrimidin-1-yl]methyl]benzonitrile) were used as queries to virtually screen the ZINC-NPs DB and detect novel potential dipeptidyl peptidase-4 (DPP-4) inhibitors. The most promising NPs, characterized by the best sets of similarity and ADMETox features, were used during the molecular docking stage. The results highlight that 11 asymmetrical NPs out of 224,205 NPs are potential DPP-4 candidates from natural sources and deserve consideration for further in vitro/in vivo tests.
Collapse
|
14
|
Patil SM, Martiz RM, Satish AM, Shbeer AM, Ageel M, Al-Ghorbani M, Ranganatha L, Parameswaran S, Ramu R. Discovery of Novel Coumarin Derivatives as Potential Dual Inhibitors against α-Glucosidase and α-Amylase for the Management of Post-Prandial Hyperglycemia via Molecular Modelling Approaches. Molecules 2022; 27:3888. [PMID: 35745030 PMCID: PMC9227442 DOI: 10.3390/molecules27123888] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
Coumarin derivatives are proven for their therapeutic uses in several human diseases and disorders such as inflammation, neurodegenerative disorders, cancer, fertility, and microbial infections. Coumarin derivatives and coumarin-based scaffolds gained renewed attention for treating diabetes mellitus. The current decade witnessed the inhibiting potential of coumarin derivatives and coumarin-based scaffolds against α-glucosidase and α-amylase for the management of postprandial hyperglycemia. Hyperglycemia is a condition where an excessive amount of glucose circulates in the bloodstream. It occurs when the body lacks enough insulin or is unable to correctly utilize it. With open-source and free in silico tools, we have investigated novel 80 coumarin derivatives for their inhibitory potential against α-glucosidase and α-amylase and identified a coumarin derivative, CD-59, as a potential dual inhibitor. The ligand-based 3D pharmacophore detection and search is utilized to discover diverse coumarin-like compounds and new chemical scaffolds for the dual inhibition of α-glucosidase and α-amylase. In this regard, four novel coumarin-like compounds from the ZINC database have been discovered as the potential dual inhibitors of α-glucosidase and α-amylase (ZINC02789441 and ZINC40949448 with scaffold thiophenyl chromene carboxamide, ZINC13496808 with triazino indol thio phenylacetamide, and ZINC09781623 with chromenyl thiazole). To summarize, we propose that a coumarin derivative, CD-59, and ZINC02789441 from the ZINC database will serve as potential lead molecules with dual inhibition activity against α-glucosidase and α-amylase, thereby discovering new drugs for the effective management of postprandial hyperglycemia. From the reported scaffold, the synthesis of several novel compounds can also be performed, which can be used for drug discovery.
Collapse
Affiliation(s)
- Shashank M. Patil
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, India; (S.M.P.); (R.M.M.); (S.P.)
| | - Reshma Mary Martiz
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, India; (S.M.P.); (R.M.M.); (S.P.)
| | - A. M. Satish
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| | - Abdullah M. Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia; (A.M.S.); (M.A.)
| | - Mohammed Ageel
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia; (A.M.S.); (M.A.)
| | - Mohammed Al-Ghorbani
- Department of Chemistry, College of Science and Arts, Taibah University, Madina 41477, Saudi Arabia;
- Department of Chemistry, College of Education, Thamar University, Thamar 425897, Yemen
| | - Lakshmi Ranganatha
- Department of Chemistry, The National Institute of Engineering, Mysuru 570008, India;
| | - Saravanan Parameswaran
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, India; (S.M.P.); (R.M.M.); (S.P.)
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, India; (S.M.P.); (R.M.M.); (S.P.)
| |
Collapse
|