1
|
Vandergrift GW, Bell SL, Schrader SE, Jensen SM, Wahl JH, Tagestad JD, China S, Hofmockel KS. Harvest Initiated Volatile Organic Compound Emissions from In-Field Tall Wheatgrass. ACS EARTH & SPACE CHEMISTRY 2024; 8:1961-1969. [PMID: 39440017 PMCID: PMC11492378 DOI: 10.1021/acsearthspacechem.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/11/2024] [Accepted: 08/12/2024] [Indexed: 10/25/2024]
Abstract
While crop and grassland usage continues to increase, the full diversity of plant-specific volatile organic compounds (VOCs) emitted from these ecosystems, including their implications for atmospheric chemistry and carbon cycling, remains poorly understood. It is particularly important to investigate VOCs in the context of potential biofuels: aside from the implications of large-scale land use, harvest may shift both the flux and speciation of emitted VOCs. To this point, we evaluate the diversity of VOCs emitted both pre and postharvest from "Alkar" tall wheatgrass (Thinopyrum ponticum), a candidate biofuel that exhibits greater tolerance to frost and saline land compared to other grass varieties. Mature plants grown under field conditions (n = 6) were sampled for VOCs both pre- and postharvest (October 2022). Via hierarchical clustering of emitted VOCs from each plant, we observe distinct "volatilomes" (diversity of VOCs) specific to the pre- and postharvest conditions despite plant-to-plant variability. In total, 50 VOCs were found to be unique to the postharvest tall wheatgrass volatilome, and these unique VOCs constituted a significant portion (26%) of total postharvest signal. While green leaf volatiles (GLVs) dominate the speciation of postharvest emissions (e.g., 54% of unique postharvest VOC signal was due to 1-penten-3-ol), we demonstrate novel postharvest VOCs from tall wheatgrass that are under characterized in the context of carbon cycling and atmospheric chemistry (e.g., 3-octanone). Continuing evaluations will quantitatively investigate tall wheatgrass VOC fluxes, better informing the feasibility and environmental impact of tall wheatgrass as a biofuel.
Collapse
Affiliation(s)
- Gregory W Vandergrift
- Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Sheryl L Bell
- Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Shannon E Schrader
- Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Sonja M Jensen
- Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Jon H Wahl
- Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Jerry D Tagestad
- Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Swarup China
- Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Kirsten S Hofmockel
- Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| |
Collapse
|
3
|
Gong B, Chen L, Zhang H, Zhu W, Xu L, Cheng Y, Wang Y, Zeng J, Fan X, Sha L, Zhang H, Chen G, Zhou Y, Kang H, Wu D. Development, identification, and utilization of wheat-tetraploid Thinopyrum elongatum 4EL translocation lines resistant to stripe rust. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:17. [PMID: 38198011 DOI: 10.1007/s00122-023-04525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
KEY MESSAGE The new stripe rust resistance gene Yr4EL in tetraploid Th. elongatum was identified and transferred into common wheat via 4EL translocation lines. Tetraploid Thinopyrum elongatum is a valuable genetic resource for improving the resistance of wheat to diseases such as stripe rust, powdery mildew, and Fusarium head blight. We previously reported that chromosome 4E of the 4E (4D) substitution line carries all-stage stripe rust resistance genes. To optimize the utility of these genes in wheat breeding programs, we developed translocation lines by inducing chromosomal structural changes through 60Co-γ irradiation and developing monosomic substitution lines. In total, 53 plants with different 4E chromosomal structural changes were identified. Three homozygous translocation lines (T4DS·4EL, T5AL·4EL, and T3BL·4EL) and an addition translocation line (T5DS·4EL) were confirmed by the genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), FISH-painting, and wheat 55 K SNP array analyses. These four translocation lines, which contained chromosome arm 4EL, exhibited high stripe rust resistance. Thus, a resistance gene (tentatively named Yr4EL) was localized to the chromosome arm 4EL of tetraploid Th. elongatum. For the application of marker-assisted selection (MAS), 32 simple sequence repeat (SSR) markers were developed, showing specific amplification on the chromosome arm 4EL and co-segregation with Yr4EL. Furthermore, the 4DS·4EL line could be selected as a good pre-breeding line that better agronomic traits than other translocation lines. We transferred Yr4EL into three wheat cultivars SM482, CM42, and SM51, and their progenies were all resistant to stripe rust, which can be used in future wheat resistance breeding programs.
Collapse
Affiliation(s)
- Biran Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Linfeng Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hao Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
4
|
Dai Y, Li J, Shi J, Gao Y, Ma H, Wang Y, Ma H. Molecular Characterization and Marker Development of the HMW-GS Gene from Thinopyrum elongatum for Improving Wheat Quality. Int J Mol Sci 2023; 24:11072. [PMID: 37446250 DOI: 10.3390/ijms241311072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The quality of wheat primarily depends on its storage protein quality, especially in regards to gluten content and high-molecular-weight glutenin subunits (HMW-GS). The number of HMW-GS alleles is limited in bread wheat (Triticum aestivum L.), whereas it is abundant in wheat relatives. Therefore, HMW-GS alleles from wheat relatives could provide a potential for improving quality in wheat breeding. Thinopyrum elongatum (EE) is one of the relatives of wheat. The E genome is closely related to the ABD genome in wheat; therefore, Th. elongatum is often used as an excellent exogenous gene donor for wheat genetic improvement. In this study, the high-molecular glutenin subunit gene was cloned and sequenced from Th. elongatum. A specific molecular marker for identifying the Glu-1Ey subunit gene was developed and applied to detected wheat-Th. elongatum alien introgression lines. Quality analysis indicated that the substitution and addition lines containing Th. elongatum alleles significantly (p < 0.05) increased grain protein content by 3.76% to 5.11%, wet-gluten content by 6.55% to 8.73%, flour 8-MW by 0.25% to 6.35%, and bread volume value by 33.77 mL to 246.50 mL, in comparing it with Chinese Spring. The GMP content and lactic acid SRC showed significant positive correlations with flour processing quality and might be used as indicators for wheat quality. The results were expected to provide a novel route for improving processing quality in wheat quality breeding.
Collapse
Affiliation(s)
- Yi Dai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center of Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jinfeng Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center of Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Juntao Shi
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center of Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yujiao Gao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center of Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Haigang Ma
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center of Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yonggang Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center of Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Hongxiang Ma
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center of Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Yao X, Zhou M, Ruan J, Peng Y, Ma C, Wu W, Gao A, Weng W, Cheng J. Physiological and Biochemical Regulation Mechanism of Exogenous Hydrogen Peroxide in Alleviating NaCl Stress Toxicity in Tartary Buckwheat ( Fagopyrum tataricum (L.) Gaertn). Int J Mol Sci 2022; 23:10698. [PMID: 36142630 PMCID: PMC9505081 DOI: 10.3390/ijms231810698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
We aimed to elucidate the physiological and biochemical mechanism by which exogenous hydrogen peroxide (H2O2) alleviates salt stress toxicity in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn). Tartary buckwheat "Chuanqiao-2" under 150 mmol·L-1 salt (NaCl) stress was treated with 5 or 10 mmol·L-1 H2O2, and seedling growth, physiology and biochemistry, and related gene expression were studied. Treatment with 5 mmol·L-1 H2O2 significantly increased plant height (PH), fresh and dry weights of shoots (SFWs/SDWs) and roots (RFWs/RDWs), leaf length (LL) and area (LA), and relative water content (LRWC); increased chlorophyll a (Chl a) and b (Chl b) contents; improved fluorescence parameters; enhanced antioxidant enzyme activity and content; and reduced malondialdehyde (MDA) content. Expressions of all stress-related and enzyme-related genes were up-regulated. The F3'H gene (flavonoid synthesis pathway) exhibited similar up-regulation under 10 mmol·L-1 H2O2 treatment. Correlation and principal component analyses showed that 5 mmol·L-1 H2O2 could significantly alleviate the toxic effect of salt stress on Tartary buckwheat. Our results show that exogenous 5 mmol·L-1 H2O2 can alleviate the inhibitory or toxic effects of 150 mmol·L-1 NaCl stress on Tartary buckwheat by promoting growth, enhancing photosynthesis, improving enzymatic reactions, reducing membrane lipid peroxidation, and inducing the expression of related genes.
Collapse
Affiliation(s)
- Xin Yao
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Meiliang Zhou
- Institute of Crop Science, Chinese Academy of Agriculture Science, Beijing 100081, China
| | - Jingjun Ruan
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Yan Peng
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Chao Ma
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Weijiao Wu
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Anjing Gao
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Wenfeng Weng
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Jianping Cheng
- College of Agronomy, Guizhou University, Guiyang 550025, China
| |
Collapse
|